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ABSTRACT 

 

The automobile is composed of many systems. One of these is the suspension system. The main 

functions of the automotive suspension system are to provide vehicle support, stability and 

directional control during handling manoeuvres and to provide effective isolation from road 

disturbances. The suspension system has to balance the tradeoff between ride comfort and 

handling performance. This paper analyses the passive suspension system and active suspension 

system using a Linear Quadratic Regulator (LQR) controller. A linear quarter-car model is used 

for the analysis and simulation. The performance of the LQR controller is compared with the 

passive suspension system. The simulation results show that the LQR controller improves 

vehicle ride comfort. 
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INTRODUCTION 

 

The automobile is a combination of a variety of complex systems. One such system is the 

suspension system. The suspension system has been widely applied to vehicles, from horse-

drawn carriages with flexible leaf springs to modern automobiles with complex control 

algorithms. Passive suspension systems are a trade-off between ride comfort and performance. 

A car with a nice cushy ride usually wallows through the corners, whereas a car with high 

performance suspension, like F1 cars, will hang on tight through the corners but will make the 

passengers feel every little dip and bump in the road. The intent of the active suspension system 

is to replace the classical passive elements by a controlled system, an active suspension system, 

which can supply unlimited force to the system. The active suspension system dynamically 

responds to the changing road surface due to its ability to supply energy which is used to 

achieve the relative motion between the body and wheel. Toshimura et al. (2001) designed an 

active suspension system for a quarter-car model using the concept of sliding mode control. The 

active control is derived by the equivalent control and switching function while the sliding 

surface is obtained by using Linear Quadratic control (LQ control) theory. The experimental 

result indicates that the proposed active suspension system is more effective in the vibration 

isolation of the car body than the passive suspension system. 

Sam et al. (2003) designed the proportional integral sliding mode control scheme. A 

quarter-car model is used in the study and the performance of the controller is compared to the 

existing passive suspension system. A simulation study proves the effectiveness and robustness 

of the control approach. Gürsel et al. (2006) utilized a PID controller for studying the 

performance of the active suspension system.  Son and Isik (1996) described a fuzzy logic 

control method for an automotive active suspension system. The performance of the fuzzy logic 
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controlled active suspension system is compared in several simulated scenarios. The 

performance of fuzzy control is much better than that of the passive suspension system for 

different road conditions and speeds. Neural Network Based Fuzzy Logic was developed by Wu 

et al. (2005) as an advanced self-learning optimal intelligent active suspension system.  

Artificial neural-based fuzzy modelling is applied to set up the neural-based fuzzy model based 

on the training data from the non-linear half-car suspension system dynamics. The development 

of self-learning optimal intelligent active suspension can not only absorb disturbance and shock, 

to adapt the model, the sensor and the actuator error, but also cope with the parameter 

uncertainty with minimum power consumption. The simulation results show that the designed 

active suspension system can improve the ride quality. In their study on LQG, Tamai and Sotelo 

(1995) presented preliminary results from a research about active suspension control regarding 

vehicle body flexibility using a LQG-LTR approach. Hrovat (1990) explores the connections 

between LQG-optimal one DOF and two DOF models. For the optimal two DOF systems, both 

ride and handling can be improved by reducing the unsprung mass. Here the maximum possible 

ride and handling improvements for two DOF systems are obtained in the limiting case of 

singular control with zero penalty on unsprung actuator force. 

This paper presents a relatively simple active suspension control strategy – a Linear 

Quadratic Regulator (LQR). The LQR controller is used with a passive suspension system to 

improve the vehicle ride comfort. The model is subjected to disturbances like step, sine, white 

noise, bump, etc. The passive suspension system is used as a reference system. The performance 

of the LQR active suspension system is compared with the passive suspension system. The 

simulations were carried out in a MATLAB/Simulink environment. 

 

MATHEMATICAL MODELLING 

 

Quarter-Car Model 

 

In order to analyse the behaviour of a dynamic system and to design a multivariable control for 

the same we need a mathematical model of the system. The model is constructed according to 

functional principles in view of the demand and is required to represent the kinematic and 

dynamic behaviour of the system in an equation. Many suspension models have been used by 

the researchers, namely the full car model, half-car model and quarter-car model. Kruczek and 

Stribrsky (2004) used a full car model by connecting four conventional quarter car suspension 

models. Tamai and Sotelo (1995) and Wu et al. (2005) used a four degrees of freedom half-car 

model to include heave and pitch motions in the front and rear wheels. The suspension system is 

modelled as linear viscous dampers and springs. McGee et al. (2005) used a non-linear quarter-

car model with non-linear forces like quadratic and cubic stiffness in the tyre and suspension 

and coulomb friction damping in suspension. A frequency domain technique is used to analyse 

the system. During the analysis, a linear quarter-car model is considered as it is simple to model, 

yet we can observe the basic elements of the suspension system, such as sprung and unsprung 

masses, sprung mass deflection, tyre deflection, and rattle/suspension space. Modelling of the 

suspension system is done in the vertical plane. Longitudinal or transverse deflections of the 

suspension components are considered negligible in comparison to vertical deflections. The 

complete vehicle mass is divided into two, i.e., the sprung mass and the unsprung mass. Springs 

and dampers are connected between the sprung and unsprung masses and unsprung mass and 

ground respectively, as shown in Figure 1. 

 

State Space Approach 

 

The second-degree differential equations of motion for the system can be written as follows: 
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For the given system, 4 state variables are defined: two give the displacement of the two 

masses and the other two give the velocities of the respective masses. 

 

Let 
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Figure 1. 2-DOF (Linear) system with base excitation – a quarter-car model. 

 

Substituting Eq. (2) into Eq. (1), and finally re-arranging in the form of Eq. (3),  
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where  tx ,  tx ,  ty , A, B, C and D are the matrices of various orders. 

