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ABSTRACT 
 
Flow separation is one of the major distinguishing phenomena between the theoretical 
or potential flow and actual fluid flow that introduces several aerodynamic forces and 
other renowned phenomena. Here in this article, different flow separation phenomena 
such as onset of separation, angular position of the separation point, size of the 
separation bubble, drag due to the separation and effect of the blockage ratio on the 
position of the separation point for steady flow over a smooth circular cylinder are 
studied numerically using the finite volume method at very low Reynolds number up to 
50, and the trends of change of these phenomena with increasing Reynolds number are 
expressed in the form of some empirical equations and compared with results of 
previously published literature. The separation starts at Reynolds numbers as low as 2.0 
and the starting-separation angle is 146.557° from the upstream stagnation point, while 
with increasing Reynolds number, the point of separation travels upstream and the 
separation bubble length increases. The profound effect of the blockage ratio on the 
location of the separation point is evident in this numerical analysis. Favre-averaged 
Navier-Stokes equations, a k-ɛ turbulence model and the finite volume method are used 
for numerical analysis, in which heat transfer or generation, and buoyancy effects are 
not taken in account. 
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INTRODUCTION 
 
Flow over circular cylinders has been one of the canonical research topics over the years 
for fluid dynamists and engineers, not only because of its geometrical simplicity but 
also for its practical importance. The problem of viscous steady flow past a circular 
cylinder has for a long time received considerable attention among fluid dynamists such 
as Fornberg (1980), Sen, Mittal, and Biswas (2010), Wu et al. (2004), Park, Kwon, and 
Choi (1998), Taneda (1956) etc. Different researchers have shaped the existing 
knowledge regarding the steady flow at low Reynolds number (Re). Fornberg (1980) 
studied the steady viscous flow past a circular cylinder for Reynolds numbers up to 300. 
Sen et al. (2010) studied the steady flow at the range of Re≤40 using the finite element 
method and described the effect of blockage ratio, position of separation on surface, 
separation bubble size etc. and expressed these phenomena in terms of empirical 
equations which are a function of Re. Wu et al. (2004) introduced soap-film flow 
visualization instead of the commonly used streakline image from finite time exposure 
to obtain the time averaged separation angle. They also described different separation 
phenomena as functions of Re. Park et al. (1998) used high resolution calculation for the 
flow over a cylinder up to Re 160 and provided detailed information on the flow 
quantities on the cylinder surface at low Re. But according to many researchers like Sen 
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et al. (2010), the flow over a circular cylinder becomes unsteady around Reynolds 
number 50. The first wake instability, manifestation of a Hopf bifurcation, occurs at Re 
around 47, according to Williamson (1996). So, steady flow approximation after Re 50 
would lead to inaccurate results. 
            The Reynolds number can be considered as the measure-stick for different flow 
phenomena changes in the study of flow over a cylinder. At low Reynolds number, the 
flow can be considered steady, while with increasing Re the symmetry between the 
upstream and downstream disappears as the flow becomes unsteady. Flow separation 
occurs at very low Re - well below 10. Flow separation is characterized by detachment of 
streamlines from the cylinder surface usually at the downstream of the cylinder (Fornberg, 
1980). This occurs when the boundary layer travels far enough against an adverse pressure 
gradient that the speed of the boundary layer relative to the object falls to almost zero. 
Physically a separated flow develops when the fluid element comes to a stop somewhere 
downstream and reverses its direction. The point from which the flow is separated from the 
surface of the cylinder is the separation point and will be denoted as S for the rest of the 
article. The angular position of S, i.e. separation angle (θS), changes with Re. The flow 
separated from the shoulder of the cylinder, both on the upper and lower surface, is 
reattached at the downstream of the cylinder. Thus a bubble of separated flow is created 
due to symmetric eddies just behind the cylinder, and this is called the separation bubble. 
The separation bubble’s length and width bears significant information about the flow 
characteristics, aerodynamic forces on the cylinder, intensity and position of separation, 
etc. Sen et al. (2010) described these phenomena with respect to different blockage ratios 
(BR), which is actually the ratio of the cylinder diameter to the height of the computational 
domain, whereas some authors like Wu et al. (2004) suggested that the blockage ratio is not 
a major reason for discrepancy among various experiments at higher Re, but is significant 
for variation in the separation angle at low Re. The present study is concentrated on the 
separation phenomena and phenomena that are directly affected by the modes and 
positions of separation. The angular position of separation (θS), variation of the separation 
angle with Re and blockage ratio (BR), separation bubble length and symmetric eddies 
enclosed by the bubble, drag on the cylinder, etc. are emphasised. These phenomena are 
expressed in the form of empirical equations and as functions of Re. As steady flow is 
limited by Re around 50, our study is limited to this range. 
 

