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ABSTRACT 
 

In this paper the thermo diffusion and diffusion thermo effects on convective heat and 

mass transfer along a vertical channel filled with micropolar and viscous fluids have been 

presented. The coupled system of governing equations is solved numerically using the 

Galerkin finite element method subjected to the boundary and interface conditions. The 

effects of the pertinent parameters on the velocity, angular velocity (micro rotation), 

temperature and diffusion profiles are studied in detail and presented graphically. 

Furthermore, the rate of heat transfer, mass transfer and shear stress near both walls is 

entered in tables. It is found that rate of heat transfer enhances vigorously on the hot wall 

and reduces slowly on the cold wall under the diffusion thermo effect. The rate of mass 

transfer is higher near the left wall and reduces rapidly on the right wall due to the thermo 

diffusion effect. 

 

Keywords: Micropolar fluid; Viscous fluid; FEM; Magnetic field; Soret and Dufour 

effects. 

 

INTRODUCTION 

 

There are many problems in the fields of hydrology and reservoir mechanics in which 

systems involving two or more immiscible fluids of different densities/viscosities flowing 

in a channel are encountered. Typical examples of these systems are represented by the 

air-water, water-salt water, and gas-oil-water systems. The study of the two-phase flow 

and heat transfer in an inclined channel has been conducted by Malashetty [1, 2]. 

Malashetty and Leela [3] have analysed the Hartmann flow characteristics of two fluids 

in a horizontal channel. Muthuraj [4] presented the study of micropolar and viscous fluids 

in a porous channel using HAM. Navin Kumar and Sandeep Gupta [5] considered the 

problem of MHD free-convective micropolar and Newtonian fluids in a vertical channel. 

Srinivas et.al [6] dealt with the flow of two immiscible couple stress fluids between two 

homogeneous permeable beds.  

Micropolar fluids are non-Newtonian fluids with microstructures related to the 

fluids with a non symmetrical stress tensor. The theory of micropolar fluids has a wide 

range of applications in measuring the fluid flow in the brain, blood flow in animals, 

exotic lubricants etc. Micropolar fluids consist of spherical particles suspended in a 

viscous medium where the deformation can be ignored. Eringen [7] originally formulated 
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the theory of the micropolar fluids where the particles allowed to undergo a rotation 

independent of their linear velocity are taken into account. Additional theoretical concepts 

and the applications thereof may be found in the books Lukaszewicz [8] and Eringen [9]. 

The problems of the micropolar fluid flow between two vertical plates (channel) are of 

great technical interest. A lot of attention has been given by many researchers. Prathap 

Kumar et al. [10] have studied the analytical solution of the heat transfer of micropolar 

and viscous fluids. Suresh et al. [11] studied the numerical solution to the heat transfer of 

micropolar and viscous fluids in a vertical channel. A general non-Newtonian viscous 

fluid has been considered as an additional fluid in the present study. When heat and mass 

transfer occur simultaneously in a fluid flow, the relation between the fluxes and driving 

potentials are more intricate in nature. The energy flux can be generated not only by the 

temperature gradients but also by the concentration gradients, the flux caused is termed 

as a diffusion-thermo (Dufour) effect. The mass fluxes caused by the temperature gradient 

are termed as thermo–diffusion (Soret) effects. In the literature, a large number of studies 

dealing with the effects of the Dufour and Soret parameters on heat and mass transfer 

problems on Newtonian and viscoelastic fluids have appeared [12, 13]. These effects are 

considered as second order phenomena and have often been neglected in the heat and 

mass transfer processes [14-16]. Bég et al. [17] emphasised the effect of Soret and Dufour 

on convective heat and mass transfer. The temperature and concentration gradients 

leading to the Soret and Dufour effects exert a greater impact on the flow, heat and mass 

transfer in a two fluid passage than in a single fluid passage. 

