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ABSTRACT 

 

In this paper, the I-kaz™ method is proposed for the detection of induction motor bearing 

faults using vibration signals, which has not been presented so far. The purpose of the 

study is to compare this new technique with the classical kurtosis method in the time 

domain and to validate the performance of the proposed I-kaz coefficient using a decision 

tree classification. Three bearing conditions are investigated; i.e. normal, ball fault and 

inner race fault; with a very small fault size (0.1778 mm). All faulty bearings are 

artificially damaged using electro-discharge machining and placed in the motor drive end 

side. The experimental test rig consists of a 2 HP induction motor, a torque transducer, a 

dynamometer and control electronics. Vibration data is obtained using an accelerometer 

and analyzed using MATLAB software for the time domain analysis which include the I-

kaz graphical and coefficient comparison with time waveform and kurtosis values for all 

bearing conditions. Then, both features are used to train a conditional inference tree 

(CTree) fault classifier separately. The proposed I-kaz coefficient provides higher 

percentage differences between all faulty and normal bearings compared to kurtosis. 

However, the I-kaz graphic presents similar identification as the time waveform where 

only the inner race fault is distinguished from the normal bearing. The training 

classification results also revealed that the I-kaz coefficient is significantly better with an 

accuracy of 99.64% and a Kappa value of 0.9946 compared to kurtosis at only 63.57% 

and 0.4536, respectively. Furthermore, all test data were classified accordingly using the 

I-kaz coefficient whereas for kurtosis, only 65% are correctly classified with the 0.475 

Kappa value. It is proved that the I-kaz™ method is suitable for induction bearing fault 

detection and is recommended as a classification feature, especially for the diagnostics of 

ball fault which is the most difficult to diagnose. 

 

Keywords: Condition monitoring, decision tree classification, bearing fault diagnosis, 

vibration signal, I-kaz™.  

  

INTRODUCTION 

 

Bearings are among the most common components in rotating machinery such as 

electrical motors, gearboxes, pumps, fans, etc. As a consequence, bearing fault is also one 

of the primary causes of failure in rotating equipment [1]. Therefore, bearing fault 

detection is important in order to prevent an abnormal event which can lead to 
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productivity loss, emergency breakdown, and catastrophic damage. The condition 

monitoring of bearing can be done using many techniques. Toliyat et. al. [2] specified 

that the sources of signal-based electric motor fault diagnosis can be from vibrations, 

shock pulses, temperature, acoustic noises, electromagnetic fields, output power 

variations, gas, oil, radio-frequency, motor current, etc. Vibration signals is a popular tool 

in fault diagnosis and has been applied successfully by many researchers [3-7].  

 Bearing failure can be categorized as ‘distributed’ or ‘localized’ [8]. Distributed 

defects can happen during the manufacturing process, improper installation or abrasive 

wear. This type of defect includes surface roughness, waviness, misaligned races, and off 

size balls. Whereas, localized defects include cracks, pits, and spalls on the rolling 

surfaces which might be caused by fatigue failure due to overloading or shock loading to 

the bearings during operation and installation. Jin et al. [9] listed common causes of 

bearing failures which include overloading, contamination, improper lubrication and 

misalignment. 

The time domain analysis is the easiest technique performed directly on the signal 

time waveform itself. Traditionally, time domain analysis calculates characteristic 

features as descriptive statistics such as mean, peak, peak-to-peak interval, standard 

deviation, crest factor, high-order statistics: RMS, skewness, kurtosis, etc. [10]. Kurtosis 

is one of an earliest methods used for bearing fault detection, first introduced by Dyer & 

Stewart [11]. Kurtosis, Kur for N number of data (y1,y2,…,yn), can be calculated as: 
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where µ is the mean and s is the standard deviation of data. To have a good bearing 

condition, kurtosis value must be close to 3 in compliance with the Gaussian distribution, 

whereas for faulty bearings, kurtosis is relatively higher than 3. However, in some cases 

when the fault is well advanced, the kurtosis value was reported to go down close to 3. 

Kurtosis also approaches 3 for small ball faults as disclosed by Smith and Randall [12] at 

between 3.04 to 3.15, compared to normal bearings which are from 2.76 to 2.96. 

