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ABSTRACT 

 

This paper examines the effect of air-fuel ratio for Moderate or Intense Low oxygen 

Dilution (MILD) combustion using a bluff-body burner. Exhaust gas recirculation was 

used to dilute the oxidizer stream prior to the combustion chamber. A low-calorie 

biogas fuel which consists of 60% methane and 40% carbon dioxide were used in the 

simulations using a Reynolds-averaged Navier–Stokes model with the realizable k-ε 

turbulence model. The chamber temperature distribution was found to be in small 

ranges and almost homogeneously distributed, verifying that MILD conditions were 

attained. The performance was evaluated based on the level of pollutants (Unburned 

hydrocarbons (UHC) and carbon-mono oxide (CO)) produced and measured in the 

exhaust gas. Slightly lean conditions produced negligible pollutants with some excess 

oxygen measured in the exhaust gas. Under rich conditions, UHC and CO were 

produced, but when synthetic air containing oxygen with a mole fraction of 7% was 

used as the oxidizer instead of ordinary air, these levels were significantly reduced. 

 

Keywords: MILD combustion; biogas; air-fuel ratio; exhaust gas recirculation; 

unburned hydrocarbon. 

 

INTRODUCTION 

 

Fuel efficiency and reduced pollutants are demanded by the combustion industry due 

to the fuel cost and environmental regulations [1, 2]. Combustion is predicted to be the 

most important way of generating future energy [1, 3-6]. Fuel depletion and emission is 

the main issue to cater this energy need [7, 8]. Combustion technology with higher 

thermal efficiency and biogas fuels are possible long term solutions. A new combustion 

process is able to contribute to the increase of combustion thermal efficiency and reduce 

of the emissions. MILD combustion produces higher thermal efficiency due to re-cycling 

of Exhaust Gas by using exhaust gas recirculation (EGR) [7, 9-12]. Others call it 

flameless oxidation (FLOX) [13, 14], High-Temperature Air Combustion (HiTAC) [15, 

16] and Colourless Distributed Combustion (CDC) [17, 18]. It emits low nitrogen oxides 

and carbon monoxide pollutant emissions [2, 19-24]. By recycle the waste heat of 

exhaust gases, the thermal efficiency of MILD combustion can increase by 30%, while 

reducing oxide of nitrogen emissions by 50% [16]. The cycle of carbon dioxide is in 
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close loop when emitted carbon dioxide from the combustion process will be re-used by 

the source of biogas when using the combustion is biogas (Low Calorific Value (LCV)) 

as a fuel [8, 25, 26]. 

In order to create a laboratory experiment’s practical synthetic biogas, a mixture 

of 60% methane and 40% carbon dioxide was used. This ratio of synthetics biogas was 

also used by other researchers [27-29]. The biogas produce by feedstock normally 

consists of about 55% to 65% of methane, 30% to 40% carbon dioxide and 5% nitrogen. 

The mixture composition, measured by lambda (the Air-Fuel Ratio divided by the 

stoichiometric AFR) is an important parameter to indicate the combustion quality. The 

effect of AFR on the combustion efficiency has been studied for MILD combustion [30, 

31]. The performance of combustion is very dependence to lambda, with the optimum 

efficiency is near stoichiometry condition. High lambda will be too lean combustion and 

low lambda will result in unburned hydrocarbons (UHC). Due to fuel consumption, the 

industrial applications always use leaner combustion compared to rich combustion. The 

MILD combustion required lower oxygen in oxidant stream and higher temperature of 

the reactant mixture. Exhaust gas recirculation (EGR) has previously been used for 

MILD combustion [11, 15]. In this case, the combustion chamber needs to be enclosed in 

order to collect the exhaust gas and mixed with the supply fresh air. MILD combustion 

can be achieved when the oxygen level is between 3–13% [32]. The purpose of this 

paper is to study the combustion lambda and the pollutions for open furnace MILD 

combustion.  

 

SIMULATION SETUP 

 

Numerical simulations are commonly used to solved many engineering problem due to 

cost effective, quicker and reliable solution. Many researchers have used numerical 

simulations to study MILD and flameless combustion [33-35]. The open chamber 

studied here (Figure 1) is 1.0m high and 0.6m wide and was simulated using FLUENT 

14.5. The burner’s data is shown in Table 1.  

 

Table 1. Typical data for burner and combustion chamber. 