MHD is the science concerned with the motions of electro fluids and their 

interactions with magnetic fields. It is a vital branch and it is comparatively new in the 

field of fluid dynamics. Lohsasbi and Sahai [18] studied the two-phase MHD flow and 

heat transfer in a parallel plate channel with the fluid in one phase being electrically 

conducting. Siva Reddy et al. [19] created a numerical model to analyse the heat and mass 

transfer effects on the MHD natural convection flow past an impulsively moving 

perpendicular sheet with ramped temperature. Stamenkovic et al. [20] examined the MHD 

flow of two immiscible and electrically conducting fluids within isothermal, insulated 

moving sheets under an applied electrical and inclined magnetic effect. Satya Narayana 

[21] investigated the heat and mass transfer along a vertical porous plate under the 

combined buoyancy force effects of thermal and species diffusion in the presence of a 

transversely applied uniform magnetic field, while also taking into account the hall 

currents. The dynamics of the steady, two-dimensional magnetohydrodynamics (MHD) 

free convective flow of micropolar fluids along a vertical porous surface embedded in a 

thermally stratified medium are investigated by Koriko et al. [22]. Keeping in view the 

wide area of practical importance of multi fluid flows and of the Soret and Dufour effects 

as mentioned above, the novelty of this study is to investigate the thermo-diffusion and 

diffusion-thermo effects on convective heat and the mass transfer of micropolar and 

viscous fluids in a vertical channel using the Galerkin finite element method with 

inclusion of the physical forces of viscous dissipation and of the magnetic field. 

 

METHODS AND MATERIALS 

 

Mathematical Formulation 

The two infinite parallel plates are placed at Y= - h1 and Y= h2 along the Y-direction 

initially as shown in Figure 1 and both plates are isothermal with different temperatures 

T1 and T2, respectively. The distance 1 0  h Y  represents region-1 and the distance 

20 Y h   represents region-2 where the first region is filled with micropolar fluid and 
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the second region is filled with viscous fluid. The fluid flow in the channel is due to 

buoyancy forces. 

 In order to develop the governing equations for the problem considered, the 

following assumptions are made: 

1. The flow is assumed to be one-dimensional, steady, laminar, immiscible and 

incompressible. 

2. The transport properties of both fluids are assumed to be constant. 

3. The fluid flow in the channel is due to buoyancy forces. 

4. The fluid flow is fully developed. 

5. The flow, temperature and species concentration are assumed to be continuous at 

the interface. 

6. Each of the walls are isothermal and have a constant species concentration and

1 2T T , 1 2C C . 

7. The flow is assumed to follow the Boussinesq approximation. 
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Figure 1. Geometry of the problem. 
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Governing Equations 

 

Region-1: 

1 0
dU

dY
    [Continuity]                   (1) 

1 0 1 1 0 1 1 0[1 ( ) (C )]T CT T C        [State]                                                          (2)         

   
22

0 11 1 1

1 1 1 0 1 1 02

1 1 1

0T C

B UdU K d U K dn
U g T T g C C

dY dYdY


 

  


         

         [Momentum]     (3)

  
2

1

2
2 0

dUd n
K n

dYdY


 
   

 
               [Conservation of the Angular Momentum]  (4) 

where 1
2

K
j 

 
  
 

 

22 2

1 1 1 1 1 1 1

1 1 1 12 2

1

0T

p

S

dT d T dU D K d C
C U k

dY dY CdY dY


 

 
    

 
              [Energy]  (5)

2 2

1 1 1 1 1

1 1 2 2
0T

M

dC d C D K d T
U D

dY TdY dY
   [Diffusion]                           (6) 

Region-2: 

2 0
dU

dY
    [Continuity]                               (7)         

2 0 2 2 0 2 2 0[1 ( ) (C )]T CT T C          [State]                           (8) 

   
22

0 22 2 2

2 2 2 0 2 2 02

2 2

0T C

B UdU d U
U g T T g C C

dY dY


 

 
       [Momentum] (9)

22 2

2 2 2 2 2 2 2

2 2 2 22 2

2

0T

p

S

dT d T dU D K d C
C U k

dY dY CdY dY


 

 
    

 
   [Energy]  (10) 

2 2

2 2 2 2 2

2 2 2 2
0T

M

dC d C D K d T
U D

dY TdY dY
          [Diffusion]                               (11) 

 

To solve the above system of Eqs. (1) to (11), we considered the following boundary and 

interface conditions proposed by Ariman [23]. 

