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ABSTRACT 
 
The  major  goal  of  this  study  is  to  determine  the  stress  on  vertebrae  subjected  to  
hyperextension loading. In addition, probabilistic analysis was adopted in finite element 
analysis (FEA) to verify the parameters that affected failure. Probabilistic finite element 
(PFE) analysis plays an important role today in solving engineering problems in many 
fields of science and industry and has recently been applied in orthopaedic applications. 
A finite element model of the L2 vertebra was constructed in SolidWorks and imported 
by ANSYS 11.0 software for the analysis. For simplicity, vertebra components were 
modelled as isotropic and linear materials. A tetrahedral solid element was chosen as the 
element type because it is better suited to and more accurate in modelling problems with 
curved boundaries such as bone. A Monte Carlo simulation (MCS) technique was 
performed to conduct the probabilistic analysis using a built-in probabilistic module in 
ANSYS with 100 samples. It was found that the adjacent lower pedicle region depicted 
the highest stress with 1.21 MPa, and the probability of failure was 3%. The force 
applied to the facet (FORFCT) variable needs to be emphasized after sensitivity 
assessment revealed that this variable is very sensitive to the stress and displacement 
output parameters. 
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INTRODUCTION 
 

In engineering, uncertainties are the most important thing to measure in order to make 
the analysis as real as in nature. Neglecting the existence of uncertainties in the 
biological system and environment can make the application fail even when the 
calculation suggests it is safe enough. However, the values of the variables that are 
working on the system cannot be predicted with certainty. Structural geometric 
properties, mechanical properties and the external loads are all uncertain in nature. In 
particular, the uncertainties in the external loads are very serious (Qiu and Wu, 2010). 
However, Taddei et al. (2006) found that bone stresses and strains in the proximal femur 
were more sensitive to uncertainties in the geometric representation than material 
properties. In the probabilistic approach, all uncertain variables are considered to be 
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random and the uncertain problems are analysed based on their statistical properties 
(Qiu and Wu, 2010).  

Hyperextension is a straightening movement that goes beyond the normal, 
healthy boundaries of the joint and often results in orthopaedic injury. This movement 
will produce an extreme condition and create a failure in the vertebra. It may occur 
during training by athletes and or sometimes by accident. The pedicle is most 
commonly the part where fractures are observed during trauma, experimentally and 
clinically (Xia et al., 2006). Occasionally, a pedicular fracture may occur that suggests a 
causative relationship with the patient’s hyperactivity (Sirvanci et al., 2002). 

Finite element analysis is one of the most advanced simulation techniques and 
has been used in orthopaedic biomechanics for many decades (Kayabasi and Ekici, 
2008). Up to now, many finite element (FE) simulations as well as in vivo or in vitro 
studies have been conducted for biomechanical analyses of the lumbar spine (Kuo et al., 
2010). They can also be successfully applied for the simulation of biomechanical 
systems (Odin et al., 2010). FE methods have become an important tool to evaluate 
mechanical stresses and strains in bone (Hernandez et al., 2001) and have been widely 
used to investigate the mechanical behaviour of bone tissue (Herrera et al., 2007). The 
purpose of this study is to determine the highest stress on the vertebra due to the 
hyperextension condition and calculate the probability of failure for the current model. 
The sensitivity analyses were incorporated with probabilistic analysis to support the 
results and verify the input random variables that are sensitive to the output parameters. 
The hypothesis for this study is that the pedicle is the most critical region that affects the 
vertebrae when the facet joints are subjected to hyperextension loading.  
 

METHODOLOGY 
 

A three-dimensional finite element model of a lumbar vertebra was constructed using 
SolidWorks software and analysed by ANSYS 11.0. The lumbar segment has five 
vertebrae that stack each other vertically, but a single vertebra was focused on in this 
study  due  to  the  similarity  of  analysis.  So,  the  analysis  target  was  the  second  lumbar  
vertebra (L2), since it seems to be responsible for bone fractures (Sances et al., 1984) 
and has also been reported on by Woodhouse (2003).  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Anatomy of the vertebrae of the lumbar spine 
 
The vertebrae are composed of six components. These are the vertebra body, 

spinous process, transverse process, lamina, pedicle, and facet joints. Figure 1 shows the 
anatomy of a lumbar spine vertebra from various different angles. The vertebra has two 

Transverse 
process 

Spinous process 

Body Lamina 

Pedicle 

Facet joints 



 
 

Zulkifli et al. / International Journal of Automotive and Mechanical Engineering     3(2011)     256-264 

258 

 

layers, of cortical and cancellous bone, which are generally considered as one integrated 
region of body material. In fact, the surface of the lumbar vertebra is not regular, and 
the simplified model was developed by removing the unnecessary surface and 
smoothing the irregular surface during the trimming process. Three-dimensional meshes 
with tetrahedral 20 node quadratic elements (SOLID186) were constructed using an 
automatic mesh function of ANSYS. The area of the critical region is refined using finer 
meshes so that reliable results are necessarily produced especially in the vertebra body. 