 

Item Data 

Fuel 60% methane and 40% carbon dioxide 

Oxidizers Atmospheric and synthetic air 

Fuel / air inlet 0.78 mm
2
 / 1570 mm

2
 

Chamber size Diameter 600 mm, Height 1000 mm 

EGR 4 EGR pipe, each with 50 mm diameter 

 

A bluff body was used to stabilize the flame. The fuel nozzle was in the middle 

with a diameter of 1 mm and an annular air nozzle with an opening size of 1,570 mm
2
; 

the bluff body diameter (Db) was 40mm and four EGR pipes were used. In this work, the 

RANS equations together with the realizable k-ε turbulence model [36] were solved, as 

used previously for MILD combustion [37]. The discrete ordinate radiation model [38]  

and absorption coefficient of weighted sum of gray gas (WSGGM) model were used  

[39, 40]. The discrete ordinates radiation model solves the radiative transfer equation for 

a finite number of discrete solid angles in Cartesian system. The combustion was 

modelled using non premixed combustion with non-adiabatic flame temperature. The 

chemical model used is the equilibrium chemistry model couple with the probability 
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density function (PDF) model, as used for similar modelling in Refs. [14, 41]. In the 

current work, 16 species were solved at 56 grid points in mixture fraction space for a 

range of enthalpies to yield 24,472 potential compositions in the PDF look-up table. The 

temperature of the wall was set at 300K. All the governing equations were solved using 

the second order upwind discretization scheme for improved accuracy. The velocity-

pressure coupled solver was used with the gradient least square cell based algorithm and 

presto pressure discretization scheme. A tetrahedral mesh with 897,703 elements was 

used. 

The fuel supply had a 10mm diameter which tapered down to the nozzle diameter 

at the entrance to the combustion chamber. Air was injected through four supply pipes of 

10mm diameter each at the sides of the EGR. There are two driving forces for EGR: the 

percentage of damper opening for the exhaust, which encourages flow to be redirected 

into the EGR inlets; and the fresh oxidant supply jet near the end of each EGR pipe (on 

the side injected into the bottom part of the EGR pipe) which induces flow through the 

pipes. The flue gas flow through the EGR pipe for the current results is calculated at 

35.7% with the balance (controlled by a butterfly valve) allowed to flow out through the 

exhaust pipe on top of the burner (Figure 1). The fresh air supply then mixed with the 

exhaust gas (that flows downward) from the EGR pipe at the mixing area. The fuel for 

this burner is biogas or low calorific value gas. The biogas was produced by mixing 

methane and carbon dioxide. In the authors’ earlier paper [31], a different LCV 

composition was used. In this paper, two gases are mixed: methane and carbon dioxide 

(Table 2). Table 2 also shows a sample composition of biogas, where there are similar 

levels of fuel and diluents to the syngas studied here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (a)                                      (c) 

 

 

 

 

Figure 1. Burner model (a) 2D dimension in mm (b) 3D burner geometry with 

boundary conditions (c) air and fuel nozzle geometry and combustion flow direction. 
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Table 2. LCV gas composition in mole fraction . 

 

Gas  Syngas Biogas LCV gas [31] 

Methane (CH4) 0.60 0.600 0.5344 

Hydrogen (H2) 0.00 0.000 0.3000 

Carbon dioxide (CO2) 0.40 0.350 0.1336 

Nitrogen (N2) 0.00 0.030 0.0130 

Ethane (C2H6) 0.00 0.017 0.0170 

Propane (C3H8) 0.00 0.002 0.0010 

Butane (C4H10) 0.00 0.001 0.0010 

 

The oxygen in the oxidizer stream will be diluted by EGR to the required level. In 

addition, synthetic air (with 3% to 15% oxygen mole fraction mixed with nitrogen) is 

compared with atmospheric air as the oxidizer stream. The lambda and air velocity used 

in this study range from 0.2 to 5.0 and 8 to 15 m/s respectively.  

 

RESULTS AND DISCUSSION 

 

The results of the simulations are discussed with the main purpose to measure and 

analyze the lambda of the biogas combustion. A grid independence study was 

performed to confirm the accuracy of the mesh used in the current simulations. To 

conduct the parametric study, lambda was altered by varying the air and fuel supply 

rates. This was done for a number of different values of oxygen mole fraction in the air 

supply. As a preliminary study to confirm that the behaviour of the syngas is 

representative of a real biogas, the unburned CH4 mole fraction for high speed flow is 

compared in Figure 2. While the syngas slightly overestimates the values for rich 

conditions, the same trend to negligible amounts for stoichiometric and lean conditions 

is reproduced, so it can be concluded that the syngas is reasonably representative of the 

biogas.  

 

 
 

Figure 2. Unburned CH4 with atmospheric air with air inlet 20-100 m/s. Syngas, closed 

symbols; biogas [31], open symbols.  