The present paper emphasizes on the detection of bearing faults using the new 

kurtosis-based method called I-kaz™ in exchange for the kurtosis technique used in time-

domain analysis. Both features are also used to train the decision tree model separately 

and are evaluated with the same test data set using accuracy and Kappa coefficient 

comparison. The study is aimed to compare the performance of I-kaz and kurtosis in 

bearing fault diagnosis, especially for the detection of ball faults which is certainly the 

most difficult to diagnose [12]. 
 

Integrated Kurtosis-Based Algorithm for Z-Filter (I-kaz™) Method 

 

The I-kaz™ method was developed by Nuawi et al. [13] based on the concept of data 

distribution about its center points. This method applies both descriptive and inferential 

statistics. The descriptive part is a numerical value called I-kaz coefficient, Z and the 

inferential part is a three-dimensional graphic summarizing data distribution with its low, 

high, and very high-frequency ranges represented in the x-axis, y-axis, and z-axis 

respectively. Details of the signal decomposition process are shown in Figure 1, as 

follows: 
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• Low-frequency range (LF): 0 to 0.25 fmax, 

• High-frequency range (HF): 0.25 to 0.5 fmax, 

• Very high-frequency range (VF): 0.5 fmax to fmax, 

where fmax is half of the value of the data sampling rate.  
 

 
Figure 1. Details of the I-kaz signal decomposition process [13] 

 

Previously, the I-kaz™ method has been successfully applied for the analysis of 

car engine bearings [14], engine blocks [15], suspension systems [16], machine cutting 

tools [17], etc. To the author’s best knowledge, this method has never been applied in the 

field of induction motor bearing diagnostics. 

 
 

Figure 2. Typical decision tree structure. 
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Fault Diagnosis Using Decision Tree  

Bearing fault diagnosis using a decision tree has been proven to have good performance 

in terms of classification [18, 19]. The decision tree is a tree-like model that predicts the 

value of a target variable by learning simple decision rules inferred from the data’s 

features. There are several algorithms for decision tree classification such as ID3 [20], 

C4.5 [21], CART [22], CHAID [23] and CTree [24]. A typical decision tree consists of a 

root node, internal nodes and leaf nodes [25] as shown in Figure 2. The arcs from one 

node to another node denote the conditions of the features. The leaf node represents target 

variables. Train data are used to build the tree model. Then, the tree model is pruned to 

check for overfitting and noise. Finally, the optimized tree is used to classify the unlabeled 

test data. 

 

 
Figure 3. Proposed research process flowchart. 
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METHODOLOGY 

 

The process flow chart for this research is shown in Figure 3. The vibration signal data 

are obtained from the Bearing Data Center which is supported by the Case Western 

Reserve University [26]. This database is widely used by researchers [5, 27-29] especially 

for testing new diagnostic algorithms with a recognised benchmark study [12]. 

 

Experimental Setup 

As shown in Figure 4, the test rig for this experiment consists of a 2 HP Reliance induction 

motor coupled with a torque transducer to measure the torque value applied by a 

dynamometer via an electronic control system. The test bearings used were the 6205-2RS 

JEM SKF deep groove ball bearings with dimensions displayed in Table 1. All faulty 

bearings were artificially damaged using electro-discharge machining (EDM).  

 

Table 1. Test bearing dimensions 

 

Inside Diameter Outside Diameter Pitch Diameter Thickness Ball Diameter 

25 mm 52 mm 39 mm 15 mm 7.94 mm 

 

 

 
 

Figure 4. Experimental test rig setup. 
 

Vibration data were collected using accelerometers with a bandwidth of up to 

5000 Hz and a 1 V/g accuracy attached using magnetic bases at the 12 o’clock position 

at the drive end of the motor housing, as Figure 5 shows. A 16 channel DAT recorder was 

used to record the data. The data were post-processed in the computer using MATLAB 

software. The experiment was carried out with a very small fault diameter of 0.1778 mm 
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at a 48 kHz sampling rate and various torques (0, 1, 2 and 3 HP). Basically, a small fault 

size indicates an early fault stage. Data acquired from the maximum torque (3 HP) were 

selected for the time-domain analysis. Raw vibration signal data were segregated 

according to 0.5 seconds segments and features were extracted from each segment with a 

total of 5 seconds data length.  