To evaluate the effects of the hyperextension condition, a simple compressive 
loading was applied to the vertebral model shown in Figure 1. The lower vertebral body 
is fully constrained in all degrees of freedom, whereas the upper body and upper facet 
(indicated in red) represent the area subjected to a load based on the weight of an 80 kg 
person. This weight converts to a force of 460 N or 59% of total weight, to represent the 
upper body comprising the head, trunk and limbs, as reported by Langrana et al. (1996). 

To quantitatively assess the changes of the hyperextension condition, the portion 
of load applied to the facet joints was calculated. The value of pressure applied to the 
vertebra was defined as Eq. (1): 
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where  (Pa) denotes the pressure applied to the vertebra, Ft is total force, Ab and Af are 
the surface area of the body and facet respectively.  
 
Material Properties 
 
In nature, bone is a non-linear, inhomogeneous and anisotropic material and varies in 
the boundary regions between cortical and cancellous bone (Xia et al., 2006; Yang et 
al., 2010; Peng et al., 2006). However, most studies performed in this area have been 
based on the assumption that bone material has an isotropic and inhomogeneous 
distribution of material properties due to its simplicity (Yang et al., 2010; Peng et 
al., 2006). Therefore, this study was conducted on linear isotropic and the whole 
vertebra is considered as having cortical bone properties. In this study, random input 
variables were arbitrarily assumed as defined in Table 1. Standard deviations were 
computed by assuming a coefficient of variation (COV) of 0.1 and distribution types 
were assumed based on experience. 
 

Table 1. Type of model random variables 
 

Variables Description Mean COVa Distribution type Ref. 
YMODCOR Young Modulus 12 GPa 0.21 Lognormal (Thacker et al., 

2001) 
PSSNRAT Poisson ratio 0.3 ±0.017 Uniform (Sarah et al., 

2007) 
FORBDY Force to the body 414 N 0.1 Normal b 

FORFCT Force to the facet 46 N 0.1 Normal b 

AREBDY Body area 1298 mm2 0.1 Lognormal b 

AREFCT Facet area 166 mm2 0.1 Lognormal b 

aCOV= coefficient of variation  bArbitrarily assumed 
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Reliability and Probabilistic Analysis 
 
A probabilistic analysis was conducted of a structural failure under uncertain material 
and geometric characteristics subject to random loads applied to the model. X, denotes a 
vector of random variables, with components X1,X2,...Xn representing the uncertainties 
in the load, material properties and geometry (Akramin et al., 2007). The probabilistic 
design system was modelled as Eq. (2): 
 

1 2 3( ) ( , , ,..., )nZ X Z X X X X      (2) 
 

where Z(X) is a random variable describing the system (e.g. stress, displacement) at a 
node or element. Each random variable is defined by a probability density function 
(PDF), which is commonly defined by parameters such as a mean value, standard 
deviation and distribution type. The structural uncertainties are generated by the Latin 
Hypercube Sampling (LHS) technique that requires fewer simulation loops to get better 
accuracy. The limit state function for lumbar g(X) can be expressed as Eq. (3): 

 
( ) ( ) ( )g X Y X S X            (3) 

 
where Y(X) is the yield strength of bone, S(X) is the Von Mises stress computed from 

FEA and X is a random variable as defined earlier. Suppose that the model failure 
occurs if g < 0, whereas no failure occurs if g > 0. The probability of failure (Pf) is the 
likelihood when the stress exceeds the yield strength of bone or satisfies the function 
g < 0 (Sarah et al., 2007). The probability of survival, Ps is one minus the probability of 
failure and referred to as reliability, Ps = 1  Pf. 

A  MCS  was  performed  by  a  powerful  computer  to  minimize  cost  and  time  
consumption. This method will converge with the approximately correct solution but 
needs a lot of samples during analysis. The number of simulations necessary in a MCS 
to provide that kind of information is usually between 50 and 200. Thus, this study used 
100 samples after considering the complexity of the model and range of simulation. 
However, the more simulation loops you perform, the more accurate the results will be. 