 

1 10U at Y h   , 2 20U at Y h  ,    1 20 0U U , 

1 1T T at Y h   , 2 2T T at Y h  ,    1 20 0T T , 

1 1C C at Y h   , 2 2C C at Y h  ,    1 20 0C C , 

10n atY h   ,   1 2

1 2 0
dU dU

K Kn at Y
dY dY

     , 

0 0
dn

at Y
dY

  , 1 2

1 2 0
dT dT

k k atY
dY dY

  , 1 2

1 2 0
dC dC

D D atY
dY dY

  . 
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The following variables are used to render the system of Eqs. (1) to (11) into a 

dimensionless form: 

 

1

1

1

Y
y

h
 , 2

2

2

Y
y

h
 , 1

1

0

U
u

U
 , 2

2

0

U
u

U
 , 1 0

1

T T

T






, 2 0

2

T T

T






, 1

0

h
N n

U
 ,

1K
K


  ,

1 0

1

C C
c

C





, 2 0

2

C C
c

T





, 1

2

S

S

S

C
C

C
 , 1

2

T

T

T

K
K

K
 , 1

2

D
D

D
 , 1

2

h
h

h
 , 1

2

m



 , 1

2

k

k
  ,

1

2





 , 1

2

T

T

b



 , 1

2





 , 

3

1 1

2

1

Tg Th
Gr

v

 
 (Grashof number), 0 1

1

U h
R

v
 (Reynolds number),  

1 1 1

1 0 1

T

M

D K T
Sr

T C U h





(Soret number), 1

1

c

D
S

v
 (Schmidt number),  

1 1

1 1

T

u

P S

D K C
D

C C T





(Dufour number), 

2 2

0 1

1

B h
M




 (Magnetic field parameter), 

1

1

Pr
Cp

k


 (Prandtl number), 

2

0U
Ec

Cp T



(Eckert number). 

The dimensionless form of the governing equations thus obtained is: 

Region-1: 
2

1

2

2
2 0

2

dud N K
N

K dydy

  
   

  
     (12) 

2

1 1
1 1 1 12

u 1 1
1 0

d d u dN Gr Gc
Ru c Mu

dy K dy K dy R R


 
         

   (13) 

22 2

1 1 1 1

1 2 2

1
0

Pr

uDd d du d cEc
u

dy R R dy Rdy dy

   
    

 
     (14)

2 2

1 1 1

1 2 2

1
0r

c

dc d c d
u S

dy S R dy dy


     (15)  

Region -2 
2

2 2
2 2 2 22 2 2 2

u
0

d d u m Gr m Gc M
Ru c u

dy dy b h R b h R h




 
         (16)

22 2

2 2 2 2

2 2 2

1
0

Pr

s u

T

c h Dd d du d ch h Ec
u

dy R m R dy DK Rdy dy

  



 
    

 
   (17) 

2 2

2 2 2

2 2 2

1
0

T

dc d c dh h
u Sr

dy D Sc R K Ddy dy

 
   

 
     (18) 

 

The dimensionless boundary and interface conditions thus formed are: 

 

1 0 1u at y   , 2 0 1u at y  , 1 2(0) (0)u u , 

1 1 1at y    , 2 0 1at y   , 1 2(0) (0)  , 
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1 1 1c at y      , 2 0 1c at y  ,  1 2(0) (0)c c , 