 
Figure 5. Schematic diagram of experimental setup. 

 

The time waveform together with classic statistical parameters from the first 

segment were compared for all bearing conditions. The process was repeated with the use 

of I-kaz graphic and coefficient. Then, the average values of all features were calculated 

and the percentage differences between the faulty and normal bearings were compared. 

The I-kaz coefficient is derived from the kurtosis and standard deviation of three 

frequency ranges, as stated in Eq. (2). 
 

 4441
VFVFHFHFLFLF sKursKursKur

N
Z  , (2) 

where N is sample size; 
LFKur ,

HFKur  and VFKur  are kurtosis; and 
LFs  

HFs and VFs are 

standard deviation for the low, high and very high-frequency ranges, respectively. All of 

the frequency ranges were filtered using a Butterworth notch filter where the low-

frequency range (LF) is derived from the lowpass of 6 kHz cutoff frequency, the high-

frequency range (HF) is from the bandpass of 6 kHz to 12 kHz and the very high-

frequency range (VF) is from the highpass of 12 kHz and above. 

 

Decision Tree Classification 

The proposed bearing fault diagnosis using decision tree classification in this study started 

with feature extraction, i.e: kurtosis and I-kaz coefficient from all torque values divided 

at 0.05 seconds segment intervals. A total of 1200 data were segregated for the training 

and testing sets at a 70:30 proportion. The decision tree classification is processed using 

R software [30] with ‘caret’ package [31]. The training data sets for both features were 

classified using the CTree algorithm [24] in a separate model using the same control 

settings as showed in Table 2. Then, all trained models were validated with the testing 

data set and their accuracies and Kappa values were compared.  

 

Accuracy and Kappa were obtained using equation (3) and (4) respectively. 

100%
N

T
Accuracy , (3) 

where T is is the number of sample cases correctly classified and N is the total number of 

sample cases. 
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where po is the predicted value and po  is the actual value of classified sample cases. 

 

Table 2. Decision tree training control settings 

 

Description Value 

Method Cross validation 

Fold Number 10 

Tune Length 10 

Class Probabilities True 

 

RESULTS AND DISCUSSION 

 

Time-Domain Comparison 

The time waveforms with kurtosis values for normal and faulty bearings are shown in 

Figure 6. Clear differences between the shapes of waveforms for the inner race fault 

compared to normal bearings are observed in the figure. The time waveform of inner race 

faulty bearings show a unique repetitive signal pattern, repeated at constant intervals with 

high amplitude values which matches with the typical pattern reported by Randall and 

Antoni [32]. However, the ball fault time waveform is similar to those of the normal 

bearings, making this fault type difficult to be detected. The kurtosis for the normal 

bearing is close to 3, complying with the Gaussian distribution. The kurtosis value for the 

inner race faulty bearing is slightly higher than 3 but the ball faulty bearing remains close 

to 3. Therefore, the time waveform and kurtosis methods are not suitable for the detection 

of ball faults. 

 
Figure 6. Time waveform with features for (a) normal and (b),(c) faulty bearings 

 

The results for the I-kaz analysis is displayed in Figure 7. The I-kaz graphic for 

the inner race fault is clear enough to be distinguished from the normal bearings compared 

to the ball fault. The scatter plot for the inner race fault is bigger than the normal and ball 
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fault because the data were distributed far off from the mean value. A higher value of I-

kaz coefficient for this fault type corroborates with the bigger scatteration of its plots. The 

inner race fault data for the low-frequency range have the highest amplitude among the 

two other ranges. Therefore, a big scatteration is observed and the I-kaz coefficient is also 

higher.  

 
 (a) (b) (c)  

 
 

Figure 7. I-kaz graphic and coefficient, Z for (a) normal and (b),(c) faulty bearings. 

 

A comparison of the percentage difference between fault and normal bearings is 

tabulated in Table 3 with the kurtosis and I-kaz coefficient average values of 10 samples 

according to 0.5 second segments. The comparison showed that the I-kaz coefficient was 

significantly higher than kurtosis for both fault types with 515% and 19693% difference 

for ball fault and inner race fault respectively compared to kurtosis which had only 4% 

and 25% difference. The higher percentage difference for I-kaz coefficient is caused by 

the high value of kurtosis and standard deviation, especially for the low frequency range 

for inner race faults. 
 