 
 
 
 
 
 
 
 
 

 
Figure 2. Work sequence of a probabilistic finite element program 

 
The uncertainty of the mechanical properties of bone, especially the Young 

Modulus of vertebrae, depends on the person, since the physiological loading affects the 
stress distribution of the vertebra. Therefore, the PFE program has been developed using 
ANSYS  software  incorporating  MCS.  The  work  sequence  of  a  patient-specific  FEA  
using the ANSYS software program is shown in Figure 2.  
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RESULTS AND DISCUSSION 
 
Figure 3 shows the stress distribution of the vertebra under compression loading where 
the contours represent the level of stress. It was found that the highest stress 
concentrations were at the adjacent lower posterior vertebral body, with Von Mises 
stress value 1.2117 MPa. Stress concentration will reduce the mechanical integrity of 
the bone, making it susceptible to fracture during trauma (Kasiri & Taylor, 2008). This 
critical area of the vertebra body tends to act as a pivot when another load is applied to 
the facet joints and creates a bending effect. A longer distance between the facet joints 
and  the  vertebral  body  causes  an  increase  in  the  bending  moment,  as  well  as  a  stress  
concentration.  
 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3. The highest stress distribution of the vertebra 
 
The displacement of the model is very small, at about 0.24758e-08 mm. This 

happens due to the assumption that all that components act as one body with the same 
material, which is cortical. Cortical material is brittle compared with other materials, 
with  the  highest  strength  in  the  vertebra  component.  Failure  or  fracture  of  the  bone  
starts at the highest stress concentration and it produces the weakest area of the bone. 
This result agrees well with research by El-Rich et al. (2009), which concluded that in 
extension loading, the maximum stress is located in the lower pedicle region of L2 and 
fractures start in the left facet joint, then expand into the lower endplate.  

In Figure 4, the stress distributions for different types of ratio represent the effect 
of hyperextension. The comparisons between these ratios are the proportion load 
applied to the vertebral body and facet joints. For the ratio i=1, there are some stresses 
in the vertebral body, whilst for the ratio i=3, the vertebral body was not affected 
wholly. Hence, load ratio i=3 means that hyperextension starts after the facet joint 
sustains in excess of 30% of the total load, as reported by Nabhani et al. (2002) and Hall 
(1995). 
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Stress distribution of the vertebra  
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Figure 4. The stress distribution of the vertebra for different ratios 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. Probability of success for limit state function 
 

The cumulative distribution function (CDF) offers a function to determine the 
probabilistic design variable. This feature is very helpful to evaluate the probability of 
failure or reliability of a component for a very specific and limited value given. For this 
study, the limit state function in Eq. (3) used the yield strength of the material as a limit 
value to determine the probability of failure if g  0. The curve in Figure 5 indicates that 
the probability of success complies with the limit state function g > 0 and there is about 
a 97% or 0.97 probability that the stress remains below 1.2117 MPa. Therefore, the 
probability of failure can be calculated as 1-0.97=0.03 or 3% probability stress greater 
than 1.2117 MPa. From the result observation, 3% of the probability of failure indicates 
that the model is very reliable and safe to use. This means that the load applied to the 
model needs only be very low to induce the model to fail.  

The probabilistic sensitivity diagrams in Figure 6 illustrate those variables that 
are  sensitive  to  the  maximum  stress  and  maximum  deflection  respectively.  The  
sensitivities are given as absolute values in the bar chart and the relative variables are 
represented in the pie chart. Four input variables are very sensitive to the stress and 
deflection, as shown in Figure 6. The most significant variable that strongly affected the 
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maximum stress and maximum deflection is FORFCT, which is force applied to the 
facet joints. This means that a small change in the maximum stress of the important 
variables (AREBDY in this case) will result in a change in the computed probability. 
The positive sensitivity values indicate that a positive change in the mean value will 
result in an increase in the computed probability and negative sensitivities and vice 
versa. The insignificant or unimportant random variables have been eliminated from the 
sensitivity chart to improve the computational efficiency.  

 

 
 

Figure 6. Sensitivity factors for (a) maximum stress and (b) maximum deflection 
 

     
 
 

Figure 7. Scatter plot for input variables (a) AREBDY and (b) FORFCT 
 

The scatter plot in Figure 7(a) indicates the relationship between the AREBDY 
variable and maximum stress, while Figure 7(b) is between the FORFCT variable and 
maximum deflection. These two scatter plots represent the correlation between the input 
variables and output parameters that are generated by the same set. There are 100 blue 
dots to represent the 100 sampling points or samples that were used for this analysis.  
Probabilistic sensitivities measure how much the range of scatter of an output parameter 
is influenced by the scatter of the random input variables. The influences of 
probabilistic sensitivities are the slope of the gradient and the width of the scatter range 
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of the random input variables. The slope of the gradient depends on the scatter range of 
the random input variables and output parameters. To improve the reliability, there are 
two  options:  1)  reduce  the  width  of  the  scatter,  and  2)  shift  the  range  of  scatter.  
However,  we  do  not  discuss  these  options  here  as  they  are  beyond  the  scope  of  this  
study. Since these variables contribute the most to the computed probability, improved 
estimates for the mean, standard deviation, and distribution will have the most impact 
on the computed probability (Thacker  et al., 2001). 
 

CONCLUSION 
 

This study has achieved the objectives of determining the stress concentration 
and the probability of failure of the lumbar vertebra using finite element analysis. The 
probabilistic analysis method investigated here is useful to understand the inherent 
uncertainties and variations in biological structures. 
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