0 1N at y   ,
 

1 21
0

1 1

du duK
N at y

dy K mh K dy


  

  
, 

0 0
dN

at y
dy

  ,
1 21

0
d d

at y
dy h dy

 


  , 1 21

0
dc dc

at y
dy hD dy

  .          (19) 

 

Solution of the Problem 

The dimensionless coupled differential equations generated by the fluid flows are solved 

numerically using the regular Galerkin Finite Element method as given by J.N. Reddy 

[24] and Zienkiewicz [25]. For the problem discussed here, it is considered that one 

dimensional region is divided into 100 linear elements and each element is 3 nodded. The 

element equations associated with the Eqs. (12) to (18) are derived as given by Sedighi et 

al. [26]: 

 
1 2

1

2

2
2 0

2

i

i

y

k

y

dud N K
N dy

dy K dy


    
    

   
        (20) 

1 2

1 1
1 1 1 12

u 1 1
1 0

i

i

y

k

y

d d u dN Gr Gc
Ru c Mu dy

dy K dy K dy R R
 

   
           

      (21) 

1
22 2

1 1 1 1
1 2 2

1
0

Pr

i

i

y

u
k

y

Dd d du d cEc
u dy

dy R dy R dy R dy

 


   
        
        (22)

1 2 2

1 1 1
1 2 2

1
0

i

i

y

r k

cy

dc d c d
u S dy

dy S R dy dy




  
   

 
    (23) 

Region -2 
1 2

2 2
2 2 2 22 2 2 2

u
0

i

i

y

k

y

d d u m Gr m Gc M
Ru c u dy

dy dy b h R b h R h


 

 

  
     

 
       (24)

1
22 2

2 2 2 2
2 2 2

1
0

Pr

i

i

y

s u
k

Ty

c h Dd d du d ch h Ec
u dy

dy R dy m R dy DK R dy

  




   
        
      (25) 

2 2

2 2 2
2 2 2

1
0

i

i

y

k

Ty

dc d c dh h
u Sr dy

dy D Sc R dy K D dy




  
    

  
        (26) 

 

where k and k  are the shape functions of a typical element 1( , )i iy y   in region 1 and 2, 

respectively. The Langrange interpolation polynomials are used as the shape functions at 

each of the nodes: 
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1

2 101 2 100

100 100

2 102 2 101 2 102 2 100

100 100 100 100

i

i i
y y

i i i i


       
      
     

             
          

         

,

2

2 102 2 100

100 100

2 101 2 102 2 101 2 100

100 100 100 100

i

i i
y y

i i i i


       
      
     

             
          

         

,

3

2 101 2 102

100 100

2 100 2 102 2 100 2 101

100 100 100 100

i

i i
y y

i i i i


       
      
     

             
          

         

 

 

and similarly for
1 2 3

i i i, ,   .  

On integrating the above equations and by replacing the finite element Galerkin 

approximations given as  

 
3

1

1

i i i

j j

j

u u 


  ,
3

1

1

i i i

j j

j

c c 


  ,
3

1

i i i

j j

j

N N 


  , 

3

1

1

i i i

j j

j

  


  ,
3

2

1

i i i

j j

j

u u 


  ,
3

2

1

i i i

j j

j

c c 


  ,
3

2

1

i i i

j j

j

  


 . 

 

From Eq. (20) we get 

 

1 12

i i i

i i
i i ik k

k k ku dy u
 

  
    

       
 

i+1i+1 i+1
yy y

y y y

d ddN 2K dN
dy+ N dy-

dy dy 2+K dy dy
 

 

The stiffness matrix equation corresponding to it is,  

 

1

i i i i i

kj k kj k ja N b u Q                     

 

where 2

i i

i

ji ik
kj k ja dy


 


    

i+1 i+1y y

y y

dd 2K
dy+

dy dy 2+K
 

 

i

i

ji

kj kb dy



 
   

   

i+1y

y

d2K

2+K dy
 and 

1 1

i

i
i i

j k kQ u 
 

  
 

i+1y

y

dN

dy
 

 

Similarly, we get the stiffness matrix equations corresponding to Eqs. (21) to (26). 