 

Lambda 
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Figure 3 demonstrates the effects of UHC levels in the current system. In 

Figure 3(a), the mixing of the air supply with the EGR produces chemical reactions prior 

to the combustion chamber. Figure 3(b) shows a desirable operating condition with 

homogeneous temperature, causing the mixing of EGR and air to merely preheat the 

fresh supplied air. The combustion process achieves the MILD combustion state: the 

majority of the chamber’s temperature distribution is uniformly distributed from 822K to 

844K which is a variation of 2.7%. The ranges are considered to be in a uniformly small 

range. This is in agreement with the condition that the MILD combustion regime is 

achieved when the temperature distribution ranges by less than 23% (Figure 4) [16]. The 

highest temperature is observed slightly above the wake of the bluff-body since this is 

the primary mixing zone for the fuel and oxidizer. The mixture in this region is close to 

stoichiometric conditions, so it is inevitable that it is relatively hot. Also, this is adjacent 

to the recirculation region of the fuel with some of the oxidizer stream, so the increased 

residence time with reduced dilution causes the higher temperature. Once this mixture is 

further diluted with the rest of the oxidizer stream, the MILD conditions are able to 

dominate and reduce the temperature to the almost-constant levels detected further 

downstream. When there are sufficiently-high inlet velocities and sufficiently diluted 

oxygen, MILD conditions will develop in the chamber and the primary mixing zone is 

small thereby releasing only a fraction of the total heat. 

 

      
  (a)                                                (b)  

 

Figure 3. Temperature contours. (a) Unwanted burning between EGR and oxidizer 

before combustion chamber for 21% oxygen mole fraction with 10.0 m/s air inlet and 

lambda of 0.43. (b) Proper MILD combustion for 7% oxygen mole fraction with 10.0 

m/s air inlet and lambda of 0.78.  

 

The open furnace has been proved by the flow of streamline from air supply pipe 

to the exhausts opening on the top as shown in Figure 5. Figure 5(a) shows the oxidant 

flow smoothly from the supply inlet and exhaust opening. This was supported by 

Figure 5(b) that shows the velocity magnitude for the flow. The maximum and average 

temperatures inside the chamber and the air mixing temperature are plotted in Figure 6 

for the lambda of 0.78. The average and maximum chamber temperature were almost 

identical at 3% inlet oxygen mole fraction with the difference increasing with inlet 

oxygen mole fraction. At 3% inlet oxygen, the temperature distribution and heat 
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produced was homogeneously uniform throughout the chamber, becoming less uniform 

when the oxygen mole fraction increases. The ratio of maximum-to-average temperature 

was less than the required 23% temperature ratio for a MILD chamber for oxygen mole 

fractions less than 11%. The 13% oxygen mole fraction had a temperature ratio of about 

22.7% so is in the MILD regime and corresponds to the greatest increase in average 

temperature from the initial (air mixing) value. Beyond 13% oxygen, the efficiency 

decreases (lower increases in average temperature) owing to the conventional flame that 

is produced. 
 

  
                                           (a)                                                 (b) 

Figure 4. Combustion temperature distribution (a) convensional combustion: room 

temperature oxidant with 21% oxygen mole fraction (b) MILD combustion: preheat 

oxidant with 4% oxygen mole fraction [16]. 

 

 
                             (a)                                                         (b) 

Figure 5. The flow inside the combustion chamber (a) vector plot (b) the velocity 

magnitude. 
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Figure 6. Maximum and average chamber and air mixing temperatures at lambda = 

0.78. 

 

Figure 7 shows the axial location on the combustion chamber with the marking 

of A-A to F-F for the temperature measurement area used (and planned for the 

experimental work) in Figure 8. This variation in maximum and average temperatures 

with different inlet oxygen mole fractions is due to the lack of uniformity near the bluff 

body (Figure 8: note that the same scale is used). For 3% oxygen, the extra load of 

nitrogen keeps the temperature rise along the fuel jet to a minimum, while by 15% there 

is a significant variation, but this is still in MILD conditions (as noted in Table 3). For 

21% oxygen, the ratio of minimum-maximum temperature was above 23% which is 

caused by the temperature rise almost exclusively being contained within r/Db < 2. In 

this study, the wall temperature was set at room temperature, so the temperature profiles 

are not as uniform as for a higher wall temperature of 1300K [41], with the largest 

variations occurring near the bluff body (Station A-A). The effect of air supply velocity 

on the flame temperature was very clear. Comparing the three different air supply 

velocities (8 m/s, 10 m/s and 15 m/s, refer to Supplementary Material) at the same 

oxygen mole fraction of 3%, the higher the air supply velocity, the higher the 

temperature of the flame.   