 NUMERICAL PROCEDURE 
 
Governing Equations 
 
Favre-averaged Navier-Stokes equations are used, where time-averaged effects of the flow 
turbulence on the flow parameters are considered, whereas the other, i.e. large-scale, time-
dependent phenomena are taken into account directly. Through this procedure, extra terms 
known as the Reynolds stresses appear in the equations, for which additional information 
must be provided. To close this system of equations, the flow simulation procedure 
employs transport equations for the turbulent kinetic energy and its dissipation rate, the so-
called k-ε model. One system of equations is employed to describe both laminar and 
turbulent flows, and transition from a laminar to turbulent state or vice versa is possible. 
The conservation laws for mass, angular momentum and energy in the Cartesian 
coordinate system rotating with angular velocity Ω about an axis passing through the 

coordinate system’s origin can be written in the conservation form as follows: 
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Here u is fluid velocity,   is fluid density,    is a mass-distributed external force per unit 
mass due to porous media resistance, a buoyancy (- ρ  ), and the coordinate system’s 

rotation, h is the thermal enthalpy,    is a heat source or sink per unit volume,     is the 
viscous shear stress tensor,    is the diffusive heat flux. The subscripts are used to denote 
summation over the three coordinate directions. 
Now for Newtonian fluids, the viscous shear stress tensor is defined as  
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According to the Boussinesq assumption, the Reynolds-stress tensor has the following 
form: 
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             Here      is the Kronecker delta function, which is equal to unity when i=j and zero 
otherwise.   is the dynamic viscosity coefficient,    is the turbulent eddy viscosity 
coefficient and k is the turbulent kinetic energy. A point to be noted is that both k and    

are zero for laminar flow. In the frame of the k-  turbulence model,        
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             Here y is the distance from the wall. This function of    allows us to take into 
account laminar–turbulent transition. Two additional transport equations are used to 
describe the turbulent kinetic energy and dissipation at steady state: 
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Now for these equations    is unity when      and zero otherwise.        ,     

    ,          ,     =1.92,      ,        . These values are found empirically. 
These equations describe both laminar and turbulent flow. 
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Figure 1. Computational mesh. 
 
Computational Mesh 
 
The rectangular computational domain is constructed such that it encloses the solid body 
and has the boundary planes orthogonal to the specified axes of the Cartesian coordinate 
system (Figure 1). Then, the computational mesh is constructed in the following several 
stages. First of all, a basic mesh is constructed. For that, the computational domain is 
divided into slices by the basic mesh planes, which are evidently orthogonal to the axes of 
the Cartesian coordinate system. The basic mesh is determined solely by the computational 
domain and does not depend on the solid/fluid interfaces. Then, the basic mesh cells 
intersecting with the solid/fluid interface are split uniformly into smaller cells in order to 
capture the solid/fluid interface with mesh cells of the specified size (with respect to the 
basic mesh cells). The following procedure is employed: each of the basic mesh cells 
intersecting with the solid/fluid interface is split uniformly into 8 child cells; each of the 
child cells intersecting with the interface is in turn split into 8 cells of the next level, and so 
on, until the specified cell size is attained. At the next stage of meshing, the mesh obtained 
at the solid/fluid interface with the previous procedure is refined (i.e. the cells are split 
further or probably merged) in accordance with the solid/fluid interface curvature. The 
criterion to be satisfied is established as follows: the maximum angle between the normals 
to the surface inside one cell should not exceed a certain threshold; otherwise, the cell is 
split into 8 cells. Finally, the narrow channel refinements are done if necessary. As a result 
of all these meshing procedures, a locally refined rectangular computational mesh is 
obtained and then used for solving the governing equations on it. 
 
Spatial Approximations 
 
The cell-centered finite volume (FV) method is used to obtain conservative approximations 
of the governing equations on the locally refined rectangular mesh. The governing 
equations are integrated over a control volume which is a grid cell, and then approximated 
with the cell-centered values of the basic variables. The integral conservation laws may be 
represented in the form of the cell volume and surface integral equation: 
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This is replaced by the discrete form  
 

  
     ∑                   

             The second-order upwind approximations of fluxes F are based on the implicitly 
treated modified Leonard’s QUICK approximations (Roache, 1998) and the total variation 
diminishing (TVD) method (Hirsch, 1988). 
 

