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ABSTRACT 

 

Combined cycle power plant (CCPP) is currently the most promising technology 

to generate power at higher plant thermal efficiencies. The effects of the cycle 

peak temperature ratio on the improvement of the performance of the combined 

cycle power plant had been proposed. The MATLAB code was developed to utilize 

the performance of the CCPP. The results of this study showed that the overall thermal 

efficiency increased with the increase of cycle peak temperature ratio and decreased with 

the increase of air fuel ratio. Also, the increase of the cycle peak temperature ratio as well 

as the increase of the isentropic compressor efficiency led to the increase of the total 

power output. The thermal efficiencies for CCPP were higher compared to the gas turbine 

power plant.  
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INTRODUCTION 
 

  The worldwide increase in energy demand has to be met in an environmentally friendly 

way and be efficient in use. Combined cycle power plant (CCPP) power generation is 

currently the most promising technology to generate power at higher plant thermal 

efficiencies. CCPP plants couple a Brayton cycle (topping cycle) with a Rankine cycle 

(the bottoming cycle)[1, 2]. The hot exhaust gases from the gas turbine (Brayton cycle) 

deliver energy to produce high-pressure steam for the Rankine cycle. The heat recovery 

steam generator (HRSG) is the equipment, which is used to production steam. High 

efficiency in CC (up to 58%) can be achieved for two main reasons [3-5] such as 

improvements in the gas turbine technology (i.e. higher cycle peak temperature ratio) and 

improvement in the HRSG design. In the power generation unit, the CCPP power plants 

are an attractive development. Under this, the attributed thermal efficiency of the CCPP 

is higher in comparison to the individual thermal efficiency of steam power plant or GT 

plant. As a result, due to the escalating fuel prices, the optimum design of the CCPP holds 

significant importance [1, 6-8]. For achieving optimum ST output, the appropriate usage 

of the GT exhaust heat in the ST cycle stands as the main challenge in a CCPP design. 

The power output of such cycles has increased according to the benefits of CCPP [9]. In 

contrast to the GT and ST plant, a higher overall thermal efficiency and power output 
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have been identified for the CCPP plants [10]. In comparison to Ranking (ST) or Brayton 

(GT) cycles, the higher overall thermal efficiencies of a CCPP make them outstanding as 

a power generation unit. Thus, CCPP has been utilized on a comprehensive scale 

worldwide based on these lower emissions and advantages [11-18]. As a highly developed 

technology, the CCPP power plant produces electrical power at high efficiencies. The 

turbine inlet temperature of a GT cycle (topping cycle) has a higher temperature than the 

CCPP. In a heat recovery steam generator (HRSGs), the high temperature steam for the 

steam turbine is generated by using the temperature of the exhaust gases [19]. In 

comparison with the ST cycle (850K), the GT cycle can work at a higher temperature of 

(1100k to 1800K) [20, 21]. By increasing the maximum temperature (turbine inlet 

temperature) of heat addition in the thermal cycle, working with low temperature of heat 

rejection or both, the thermal efficiency of any power plant cycle as a thermodynamic 

performance can be enhanced [22-24]. In the CCPP, the GT cycle works at a higher 

turbine inlet temperature and is linked with an ST cycle that operates at a lower 

temperature scale [14, 25, 26]. Moreover, in contrast to the GT power plant that works on 

its own, the heat rejection temperature (exhaust temperature) of the GT working in CCPP 

is lower. Thus, when compared with the levels of the GT cycle thermal efficiency and ST 

cycle thermal efficiency operating individually, the total effect is higher thermal 

efficiency of CCPP [27-29]. A parametric thermodynamic analysis of the CCPP cycle 

was presented in this work. The effects of the operating parameters, including the GT 

cycle peak temperature ratio, pressure ratio, isentropic compressor, efficiency and air-fuel 

ratio on the overall plant performance were investigated. 

 

 
 

Figure 1. The schematic of a single-pressure combined cycle power plant. 
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MODELING OF COMBINED CYCLE POWER PLANT 

 

A schematic of the CCPP and bottoming cycle using a single-pressure heat recovery 

steam generator (HRSG) without reheating is illustrated in Figure 1. To enable burning 

of natural gas for expansion in the GT, a combustor and a single stage axial flow 

compressor are included in the GT (topping cycle). For combining with fuel in order to 

produce high temperature flue gas, the principle of GT states that the air is compressed 

by the air compressor before being transferred to the combustion chamber (CC). Next, 

the GT which is linked to the generator’s shaft for producing electricity becomes the 

recipient of the temperature flue gas [30]. As a gas turbine analysis, it is assumed that the 

compressor efficiency and the turbine efficiency are represented by c  and t  

respectively. 