All these matrix equations are solved iteratively until the desired accuracy of 510  is 

attained using the Mathematica 10.4 package. The convergence of the method is validated 
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with the attainment of the boundary conditions and the numerical solution obtained by 

this method is compared with the analytical approach of Prathap Kumar et al. [10]. 

 For practical engineering applications, the quantities of the Nusselt number, shear 

stress and Sherwood numbers are calculated at both walls by using the expressions: 

 

1
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Nu
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
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Nu
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


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 
, 1

1
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y


 
  

 
, 2

2

1y

c
Sc

y


 
  

 
, 1

1

1y

u
St

y


 
  

 
,

2
2

1y

u
St

y


 
  

 
. 

 

RESULTS AND DISCUSSION 

 

The numerical solution of the system of equations is analysed for different values of the 

governing parameters and the results are presented graphically. The Grashof number (Gr), 

Mass Grashof number (Gc), Reynolds number (R), Magnetic field parameter (M), 

Material parameter (K'), Dufour number (Du), Schmidt number (Sc), Soret number (Sr), 

Eckert number (Ec) are fixed as Gr=5, Gc=5, R=3, M=3,  K'=0.1, Du=0.08, Sr=0.1, 

Sc=0.66, Sr=0.001 for all the profiles with the exception of the varying parameter. All 

our results are validated with Prathap Kumar et al. [10] and an illustration of the effect of 

the ratio of Gr and R on the velocity profiles is shown in Figure 2. 

 

 
 

Figure2. Velocity profiles for Gr =5,15,20  at R=1, K'=1,h=1, 𝛼 =1,m=1,b=1. 

 

The curves in Figure 3 and Figure 4 illustrate the effect of the thermal Grashof 

number and mass Grashof number for the heat and mass transfer on the velocity and 

angular velocity (micro rotation) profiles. The Grashof number for heat transfer signifies 

the relative effect of the thermal buoyancy force to the viscous hydrodynamic force in the 

boundary layer. As expected, the velocity increases in both regions because of the 

enhancement of the thermal buoyancy force. Also, as the Gr increases the peak values for 

velocity are attained in the viscous region and clearly the velocity increases more rapidly 

in the viscous region than in the micropolar region due to the presence of micropolar 

molecules. The Grashof number for mass transfer defines the ratio of the species 

buoyancy force to the viscous hydrodynamic force. As expected, the fluid velocity 

increases and the peak value is more distinctive due to the increase in the species 
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buoyancy force. The angular velocity plays a major role as we are considering the 

micropolar fluid in the first region. The effect of both the Gr and the Gcon angular 

velocity is depicted in curves 3(b), 4(b). It is seen that the angular velocity increases in 

line with the increase of the pertinent parameters in each case. 

 

 
 

Figure 3. (a) Velocity profiles (b) Microrotation profiles for different values of Gr. 

 

 
 

Figure 4. (a) Velocity profiles (b) Microrotation profiles for different values of Gc. 

 

Figures 5 shows the influence of the Reynolds number on velocity and angular 

velocity. The Reynolds number is the ratio of inertial forces to viscous forces within a 

fluid which is subjected to a relative internal movement due to different fluid velocities. 

The increase of this number leads to a decay in velocity and in angular velocity. The effect 

of the magnetic field parameter on both velocities is described in Figure 6. It is interesting 

to note that the effect of the magnetic field is to decrease the value of the velocity profiles 

throughout the boundary layer. The effect of the magnetic field is more prominent in the 

viscous region, because the presence of the magnetic field in an electrically conducting 

fluid introduces a force called the Lorentz force, which acts against the flow. Figure 7 

shows the effect of the material parameter on velocity and angular velocity. It is clear that 

both velocity and angular velocity increase with the increase of K', i.e. the fluid flow can 

be controlled by the dynamics of the material parameter which is used in the momentum 
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and angular momentum equations of the micropolar region. When K'= 0.03, the fluid 

velocity attains more in both regions.   

