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ABSTRACT 

 

The present paper investigates the thermal stability analysis of functionally graded 

material plates subjected to three types of thermal loadings, namely; uniform 

temperature rise, linear temperature rise and non-linear temperature rise through the 

thickness, using a novel simple refined theory. The theory, which has strong similarity 

with classical plate theory in many aspects, accounts for a quadratic variation of the 

transverse shear strains across the thickness and satisfies the zero traction boundary 

conditions on the top and bottom surfaces of the plate without using shear correction 

factors. Material properties are varied continuously in the thickness direction according 

to a simple power law distribution. A buckling analysis of a functionally graded plate 

under there types of thermal loads is carried out and results in closed-form solutions 

thermal stability analysis of functionally graded plates using simple refined plate theory. 

The influence of various factors such as gradient index, temperature loads, thickness 

and aspect ratios are carefully studied. The results are verified with the known data in 

the literature. This theory is seen to behave well, and the results of the sample problem 

show good agreement with the literature values as seen from the validation checks. 

  

Keywords: Thermal stability; functionally graded plate; simple refined plate theory; 

thermal loading. 

  

INTRODUCTION 

 

The multilayered materials are used in many structures. In conventional laminated 

composite structures, the homogeneous elastic laminate is bonded together to obtain 

enhanced mechanical and thermal properties [1-3]. The main inconvenience of such an 

assembly is to create stress concentrations along the interfaces, more specifically when 

high temperatures are involved. This can lead to delaminations, matrix cracks, and other 

damage mechanisms which result from the abrupt change of the mechanical properties 

at the interface between the layer [3, 4]. One way to overcome this problem is to use 

functionally graded materials within which material properties vary continuously. The 

concept of functionally graded material (FGM) was proposed in 1984 by the material 

scientists in the Sendai area of Japan [1].  The FGM is a composite material whose 
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composition varies according to the required performance. It can be produced with a 

continuously graded variation of the volume fractions of the constituents. That leads to a 

continuity of the material properties of FGM: this is the main difference between such 

material and a usual composite material. The FGM is suitable for various applications, 

such as thermal coatings of a barrier for ceramic engines, gas turbines, nuclear fusions, 

thin optical layers, biomaterial electronics, etc. [3-14]. Many investigations have been 

carried out on the subject of mechanical and thermal buckling of structures [3-51]. 

Developments of new materials such as functionally graded materials (FGMs), 

however, have necessitated more research in this area. It is observed from the literature 

that studies involving stability (in terms of buckling) characteristics of FGM plates 

subjected to thermal [3-25, 46, 47, 52], mechanical loading [26-35], or combinations of 

[20, 36-42] based on deterministic analysis have received greater attention [43-45]. 

The response of a functionally graded ceramic–metal plate was investigated by 

Praveen and Reddy [4] using a finite element model that accounts for the transverse 

shear strains, rotary inertia, and moderately large rotations in the Von Karman sense. 

Bouazza et al. [15, 31] reported mechanical and thermal buckling of rectangular and 

square functionally graded plates (FGPs) based on the classical plate theory. 

Najafizadeh and Eslami studied the thermoelastic stability of circular functionally 

graded plates [47]. Three-dimensional thermal buckling analysis of functionally graded 

materials, using finite element method, is reported by Na and Kim [21].  Matsunaga 

[22] developed a two-dimensional global higher-order deformation theory for thermal 

buckling of plates made of FGMs. He calculated the critical buckling temperatures of a 

simply supported FGP subjected to uniformly and linearly distributed temperatures by  

Zenkour and Sobhy [23, 24]. Bourada et al. [24] studied the critical 

bucklingtemperature for FGM sandwich plates.Recently, Akbarzadeh et al. [25]  

performed an analysis of coupled thermo-elasticity of simply supported FG plates based 

on the Reddy’s TSDT. The plate was subjected to the lateral thermal shock of step 

function type on the lower side and upper side of the plate is having a convection with 

the ambient. The material properties of the FG plate, except Poisson’s ratio, were 

assumed to be graded in the thickness direction according to a power-law distribution in 

terms of the volume fractions of the constituents. Nguyen-Xuan et al. [43] analysed the 

static, free vibration and mechanical/thermal buckling problems of FG plates using the 

finite element approach in which a node-based strain smoothing is merged into shear-

locking-free triangular plate elements. This work is the extension of the earlier works 

carried out by the same authors [44, 45] on an edge-based smoothed finite element 

method (ES-FEM) with stabilized discrete shear gap (DSG) technique using triangular 

meshes (ES-DSG) to enhance the accuracy of the existing finite element methods for 

analysis of isotropic Reissner/Mindlin plates. A two variable refined plate theory (RPT) 

using only two unknown functions was developed by Shimpi [53] for isotropic plates. 