RESULTS AND DISCUSSION 
Onset of Separation 
 
 Flow separation occurs when the streamlines no longer remain stuck to the body and cause 
wakes near the surface. At a definite value of blockage ratio BR=0.2377, the wake near the 
downstream of the flow is visible (Figure 2(a)) at Re=2.0 in our study. This indicates that 
for numerical calculation of 2D steady flow over the smooth cylinder at blockage ratio 
BR=0.23077, the Reynolds number at which the separation starts (Res) is 2.0 and the 
separation angle θS is 146.557°. A point to be noted here is that the separation angle is 
measured in the clockwise direction from the upstream stagnation point. Nisi and Porter 
(1923) found Res=3.2. Experimental results of Taneda (1956) conjectured that Res is 5 in 
the case of steady flow. Different surface roughness, blockage ratios (BR) or 
methodologies of experiments are the probable causes of deviation of Res from the findings 
of other researchers. Subsequent wakes are visible at Reynolds numbers 4 and 6 from 
Figure 2(b) and Figure 2(c) respectively, which shows that with increasing Re, the wake 
created at the separation point further develops in its form. 
 

 
 

Figure 2. (a) Onset of separation at Re=2; development of wake at (b) Re=4, (c) Re=6; 
close-up view of sections (d) A, (e) B and (f) C. 

 
Effect of Blockage Ratio (BR) on Separation Angle 
 
The blockage ratio (BR), which is defined as the ratio of the cylinder diameter to the height 
of the computational domain, is significant in analyzing the separation phenomena, 
especially at lower Reynolds numbers. The higher the BR (lower 1/BR), the lower the value 
of the separation angle becomes at a definite Re, which is evident in Figure 3. Here 
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streamlines are the thicker lines and vorticity isolines are the thin lines shown on the 
upper-right quarter of the cylinder at different Re. The point S denotes the separation point, 
and the respective separation angle and BR are presented at the lower left corner of Figure 
3. Physical interpretation of the phenomena shown in Figure 3 can be presented as that the 
acceleration effect of the flow over the cylinder becomes more significant in magnitude 
when both the upper and lower walls of the computational domain approach the cylinder 
surface, resulting in a subsequent increase in local Re which leads to earlier separation than 
is the case with lower BR values (Sen et al., 2010). With increasing 1/BR (or increasing 
height of the computational domain as the diameter of the cylinder is constant), the 
difference in the separation angle between two consecutive 1/BR decreases. That means the 
effect of the upper and lower wall of the computational domain on the flow over the 
cylinder surface decreases with increasing the height of the computational domain (Sen et 
al., 2010). 
 

 

 

 
 

Figure 3. Effect of blockage ratio (BR) on separation angle at (a) Re=10, (b) Re=30 and (c) 
Re=50. (Here streamlines are thicker lines and vorticity isolines are thin lines on the upper-

right quarter of the cylinder). 
 
Empirical Relation between Separation Angle and Reynolds Number 
 
The angular position of separation is a function of the Reynolds number. Figure 4 shows 
the relationship of θS with Re and comparisons of the results with works of other 
researchers. It is evident that the point of separation travels upstream with increasing Re, 
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i.e. the θS decreases with increasing Re. The relationship between the wake characteristics 
(or separation) and the Reynolds number has been frequently expressed in terms of 
empirical equations of either 1/Re terms or Re-0.5 terms, and the latter one is preferred by 
recent researchers like Wu et al. (2004), Park et al. (1998) etc. Wu et al. (2004) expressed 
the θS -Re relations in the first four terms for the range of 7≤ Re ≤200 as  
 

θS = 95.7+267.1Re-0.5- 625.9Re-1+1046.6Re-3/2                             (9) 
 

This expression yields a root-mean-square error of 0.0004. They also provided a 
simpler linear empirical equation for the range of 10≤ Re≤ 200 as θS = 101.5+155.2Re-0.5 

which yields a root-mean-square error of 0.0005. Sen et al. (2010) provided another 
empirical equation over the range of 10≤Re≤40 and 0.04≤ BR≤0.20 as θS = 77.66-152.65 
Re-0.5 where θS is measured from the rear stagnation point. If the θS were measured from the 
upstream stagnation point, that equation would be θS = 102.34+152.65 Re-0.5. From the 
present analysis, we found the first four terms of the relation valid for the range of 
5≤Re≤50 and BR=0.23077 to be  
 