 

 
Figure 5. (a) Velocity profiles (b) Microrotation profiles for different values of R. 

 

 
 

Figure 6. (a)Velocity profiles (b) Microrotation profiles for different values of M. 

 

 
 

Figure 7. (a) Velocity profiles (b) Microrotation profiles for different values of K' 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

u

Region-1              Region-2

R=1
R=2
R=3
R=5

0

0.005

0.01

0.015

0.02

0.025

0.03

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

N

Region-1           Region-2

R=
1

R=
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11

c

Region-1       Region-2    

M=1

M=2

M=3

M=5

0

0.002

0.004

0.006

0.008

0.01

0.012

1 2 3 4 5 6 7 8 9 10 11

c

Region-1       Region-2    

M=1

M=2

M=3

M=5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

u

Region-1          Region-2

K'=0.05

K'=0.1

K'=0.2

K'=0.3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

N

Region-1      Region-2

K'=0.05

K'=0.1

K'=0.2

K'=0.3



 

Finite element analysis of diffusion effects on convective heat and the mass transfer of two fluids in a vertical channel 

4008 

 

 
 

Figure 8. (a) Temperature profiles (b) Diffusion profiles for different values of Sc. 

 

 
 

Figure 9. (a) Temperature profiles (b) Diffusion profiles for different values of Du. 

 

 The effects of the pertinent parameters of the energy and diffusion equations on 

the temperature and diffusion (concentration) profiles are presented from Figure 8 to 

Figure 12. The effect of the Schmidt number on the temperature and concentration 

profiles is shown in Figure 8. The Schmidt number embodies the ratio of the momentum 

to the mass diffusivity. The Schmidt number therefore quantifies the relative effectiveness 

of the momentum and mass transport by diffusion in the temperature and concentration 

(species).  As the Schmidt number increases, the temperature decreases and the 

concentration increases. This behaviour is clear from both figures. The influence of the 

Dufour number (Du) for different values on the temperature and diffusion profiles is 

plotted in Figure 9. The Dufour number indicates the contribution of the concentration 

gradients to the thermal energy flux in the flow. It is found that an increase in the Dufour 
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concentration. Figure 10 depicts the temperature and concentration profiles for different 

values of the Soret number (Sr). The Soret number defines the effect of the temperature 

gradients inducing significant mass diffusion effects. It is noticed that an increase in the 
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0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

θ

Region-1       Region-2    

Sc=0.22

Sc=0.66

Sc=1.02

Sc=1.5

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

c

Region-1       Region-2    

Sc=0.22
Sc=0.66
Sc=1.02
Sc=1.5

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

θ

Region-1            Region-2

Du=0.05

Du=0.1

Du=0.3

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

c

Region-1       Region-2   

Du=0.05
Du=0.1
Du=0.3
Du=0.5



 

Suresh Babu et al.  / International Journal of Automotive and Mechanical Engineering 14(1) 2017   3998-4012 

4009 

 

is depicted from Figure 11, the effect of the Reynolds number on temperature and 

concentration shows that the increase of R leads to an increase in the temperature and 

species concentration. The influence of the viscous dissipation parameter i.e., the Eckert 

number on the temperature and concentration is shown in Figure 12. The Eckert number 

expresses the relationship between the kinetic energy in the flow and the enthalpy. It 

embodies the conversion of kinetic energy into internal energy by work done against the 

viscous fluid stresses. Greater viscous dissipative heat causes a rise in the temperature as 

well as in the species concentration. 

 

 
 

Figure 10. (a) Temperature profiles (b) Diffusion profiles for different values of Sr. 
 

 
 

Figure 11.(a) Temperature profiles (b) Diffusion profiles for different values of R. 
 