The most interesting feature of this theory is that it does not require shear correction 

factor, and has strong similarities with the classical plate theory in some aspects such as 

governing equation, boundary conditions and moment expressions. Recently, this theory 

was successfully extended to orthotropic plates [54, 55], laminated composite plates[56, 

57], and functionally graded plates [58] 

The purpose of this paper is to develop the four variable refined plate theory for 

thermal buckling analysis of functionally graded plates. The present theory satisfies 

equilibrium conditions at the top and bottom faces of the plate without using shear 

correction factors. Governing equations are derived from the principle of minimum total 

potential energy. Navier solution is used to obtain the closed-form solutions for simply 
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supported FGM plate. To illustrate the accuracy of the present theory, the obtained 

results are compared with finite element method and results of the first-order shear 

deformation theory.  

 

THEORETICAL ANALYSIS 

 

Refined plate theory for FG plates 

The displacement field, which accounts for the parabolic variation of transverse shear 

stress through the thickness, and satisfies the zero traction boundary conditions on the 

top and bottom faces of the plate using simple four variable refined shear deformation 

theory, is assumed as follows [17, 53-58]: 
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where zyx ,,  Cartesian coordinates. u  and v  are the mid-plane displacements of the 

plate in the x and y directions, respectively; bw and sw  are the bending and shear 

components of transverse displacement, respectively; and h is the plate thickness. 

It should be noted that unlike the first-order shear deformation theory, this 

theory does not require shear correction factors. The kinematic relations can be obtained 

as follow: 
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Constitutive Relations 

Consider a FGM plate made of ceramic and metal, the material properties of FGM such 

as material properties vary continuously across the thickness according to the following 

equations, which are the same as the equations proposed by Reddy et al. and Praveen et 

al. [3, 4, 32, 33]: 
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For simplicity, Poisson’s ratio of the plate is assumed to be constant in this study 

for that the effect of Poisson’s ratio on deformation is much less than that of Young’s 

modulus and thermal expansion [19]. The linear constitutive relations of a FGM plate 

can be written as [3, 11-14]. 
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Governing Equations 
The strain energy of the plate can be written as [3, 11-14, 19]. 
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The principle of virtual work for the present problem may be expressed as follows 
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where ),,( xyyx NNN  denote the total in-plane force resultants, ),,( b
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stress resultants and they are defined as 
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Substituting Eq. (5) into Eq. (9) and integrating through the thickness of the plate, the 

stress resultants are given as 
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and ijij BA , , etc. are the plate stiffness, defined by 
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The stress and moment resultants,     sTbTT MMN ,,  due to thermal loading are 

defined by [23, 24]. 
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The stability equations of the plate may be derived by the adjacent equilibrium 

criterion. Assume that the equilibrium state of the FGM plate under thermal loads is 

defined in terms of the displacement components ),,,( 000

0

0

0 sb wwvu . The displacement 

components of a neighboring stable state differ by ),,,( 111

0

1

0 sb wwvu  with respect to the 

equilibrium position. Thus, the total displacements of a neighboring state are 
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where the superscript 1 refers to the state of stability and the superscript 0 refers to the 

state of equilibrium conditions. 

Substituting Equations (2)  and (15) into Equation (8) and integrating by parts 

and then equating the coefficients of  11
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sw  to zero, separately, the 

governing stability equations are obtained for the shear deformation plate theories as 
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Thermal Buckling Solution 

Following the Navier solution procedure, the following approximate solution is seen to 

satisfy both the differential equation and the boundary conditions [14, 32, 33, 53-58]. 
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where  
1111 ,,, smnbmnmnmn WWVU are arbitrary parameters to be determined and am   and 

bn  . Substituting Equation (19) into Equation (16), one obtains 
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where    denotes the column and  S  is the symmetric matrix given by 
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in which: 
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By applying the condensation approach to eliminate the in-plane displacements 
1

mnU  and 1

mnV , Eq. (20) can be rewritten as 
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In the following, the solution of the equation 0ijS  for different types of 

thermal loading conditions and by using refined plate theory is presented. The plate is 

assumed simply supported. The temperature change is varied only through-the-

thickness. 