Table 3. Comparison of percentage differences between faulty and normal bearings. 

 

Feature 
Normal bearing 

(baseline value) 

Ball fault Inner race fault  

Value % diff. Value % diff. 

I-kaz coeff. (×10-7) 2.342 14.402 515% 463.643 19693% 

Kurtosis 2.942 3.055 4% 3.666 25% 

 

Decision Tree Classification 

The trained decision tree models for the I-kaz coefficient and kurtosis are shown in 

Figure 8 and the details of the classification results are tabulated in Table 4. The I-kaz 

coefficient trained model is perfectly distributed from the root node to Node 2 and then 

branches to an internal node before split to leaf nodes 4 and 5. Node 2, 4 and 5 are 

classified as normal bearing, ball fault and inner race fault, respectively. The training 

accuracy for this model is 99.64% and the Kappa coefficient is 0.9946. The trained 

decision tree model for kurtosis generated 9 nodes which contain three internal nodes 

before split to five leaf nodes that contain a combination of all bearing conditions. Leaf 

nodes 4, 5, 6, 8 and 9 contain a total number of 141, 309, 168, 108 and 114 classified 

targets, respectively. The first three leaf nodes are a mixture of all bearing conditions, 

whereas the others represent only faulty bearings. The training accuracy for this decision 
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tree model is significantly lower than the I-kaz coefficient at 63.57%, and the Kappa 

coefficient is only 0.536.  

 

 

(a) 

 
(b) 

 
 

Figure 8. (a) I-kaz coefficient and (b) kurtosis trained decision tree models 

 

Table 4. Comparison of decision tree classification training and testing results using I-

kaz coefficient and kurtosis 

 

Feature Node size 
Training Testing 
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I-kaz coeff. 5 99.64% 0.9946 100% 1 

Kurtosis 9 63.57% 0.4536 65% 0.475 
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65% and the Kappa coefficient is 0.475. The high increment in testing accuracy is 

possibly caused by the usage of same data for the training and testing sets [29]. The 

decision tree classification using the I-kaz coefficient was able to detect ball faults which 

were not diagnosable under any of the applied methods used by the benchmark study [12].   

 

CONCLUSIONS 

 

In this paper, we demonstrate the usage of kurtosis and the I-kaz™ method for the quick 

detection of bearing faults using raw vibration signal data. In the time-domain, both time 

waveform and I-kaz graphic displayed clear identification to distinguish the inner race 

faulty bearings from the normal bearings. Also, the I-kaz and kurtosis values for the faulty 

bearings had high percentage differences from the normal bearing. However, ball faulty 

bearings cannot be detected in both plots using visual comparison. Although the I-kaz 

graphic is inadequate to separate between faulty balls and normal bearings, the I-kaz 

coefficient provided a significant percentage difference of 515% compared to kurtosis, 

which is only 4%. The results for the decision tree classification show that the I-kaz 

coefficient is significantly better with higher training accuracy and Kappa coefficient at 

99.64% and 0.9946 respectively compared to kurtosis at only 63.57% and 0.4536. 

Furthermore, all test data are classified accordingly when using the I-kaz coefficient with 

100% accuracy and 1 Kappa value, whereas only 65% is correctly classified at 0.475 

Kappa value using the kurtosis test data. It has been proven that the I-kaz analysis is 

suitable for the diagnostic of bearing faults when using vibration time signals and it can 

also be applied as a classification feature. This method also performs better than the 

benchmark study which cannot detect ball faults using any of its applied methods. 
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Nomenclature 

caret Classification and regression training 

CART Classification and regression tree 

CHAID Chi-squared automatic interaction detector 

Coeff. Coefficient 

CTree Conditional inference tree 

DAT Digital audio tape 

Diff. Difference 

EDM Electro-discharge machining HF High-frequency range 

HP Horsepower 

ID3 Iterative dichotomized tree 

I-kaz Integrated kurtosis-based algorithm for Z filter 

Kur Kurtosis 

LF Low-frequency range 

RMS Root mean square 

VF Very high-frequency range 
 

Symbols 

fmax  Half value of the data sampling rate 

N Data size 

µ  Mean  

s  Standard deviation 

Z I-kaz coefficient 