Table 1 shows the Nusselt number (rate of heat transfer) and the Sherwood 

number (rate of mass transfer) values with the effects of the Reynolds number, Dufour 

number, Soret number, Schmidt number and Eckert numbers at both boundaries. From 

this table, it is observed that the Nusselt number decreases near the boundary at 1y    

and increases near the boundary 1y   in line with the increase of the Reynolds number 

and Eckert number. The rate of heat transfer increases near the left boundary and 

decreases near the right boundary for the increase of Du, Sr, Sc. The Sherwood number 

decreases near both the plates with the effect of R and Ec and increases near both the 

plates with the variations of Du. Also it is noticed that the Sherwood number increases 
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near the boundary at 1y   and decreases at the boundary 1y  for variations of Sc, Ec 

and for the variations of Sr, the Sherwood number increases near the left plate and 

decreases near the right plate. 

 

Table 1. Nusselt number and Sherwood numbers. 

 

R Du Sr Sc Ec Nu-I Nu-II Sh-I Sh-II 

1 0.08 0.1 0.66 0.001 0.225936 0.939699 0.282894 0.741633 

3 0.08 0.1 0.66 0.001 0.0330117 2.35331 0.0882108 0.180164 

3 0.08 0.1 0.66 0.001 0.0282603 2.35685 0.0881097 0.175324 

3 0.5 0.1 0.66 0.001 0.0512643 2.33058 0.0890344 0.207741 

3 0.08 0.08 0.66 0.001 0.0868553 1.55754 0.149199 0.862875 

3 0.08 0.13 0.66 0.001 0.0872974 1.61949 0.189429 0.399887 

3 0.08 0.1 0.22 0.001 0.0807822 1.60706 0.355558 0.522276 

3 0.08 0.1 1.5 0.001 0.0884291 1.49468 0.0440824 1.31943 

3 0.08 0.1 0.66 0.001 0.0870215 1.5817 0.165373 0.682477 

3 0.08 0.1 0.66 0.05 0.0820235 1.64615 0.165565 0.644296 

 

 
 

Figure 12. (a) Temperature profiles (b) Diffusion profiles for different values of Ec. 
 

Table 2. Shear stress values 

 

Gr Gc R M St-I St-II 

2 5 3 3 -0.226663 1.5808 

5 5 3 3 -0.332107 2.47969 

10 5 3 3 -0.50786 3.97814 

5 2 3 3 -0.238284 1.89073 

5 5 3 3 -0.332107 2.47969 

5 10 3 3 -0.48848 3.46125 

5 5 1 3 -1.06105 4.16442 

5 5 2 3 -0.524616 3.00459 

5 5 5 3 -0.175332 1.84106 

5 5 3 1 -0.298256 1.77122 

5 5 3 2 -0.313686 2.07823 

5 5 3 5 -0.383676 3.78302 
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Table 2 shows the shear stress values for different values of Gr, Gc, R and M near 

both boundaries. From this table, it is observed that the shear stress decreases on the 

boundary at 1y    and increases at the boundary 1y   with the increase of Gr, Gc and 

M. The magnitude of shearing is decreasing near both boundaries. 

 

CONCLUSIONS 

 

The thermo-diffusion and diffusion-thermo effect on convective heat and on the mass 

transfer of micropolar and viscous fluids in a vertical channel using finite element method 

is presented. It is concluded that the Galerkin finite element method is validated by 

comparing with the analytical method used by the previous authors. The diffusion effects 

are significant in both regions. The diffusion thermo effect enhances the temperature and 

the thermal diffusion reduces the temperature in both regions. The velocity, temperature 

and diffusion are lowered due to the presence of micropolar molecules. The diffusion 

thermo effect reduces the rate of heat transfer and enhances the rate of diffusion. The 

thermo diffusion effect enhances the rate of heat transfer and reduces the rate of diffusion. 
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