θS = 85.406+317.46Re-0.5-445.85Re-1+86.264Re-3/2                   (10) 
 

with root-mean-square error of 0.0306 and a simple empirical equation θS = 113.21+84.165 
Re-0.5 in the range of 10<Re≤50 with root-mean-square error of 0.1658. Though the 
constants of the empirical equations differ from the contributions of other researchers, the 
modes of the equations are the same. So the behavior of the θS -Re relation is expected to 
be similar. 
 

 
 

Figure 4. Variation of separation angle with Re for BR= 0.23077. 
 
Separation Bubble 
 
Irrespective of blockage and boundary conditions, the wake of a cylinder for steady flow is 
closed and symmetric about the free stream flow direction, as is evident in Figure 5. As the 
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eddies are symmetric about the horizontal axis, the lift force of the cylinder is expected to 
be zero. The separation bubble length increases with increasing Re (shown in Figure 6) as 
the separation point travels upstream with increasing Re, which delays the reattachment of 
the separated flow at the downstream of the cylinder (Sen et al., 2010; Fornberg, 1980). 
But this rise is up to a certain Re (around 280 from the results of Fornberg (1980)), then it 
reduces with increasing Re. Our present analysis does not cover that region as it is limited 
up to Re 50. The length L is taken from the center of the cylinder and let d be the radius of 
the cylinder. The proposed linear relationship between the separation bubble length and Re 
is  
 

   ⁄                                                       (11) 
 
which is in the range of 5≤Re≤40 and for BR=0.23077 with root-mean-square error of 
0.0085. Fornberg (1980), Park et al. (1998) and Sen et al. (2010) found similar results for 
steady flow over a cylinder. 
 

 

 

 
 

Figure 5. Symmetric separation bubble at (a) BR=0.23077, (b) BR=1/30 and (c) BR=1/50. 
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Figure 6. Variation in size of separation bubble at different Re for BR=0.23077 
 
Coefficient of Drag at Different Reynolds Number 
 
The streamlines at different Re and blockage ratios are asymmetric about the vertical axis 
(or the axis perpendicular to the flow direction), resulting in an unbalanced force 
distribution between upstream and downstream of the cylinder, which leads to a certain 
pressure drag towards the flow direction. For a BR, the coefficient of drag CD decreases 
with increasing Re because, with increasing Re, the center of the low pressure zone moves 
downstream, decreasing the suction effect of the low pressure zone on the cylinder towards 
the flow direction. The low pressure zone is visible as eddies at the downstream. The 
variation of CD at different Re, presented as an empirical relation of CD-Re, can be obtained 
with a root-mean-square error of 0.0066 in the range of 5≤ Re≤50 and for BR=0.23077 as  
 

CD = 0.2604+5.3232Re-0.5                                       (12) 
 

This expression adheres well to the expression provided by Sen et al. (2010) for 
numerical calculation of steady flow over the cylinder, which is CD = 0.26+7.89Re-0.5 in 
the range of 15≤Re≤40 and for BR=0.01. 
 

CONCLUSIONS 
 

The separation phenomena for flow over a circular cylinder are studied numerically for 
steady flow for Reynolds number up to 50. The onset of separation and subsequent 
development of the initial wake, the effect of the blockage ratio on the separation angle, 
the separation bubble length and variation of the separation bubble length with respect to 
Re and the blockage ratio, variation of the coefficient of drag with Re etc. are extensively 
studied. These phenomena are expressed numerically by empirical equations as functions 
of the Reynolds number. It is evident that the point at which the separation occurs moves 
upstream with increasing Re. The blockage ratio has an effect on the flow parameters and 
the position of the separation point at lower Re. With decreasing blockage ratio, the 
deviation of the separation angle at a definite Re decreases, i.e. the effect of the upper and 
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lower wall on the flow over the cylinder decreases. The separation bubble formed at the 
downstream of the cylinder is symmetric about the horizontal axis irrespective of Re and 
the blockage ratio. The length of the separation bubble increases with increasing Re and as 
the center of low pressure zone which is responsible for the separation drag moves further 
downstream, which results in decrease in the drag coefficient. 
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