 

Buckling of FGM plates under uniform temperature rise 

The initial plate temperature is assumed to be iT . The temperature is uniformly raised 

to a final value fT  in which the plate buckles. The temperature change is if TTT  . 

Substituting prebuckling forces from Eqs. (18) into the matrix S  and setting 0S to 

obtain the nonzero solution, the value of T  is found as 
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For the case of CPT, the expression of critical buckling temperature can be 

simplified by setting the shear component of transverse displacement to zero )0( sw  

as 
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The critical temperature difference is obtained for the values of m, n that makes 

the preceding expression a minimum. Apparently, when minimization methods are 

used, the critical temperature difference is obtained for m= n=1. 

 

Buckling of FGM plates subjected to Graded Temperature Change Across the 

Thickness 

We assume that the temperature of the top surface is mT  and the temperature varies 

from mT , according to the power law variation through-the-thickness, to the bottom 

surface temperature cT  in which the plate buckles. In this case, the temperature through 

the thickness is given by [17, 23, 24] 
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where z is the coordinate variable in the thickness direction which measured from the 

middle plane of the plate. 

(26) 

(27) 
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(28) 
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The buckling temperature difference mc TTT   and   is the temperature 

exponent  ) 0(  g . Note that the value of   equal to unity represents a linear 

temperature change across the thickness. While the value of   excluding unity 

represents a non-linear temperature change through-the-thickness. Similar to the 

previous loading case, the critical buckling temperature change crT  can be deduced, 

for the refined plate theory, as 
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For the case of CPT, the expression of critical buckling temperature can be 

simplified by setting the shear component of transverse displacement to zero )0( sw  

as 
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RESULTS AND DISCUSSION 

 

Firstly, based on the derived formulation, a computer program is developed to study the 

behavior of simply supported functionally graded plates in thermal buckling using 

refined plate theory. The analysis is performed for pure materials and different values 

volume fraction functions, for aluminum–alumina functionally graded plates. The 

properties of constituent materials, including Young’s modulus, the coefficient of the 

thermal expansion and Poisson’s ratio coefficient are given in Table 1. 

 

Table 1. Material properties of metal and ceramics [3, 11-15]. 

 

 

Material 

Property 

E (GPa)   )/1( C  
Aluminum 

Alumina 

70 

380 

0.3 

0.3 

23e-6 

7.4e-6 

 

Isotropic Plates 

In order to prove the validity of the present formulation, results were obtained for 

isotropic plates and compared with the existing ones in the literature. The critical 

temperatures of simply supported, isotropic square plates subjected to constant and 

linearly varying temperature distributions obtained using four variable refined plate 

theory are verified against the energy method based results of Gowda and Pandalai [59], 

solution of Kari et al [60] based on finite element method using semiloof element and 

(32) 

(30) 

(31) 
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solution of Bouazza et al [12] based on first order shear deformation theory in Table 2. 

Both results are in excellent agreement. 

 

Table 2. Critical temperature for isotropic square plates subjected to different forms of 

temperature distribution  3.0,102,100/ 6   ha . 

 

Temperature distribution Gowda and  

Pandalai  [59] 

Kri et al  

[60] 

Bouazza et al 

 [12] 

Present 

Uniform temperature rise 63.27 63.33 63.237 63.231 

Linear temperature rise 126.54 126.00 126.474 126.462 

 

In addition, the buckling loads for simply supported, isotropic plates under 

uniform temperature rise are calculated using four variable refined plate theory. 

Isotropic homogeneous plate obtained by the proposed approach and the available data 

in the literature (k = 0) or EEE mc  , and compared in Figure 1 with finite element 

results obtained by Kari et al. [60] and analytical approach using first order shear 

deformation theory obtained by Bouazza et al. [12]. It can be seen that for most cases 

the present results agree well with existing results.  

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

a/b

N
o
n
d
im

e
n
s
io

n
a
l 
c
ri
ti
c
a
l 
b
u
c
k
lin

g
 t

e
m

p
e
ra

tu
re

 

 

 

FSDT [12]

Present

FEM[56]

 
 

Figure 1. The critical temperature of simply supported isotropic plates (a/h = 100). 