The net work of the gas-turbine (WGnet) was calculated by Eq. (1) [12, 15, 25]: 
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where T3=TIT is the turbine inlet temperature, rp is the compression ratio, 4.1a , 

33.1g , 
paC is the specific heat of air and m is the mechanical efficiency of the 

compressor and turbine [29, 31, 32]:  
41037243 107632.3102399.4109843.113784.0100189.1 aaaapa TTTTC        

(2)                             

where 
2

12 TT
Ta


  in Kelvin. 

The specific heat of flue gas (
pgC ) was given by Thamir and Rahman, [27]: 

39263 107363.110045.4103127.28083.1 TTTC pg

                         (3) 

The output power from the turbine (P) was expressed as Eq. (4): 

Gnetg WmP                                                                (4) 

where 
gm is the mass flow rate of the exhaust gases through the gas-turbine, and expressed 

as Eq. (5): 

fag mmm                                                                      (5) 

The specific fuel consumption (SFC) was determined by Eq. (6): 

netW

f
SFC

3600
                                                                    (6) 

The heat supplied was also expressed as Eq. (7) [33, 34]: 
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The gas-turbine efficiency ( th ) can be determined by Eq. (8) [28, 35]: 

add

Gnet

Q

W
th                                                                  (8) 
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When flowing into the HRSG, a decrease became imminent in the effluent exhaust 

gas temperature. The superheater, economizer and evaporator existed in the HRSG. 

Electricity was produced with the transmission of steam by the HRSG to the ST. The 

effluent condensate flowed from the ST into a condenser. Over here, waste heat was 

transferred by the cooling water to the cooling tower [36, 37]. In the last stage, the output 

from the condenser, namely the feed water, was suctioned by the feed water pump before 

transference to the HRSG [13, 38, 39]. This section explains the SPCC power plant 

whereas section 3.2 has already explained the model of the gas turbine. The assumption 

that st and
p  represented steam turbine and pump efficiencies respectively is taken here. 

The solid and dashed lines represent the ideal and actual processes on the temperature 

entropy diagram illustrated by Figure 2 [40, 41].  

 

 
 

Figure 2.  Temperature-entropy diagram for steam turbine plant. 

 

For the CCGT plant, a single pressure HRSG is classified as a common type. The 

temperature profile for a single pressure HRSG case containing a superheater, economizer 

and evaporator is shown in Figure 3. Feed water temperature and blow down are the 

terminologies used for superheated steam temperature and pressure. Conditions of GT 

exhaust like temperature exhaust gases, flow rate and compositions are known as well. In 

the design mode, the aim was also to obtain the steam flow, gas and steam temperature 

profile. For calculating the HRSG temperature profile, the main parameters were the 

pinch point (
ppT ) and approach points (

apT ).  Figure 3 defines them which include the 

steam flow fall, the complete gas and steam temperature profiles [21, 30]. The values for 

(Tg3) and (Tw2) can be calculated while assumptions were made for the pinch and 

approach. Hence, as shown in Figure 2, the gas and water properties can be calculated by 

applying the energy balance for gas and water in every part. The following equations had 

been solved for obtaining the results: 

Equation (9) expressed the superheater duty: 

    fggpggssh

.

ssh hTTCmhhmQ 121                         (9) 
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Figure 3. A typical temperature heat transfer diagram for single-pressure HRSG 

combined cycle 

 

The heat loss factor is denoted by 
fh1

, commonly lying in the range of 0.98 to 

0.99 [30, 36, 42]. 

 The approach points (
apT ) and the designed pinch point (

ppT ) were the basis for 

the thermal analysis of the HRSG. Equation (10) expressed the temperature of the gas 

being emitted from the evaporator: 

ppsg TTT 3
                                                  (10) 

 At superheated pressure, the saturation steam temperature is denoted by Ts. 

Moreover, equation (11) defined the temperature of the water entering the evaporator. 

apsw TTT 2
                                                   (11) 

Equation (12) was used for calculating the mass flow rate of the generation steam 

[43, 44]. 
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As defined in equation (13), the energy balance was used for calculating the 

temperature of the gases that left the superheater: 
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The trial and error method on equation (13) was performed for calculating the 

specific heat (
2pgC ) and Tg2.  As shown in Figure 2, the energy balance of the economizer 

could be considered for calculating the temperature of the exhaust hot gases emitting the 

HRSG. 

 Equation (14) was another way of demonstrating the heat available from the 

exhaust gases: 

  fggpggav hTTCmQ 141                                          (14)   



 

Effects of cycle peak temperature ratio on the performance of combined cycle power plant 

 

3394 

 

where the exhaust temperature of the HRSG is represented by 
4gT . 