 
Figure 7. Chamber axial location for the temperature profile. Downstream distance from 

injection location, x/Db: Station A-A = 2.8, B-B = 8.9, C-C = 15.0, D-D = 17.8, E-E = 

20.3, F-F = 22.8. 
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  (a)                                           (b)                                          (c)         

                                                        

 
 

  (d)                                           (e)                                           (f)   

                                                              

Figure 8. The temperature profile for chamber axial location of 10 m/s air supply 

velocity with various oxygen mole fractions in air supply stream (lambda = 0.78). (a) 

3% oxygen (b) 7% oxygen (c) 9% oxygen (d) 12% oxygen (e) 15% oxygen (f) 21% 

oxygen. 

 

 Table 3. The oxygen mole fraction in air supply and MILD condition. 

 

Conditions Oxygen mole fraction (%) 

Oxygen mole fraction 3 7 9 12 15 21 

MILD conditions Yes Yes Yes Yes Yes No 

 

The temperature and combustion products are studied in Figures 9-12. Table 4 

summarizes whether the MILD condition was achieved in Figures 9-12. Figure 9 shows 

the average chamber temperature where the air inlet has 7% and 21% oxygen mole 

fraction respectively. The atmospheric air produces higher temperatures, but the same 

trends appear: higher velocities and higher lambda produce higher temperatures. The 

temperature was drastically reduced when the fuel was reduced (lambda higher than 

1.0). This is due to the combustion process was limited to lower methane supply in 

higher lambda cause this lower temperature. Figures 10 and 11 show that the 

combustion consumes all the oxygen at lower lambda, leaving excess oxygen as 

expected at higher lambda. The excess methane and pollutant CO occurred at lower 

lambda but not at higher since all methane consumes leaving excess oxygen. A small 

but significant amount of oxygen remains at lean conditions, consuming all the CH4. 

This greater consumption of methane produces the higher temperatures.  
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(a)                                                        (b) 

 

Figure 9. Chamber temperature (a) air inlet with 7% oxygen mole fraction (b) air inlet 

with 21% oxygen mole fraction.   

 

 
 

                                    (a)                                                                 (b) 

 

Figure 10. Excess oxygen in exhaust (a) air inlet with 7% oxygen mole fraction (b) air 

inlet with 21% oxygen mole fraction.   

 

 
 

   (a)                                                 (b) 

 

Figure 11. Unburned methane in exhaust (a) air inlet with 7% oxygen mole fraction (b) 

air inlet with 21% oxygen mole fraction.   

Lambda Lambda 

Lambda Lambda 

Lambda Lambda 
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(a)                                                 (b) 

 

Figure 12. Pollutant carbon monoxide in exhaust (a) air inlet with 7% oxygen mole 

fraction (b) air inlet with 21% oxygen mole fraction.   

 

Table 4. The oxygen mole fraction in air supply and MILD condition. 

 

Conditions Oxygen mole fraction 

Oxygen mole fraction 7 21 

MILD condition achieved not achieved 

 

Carbon monoxide is a product of incomplete combustion due to insufficient 

oxygen to produce carbon dioxide. The high temperature combustion for the 21% 

oxygen mole fraction produces more carbon monoxide [7, 13] than the 7% oxygen mole 

fraction (Figure 12) and CO is only produced when there is no excess oxygen (c.f. 

Figure 10). More results of the study were plotted for various gases which can be seen 

in the Supplementary Material. 

 

CONCLUSIONS 

 

The flame temperature and combustion products in MILD combustion were studied 

numerically for varying lambda, inlet oxygen mole fraction and inlet oxygen and fuel 

velocity. The chemical reactions were modelled by considering chemical equilibrium 

based on the mixture fraction with non-adiabatic flame temperature using RANS 

equations and the realizable k-ε turbulence model. Under lean conditions, the pollutants 

CO and UHC are effectively zero, this was proves that the proposed configuration is 

viable for clean combustion. The present paper concludes that: 

 

i) The syngas that was used closely reproduced the behaviour of a real biogas, 

making this an attractive alternative for practical implementation in experiments. 

ii) MILD conditions were found for oxygen mole fractions between 3% and 13%, 

which is proven by the small variations in the chamber temperature distribution. 

This demonstrates that an open burner can produce MILD combustion with the 

utilization of EGR. 

iii) The maximum chamber temperature was near stoichiometric conditions and was 

reduced by approximately one-third when synthetic air (7% O2) was used instead 

of ordinary air, a consequence of the extra thermal load caused by the inert N2.  

Lambda Lambda 
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iv) Under lean conditions, atmospheric air produced approximately 0.1 ppm NO, 

while 7%-O2 air produced zero NO within numerical precision. This shows that 

the configuration can produce negligible pollutants without the expense of 

separating out N2 before the combustion chamber. 
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