 

Functionally Graded Plates  
The buckling loads of ceramic-metal functionally graded plates (FGM), a comparison 

has been carried out with the results obtained by Javaheri and Eslami [18] based on the 

HSDT, for all edges simply supported FGM plates and the results obtained by Bodaghi 

and Saidi [19] based on the higher-order shear deformation plate theory of Reddy, for 

two opposite edges simply supported FGM plates and the results obtained by Chen [20] 

et al  based on the using the average stress method, including the effect of transverse 

shear deformation. The critical buckling temperature difference has been listed in 

Tables 3, and 4 for a square simply supported plate subjected to different temperature 

distribution across the thickness and side-thickness ratios. All thermal buckling 

coefficient presented in Tables 3 and 4 are defined as crcr TT  310 .As this table 

shows, the present results have an excellent agreement with those reported in Ref. [18] 

,Ref. [19] and Ref. [20]. 



 

Thermal stability analysis of functionally graded plates using simple refined plate theory 

4023 
 

The next comparison is performed for simply supported plates subjected to 

linear temperature distribution across the thickness. The plate is made from a mixture of 

Aluminum (Al) and aluminium (Al2O3). The critical buckling temperature difference of 

simply supported plate for different values of thickness ratio b/h,, and power law index 

k are shown in Table 4. It can be seen that, for most cases the present results agree well 

with existing results reported by Javaheri [18] and Eslami and Bodaghi and Saidi [11] . 

The results the critical temperature for various values of the volume fraction index (k) 

and thickness-to-length ratio a/h are in excellent agreement with results by Javaheri and 

Eslami [18], Bodaghi and Saidi [19] and Chen [20] et al. As can be observed the critical 

temperature decreases both when increasing the volume fraction index k and when 

increasing the thickness-to-length ratio a/h. 

 

Table3. Comparison of the critical buckling temperature difference for a simply 

supported functionally graded plate subjected to uniform temperature load (a/b = 1). 

 

k Theories b/h= 10 b/h=20 b/h=40 b/h =60 b/h =80 b/h =100 

0 Ref.[19] 

Ref.[20] 

Ref.[21] 

Present 

1,61748 

1,61748 

1,5939 

1,61868 

0,42152 

0,42152 

0,41974 

0,42153 

0,10649 

0,10649 

0,10637 

0,10649  

0,04742 

0,04742 

0,0474 

0,04742 

0,02669 

0,02669 

0,02668 

0,02669 

0,01709 

0,01709 

0,01708 

0,01709 

1 Ref.[19] 

Ref.[20] 

Ref.[21] 

Present 

0,75789 

0,75789 

0,74608 

0,7584 

0,19626 

0,19626 

0,19539 

0,19627 

0,0495 

0,0495 

0,04944 

0,0495 

0,02204 

0,02204 

0,02202 

0,02204 

0,0124 

0,0124 

0,0124 

0,0124 

0,00794 

0,00794 

0,00794 

0,00794 

5 Ref.[19] 

Ref.[20] 

Ref.[21] 

Present 

0,67893 

0,67893 

0,67251 

0,67931 

0,17853 

0,17853 

0,17799 

0,17854 

0,04521 

0,04521 

0,04517 

0,04521 

0,02014 

0,02014 

0,02013 

0,02014 

0,01134 

0,01134 

0,01134 

0,01134 

0,00726 

0,00726 

0,00726 

0,00726 

10 Ref.[19] 

Ref.[20] 

Ref.[21] 

Present 

0,69252 

0,69252 

0,68704 

0,69269  

0,18314 

0,18314 

0,18265 

0,18315 

0,04646 

0,04645 

0,04641 

0,04646 

0,0207 

0,0207 

0,02069 

0,0207 

0,01166 

0,01166 

0,01165 

0,01166 

0,00746 

0,00746 

0,00746 

0,00746 

 

Table4. Comparison of the critical buckling temperature difference for a simply 

supported functionally graded plate subjected to linear temperature load (a/b = 1). 