 The energy balance between states 4 and 5 can be considered for calculating the 

temperature of the hot gases leaving the HRSG [21]. This is shown in Figure 1. 
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The ST became the recipient of the high pressure and high temperature steam 

obtained from the HRSG [45, 46]. Figure 2 shows the energy balance. 

 76 hhmW .

sst                                                     (16) 

Equation (17) expressed the heat rejected from the condenser: 

 87 hhmQ .

wcond                                                    (17) 

 The pump extracted the condensate from the condenser which was then elevated 

to the economizer pressure. Equation (18) presented the corresponding work: 

 cshf

.

wp ppvmW  9                                              (18) 

Hence, the ST power plant’s net work is: 

pstsnet WWW                                                       (19) 

The ST power plant’s efficiency is: 

av

snet
stc

Q

W
                                                             (20) 

Equation (21) represented the overall thermal efficiency of the CCGT power plant [15]: 
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The heat rate of the CCPP is [32]; 

all

tHR


3600
                                                   (29) 

 

RESULTS AND DISCUSSION 
 

The influences of different parameters in terms of the cycle peak temperature ratio, air-

fuel ratio, pressure ratio, and isentropic efficiency of the compressor and turbine, on the 

CCPP performance are presented in this section. The effects of these parameters on the 

power output and efficiency were obtained by the energy-balance utilizing the MATLAB 

software. Figure 4 shows the variation of cycle peak temperature ratio and air fuel ratio 

on the overall thermal efficiency. It can be seen that the overall thermal efficiency 

increased with the increase of cycle peak temperature ratio and decreased with the 

increase of air-fuel ratio (AFR). The overall thermal efficiency was increasing from 53% 

to 56% when the AFR decreased from 52 to 36. 

Figure 5 presents a relation between the cycle peak temperature ratios for different 

values of pressure ratio versus the overall thermal efficiency and total power outputs of 

the CCPP at constant turbine inlet temperature (TIT). In Figure 5(a), it can be seen that 

the total power output increases with the cycle peak temperature ratio at the lower 

pressure ratio. These unexpected results occured due to the calculation that was built with 

constant turbine inlet temperature and this led to the increase of the work of the 

compressor and stalled the work of the turbine constant, which was yielded to decrease 

the net work done in the GT cycle. In Figure 5(b), the thermal efficiency increases with 

the increase of the cycle peak temperature ratio as well as higher pressure ratio. However, 
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the variation of overall thermal efficiency was insignificant at the lower pressure ratio 

and lower cycle peak temperature ratio.  

 

 
 

Figure 4. Variation of cycle peak temperature ratio and air fuel ratio on the overall 

thermal efficiency. 

 

  
 

                                        (a)                                                                                   (b) 

 

Figure 5. Variation of cycle peak temperature ratio and pressure with constant turbine 

inlet temperature on: a) Total power output b) Overall thermal efficiency. 

 

Figure 6 presents the effects of the variation of cycle peak temperature ratio, 

isentropic compressor efficiency on total power output and overall thermal efficiency of 

CCPP. It was noticed that the cycle peak temperature ratio as well as increases in the 

isentropic compressor efficiency of the GT cycle led to the increase of the total power 

output of the CCPP, as shown in Figure 6(a). The overall thermal efficiency increased 
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with the increase of the cycle peak temperature ratio and increased the isentropic 

compressor efficiency as shown in Figure 6(b). However, the variation of overall thermal 

efficiency was significant at the lower cycle peak temperature ratio. Figure 7 showed the 

comparison between simulated power outputs of the CCPP cycle and simple GT cycle 

versus the practical results from the Baiji gas turbine power plant. It can be seen that the 

power output from the combined cycle gas GT power plant was much higher compared 

to the single shaft GT cycle as well as the practical single GT power plant (Baiji GT 

Power Plant). 

 

   
 

                                    (a)                                                                             (b) 

 

Figure 6. Variation of cycle peak temperature ratio and isentropic compressor efficiency 

on (a) Total power output; (b) Overall thermal efficiency. 

 

 
 

Figure 7. Comparison between simulated power outputs combined cycle and simple 

gas turbine versus practical results from the Baiji gas turbine power plant. 
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CONCLUSIONS 

 

The generic model of a simple GT cycle and ST cycle based on CCPP with the effects of 

the cycle peak temperature ratio of the GT had been used in this work based on the 

thermodynamics analysis. The cycle peak temperature ratios, isentropic efficiencies as 

well as the air-fuel ratios were strongly significant on the thermal efficiency of the CCPP. 

The CCPP overall thermal efficiency was greater than the GT thermal efficiency. The 

CCPP efficiency ranged at about 56%. At the constant turbine inlet temperature (TIT), 

the total power output and the overall thermal efficiency increased with the increase of 

the cycle peak temperature ratio of the GT.  
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