 

Matrix A is called the state matrix, B is the input matrix, C is the output matrix and D is 

the direct transmission matrix. 
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LQR CONTROLLER 

 

For the design of a stable control system based on quadratic performance indexes, let us 

consider that the system is expressed as Eq. (4): 

 

                                            BuAxx                           (4) 

 

where x = state vector (n-vector); u = control vector(r-vector); A = n × n constant matrix  

B = n × r constant matrix. 

 

In designing control systems, one is often interested in choosing the control vector u(t) 

such that a given performance index is minimized. The quadratic performance index is 

expressed as Eq. (5). 

 

                                          dtuxLJ LQR ,                  (5) 

 

where L(x,u) is a quadratic function or Hermitian function of x and u, leading to a linear control 

law. 

 

                                                       xLtu LQR                (6) 

where KLQR is a LQR gain matrix. 

In linear quadratic regulator control, the quadratic performance index is expressed as Eq. (7). 

 

                               dtuRuxQxJ TT

LQR         (7) 

 

where the matrix Q is a positive-definite (or positive-semi definite) Hermitian  or real 

symmetric matrix, R is a positive definite Hermitian or real symmetric matrix. The first term on 

the right-hand side of the equation accounts for the error between the initial and final state, and 

the second term accounts for the expenditure of the energy of the control signal. The matrices Q 

and R determine the relative importance of the error and expenditure of the performance index. 

The control vector u(t) is considered to be unconstrained. 

The control law given by Eq. (6) is the optimal control law. Therefore, if the unknown 

elements of the matrix K are determined so as to minimize the performance index, then 

  xLQRKtu  is optimal for any initial state x(0). The block diagram of the optimal 

configuration is shown in Figure 2.    

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 2. Block diagram of LQR control scheme. 
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LQR CONTROLLER DESIGN 

 

In linear quadratic control, the control input is 

  

                                                           xLtu LQR                    Ref. Eq. (6) 

 

The system equation is 

 BuAxx           Ref. Eq. (4) 

 

Then, substituting Eq. (6) into Eq. (4), 

 

 xBKAxBKAxx LQRLQR            (8) 

 

We assume that the matrix  LQRBKA  is stable or that the eigenvalues of A-BK have 

negative real parts. Substituting Eq. (6) into Eq. (7) we have 
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To solve the above parameter optimizing problem, let us set 
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where P is a positive definite matrix. 

Now Eq. (10) can be rewritten as 
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Comparing the RHS and LHS of the above equation and noting that the equation must 

hold true for any x(t), we require that: 
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The A-BKLQR is a stable matrix, and there exists a positive definite matrix P that satisfies 

Eq. (12). The performance index JLQR can be evaluated as: 
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Since all eigenvalues of (A-BK) are assumed to have negative real parts, we have x(∞)→ 

0. So, we have obtained Eq. (14): 
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LQR                                (14)  



 

 
Nagarkar et al. / International Journal of Automotive and Mechanical Engineering     3(2011)    364-372 

369 

 

 

From Eq. (14), we can observe that the quadratic cost function JLQR depends only on the 

values of P as x(0) is constant. Hence, to minimize the value of J, for given x(0) with respect to 

K, we set 

                                                     0




K

P
                          (15) 

 

Therefore, differentiating Eq. (12) with respect to K and substituting ∂P / ∂K = 0, we 

obtain the value of K, which minimizes JLQR as Eq. (16): 

 

                                                     PBRK T

LQR

1     (16) 

 

RESULTS AND DISCUSSION 

 

The simulation is carried out in a Matlab/SIMULINK
®
 environment. For the simulation, it is 

assumed that the vehicle hits a step, a white noise, a bump, a triangular bump, city road 

conditions and highway road conditions. The input data to the Simulink model are as follows: 

 

m1=40 kg,  k1=124660 N/m,  c1=414 Ns/m 

m2=243 kg,  k2=14671 N/m,   c2=370 Ns/m. 

 

The result shows the displacement, acceleration of sprung mass and the rattle space or the 

suspension space deflections, i.e., x2(t)- x1(t). 

 

       
 

                              (a) Step input                                            (b) White noise  

 

Figure 3. Responses of passive system and LQR controller for (a) step input, (b) white noise. 
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                         (a) Bump input                                         (b) Triangular bump input   

 

       
 

                  (c)   City road data input                          (d)  Highway road data input   

 

Figure 4.  Responses for various conditions. 
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Figures 3 and 4 show that the active suspension system utilizing the LQR controller 

performed better than the conventional passive suspension system. These figures illustrate 

clearly how the active suspension system using a LQR controller can absorb the vehicle 

vibrations more effectively than the conventional passive suspension system. The body 

acceleration in the LQR system is reduced significantly, which guarantees better ride comfort. 

Moreover, the wheel suspension deflection is also smaller than with the passive system. 

 

CONCLUSIONS 

 

The main aim of this paper is to demonstrate the active control strategy – the LQR controller 

against a passive suspension system. We have developed a LQR controller to enhance the ride 

comfort of passengers. A passive suspension system without any controller and an active 

suspension system with the LQR controller were modelled and simulated using a 

Matlab/Simulink environment. The simulation result shows that the designed active suspension 

system can improve the ride quality by minimizing the displacements and acceleration more 

than the passive suspension system. This means that the active suspension system using the 

LQR controller provides better ride comfort. In the active suspension systems using the LQR 

controller the rattle space or suspension space requirements remain smaller than with the 

conventional passive suspension system. Also, the LQR controller is tested against various test 

signals like step, sinusoidal, white noise, bump, triangular bump city road data and highway 

road data. Thus, the LQR controller demonstrates its flexibility by showing its ability to handle  

various kinds of road conditions. 
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