 

k Theories b/h= 10 b/h=20 b/h=40 b/h =60 b/h =80 b/h =100 

0 Ref[18] 

Ref.[19] 

Present 

3,22497 

3,22497 

3,22736  

0,83303 

0,83303 

0,83307 

0,20298 

0,20298 

0,20299  

0,08485 

0,08485 

0,08485 

0,04339 

0,04339 

0,04339 

0,02418 

0,02418 

0,02418 

1 Ref.[18]  

Ref.[19] 

Present 

1,41202 

1,41202 

1,41297  

0,3587 

0,3587 

0,35871 

0,08346 

0,08346 

0,08346 

0,03195 

0,03195 

0,03195 

0,03195 

0,03195 

0,03195 

0,00551 

0,00551 

0,00551 

5 Ref.[18] 

Ref.[19] 

Present 

1,16002 

1,16002 

1,16069 

0,29869 

0,29869 

0,29871 

0,06922 

0,06922 

0,06922 

0,02607 

0,02607 

0,02607 

0,01091 

0,01091 

0,01091 

0,00389 

0,00389 

0,00389 

10 Ref.[18] 

Ref.[19] 

Present 

1,21833 

1,21833 

1,21864  

0,31568 

0,31568 

0,31568 

0,07346 

0,07346 

0,07346 

0,02783 

0,02783 

0,02783 

0,0118 

0,0118 

0,0118 

0,00436 

0,00436 

0,00437 
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Buckling Analysis of FGM plates 

The non-dimensional critical buckling temperature or temperature differences 
310ccrcr TT  concerning the material gradient indexes of the plate are calculated for 

functionally graded squares plates with a different relative thickness of the plate under 

uniform temperature rise, linear and nonlinear temperature distribution across the 

thickness using the four variable refined plate theory and are plotted in Figure 2. It is 

clear that the non-dimensional critical temperature under non-linear temperature rise is 

higher than that under linear temperature rise. The non-dimensional critical temperature 

under non-linear temperature rise is higher than that under uniform temperature rise, 

whatever the gradient index k is. In all type of temperature cases (uniform, linear, 

nonlinear), the critical temperature change decreases, when the volume fraction index k 

a/h is increased. On the other hand, the critical temperature change increases, when the 

relative thickness of the plate a/h is decreased. It should be noted that the present theory 

involves only four independent variables as against five in the case of HSDT [18, 19] 

and FSDT [20]. Also, the present theory does not require shear correction factors as in 

the case of FSDT. It can be concluded that the present theory is not only accurate but 

also efficient in predicting critical buckling load of FGM plates. 
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(c) b/h = 5 

Figure 2. Non-dimensional critical buckling temperature of FGM plate under uniform 

linear and nonlinear temperature rise versus gradient index of the plate. 
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Figure 3. Non-dimensional critical buckling temperature of FGM plate under uniform, 

linear, non-linear (g=2 and 3) temperature rise versus gradient index of the plate. 

 

Figure 3 shows the comparison the four variable refined plate theory with the 

classic plate theory variation for non-dimensional critical temperature difference vs 

material gradient index k . The plate aspect ratio is set as a/b=1 and the relative 

thickness of the plate is set as b/h=5. The plates subjected under uniform temperature 

rise, linear and nonlinear temperature distribution across the thickness respectively. It is 

observed that with increasing the material gradient index k from 0 to 3, the non-

dimensional critical buckling temperature difference also decreases steadily. The same 

remark is observed in. [6, 11-14, 28-35] The values of the critical temperature 

differences calculated by using the four variable refined plate theory are lower than 

those calculated by using the classical plate theory. In conclusion, the transverse shear 

deformation has some effect on the buckling temperature difference. It is also observed 

that the CPT overestimates the critical buckling load of FG plates. 

 

CONCLUSIONS 

 

The thermal buckling analysis of functionally graded plates is carried out by using four 

variable refined plate theory. Material properties varied continuously in the thickness 

direction according to a simple power law distribution in terms of the volume fraction of 
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a ceramic and metal. Then the buckling analysis of functionally graded plates under 

these types of thermal loadings is presented. Closed form solutions for the critical 

buckling temperature differences of plates are presented. Based on the numerical 

results, the following conclusions are reached: 

i) Present results agree well with the previously published results in the literature. 

ii) The critical temperature decreases as volume fraction index are increased. In 

addition, the critical temperature increases when the geometric parameter b/h is 

decreased. 

iii) The critical temperature under nonlinear temperature rise is higher than that 

under linear temperature rise and uniform temperature rise.  

iv) Transverse shear deformation has considerable effect on the critical buckling 

temperature difference of functionally graded plate. 

v) It is believed that the tabulated results will be a reference with which other 

researchers can compare their results. 
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