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ABSTRACT 

 

This study is focused to determine the optimum operating parameters for the end 

milling process of AA6061T6 under wet cooling conditions. A central composite design 

of response surface methodology is used to develop an effective analytical model for 

surface roughness. The primary cutting parameters, namely, speed, feed rate and depth 

of cut, are considered in this study. Surface roughness is measured using a perthometer. 

The adequacy of the model is tested using ANOVA at 95% confidence level. Significant 

parameters are identified in terms of the cutting parameters. The obtained results show 

that the most significant parameters for the machining of the mentioned alloy are feed 

rate and depth of cut. The resultant model is then tested for optimization using a genetic 

algorithm. 

 

Keywords: End mill; aluminum alloy; response surface methodology; central composite 

design; surface roughness; genetic algorithm. 

 

INTRODUCTION 

 

Milling is the most extensively used metal machining operation. Most of the finished 

products undergo milling processes at some stage of fabrication (King & MacDonald, 

1975). The widespread use of end milling for machining parts is attributed to its ability 

to give a faster rate of metal removal as well as a reasonably good surface texture. End 

milling operations are highly adaptable for both the roughing and finishing operations 

for different products that can be produced with a high level of accuracy and surface 

finish (Sutherland, 1988). Machining productivity with good design and specifications, 

as well as the process economics and product quality, make the study of the milled 

surface vital (Hossain & Ahmad, 2012; Razak, Rahman, & Kadirgama, 2012a,b; Najiha, 

Rahman, Kamal, Yusoff, & Kadirgama, 2012). The machining process for producing a 

milled surface is affected by a number of machining parameters such as the cutting 

conditions and tool geometry (Razak et al., 2012a; Najiha, Rahman, Yusoff, & 

Kadirgama, 2012). These parameters play a key role in the final quality and finish of a 

milled surface. Surface texture or surface quality play a vital role in improving the 

fatigue strength, corrosion resistance and creep life of the machined part (Mohammed, 

Montasser, & Joachim, 2007). 
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The surface roughness parameter is an indicator of surface finish quality which 

in turn finally controls the process performance and the operating costs (Boothroyd & 

Knight, 1989). Surface roughness is affected by a number of factors including cutting 

parameters, tool geometry, workpiece material, chatter and cutting fluids (Lakshmi & 

Subbaiah, 2012). Many researches have been conducted in order to study the effects of 

machining parameters on the surface quality of the product in end milling operations. 

The axial depth of cut, radial depth of cut and feed rate are the most significant 

parameters in machining, affecting tool deflection and the surface (Saffar et al., 2009). 

Elmagrabi et al. (2008) stated that the feed rate and the depth of cut are the most 

significant factors affecting surface roughness. In order to investigate surface roughness 

under controllable and uncontrollable factors in end milling operations, an empirical 

approach was used (Huang & Chen, 2008). An integrated study of surface roughness 

was done by Oktem (2009). This study was used to model and optimize the cutting 

parameters when end milling AISI1040 steel material. Oktem (2009) used the PCA 

based Taguchi method to optimize the differing objectives of maximizing the metal 

removal rate and minimizing the surface roughness. In another study, research was done 

to investigate the effects of tool geometry on the quality of the surface (Reddy, 2005). 

Surface roughness affects the quality of the machined surface and plays an important 

role in the functional characteristics of the final product as it also affects several 

functional aspects of the machined part, such as light reflection, heat transmission, 

coating characteristics, surface friction, fatigue resistance (Moshat et al., 2010). 

However, the mechanism behind the formation of surface roughness is very dynamic, 

complicated and process-dependent; therefore it is very difficult to calculate its value 

through analytical formulae (Moshat et al., 2010). Surface finish can be characterized by 

various parameters such as average roughness (Ra), smoothening depth (Rp), root mean 

square (Rq), and maximum peak-to-valley height (Rt) (Hasegawa, Seireg, & Lindberg, 

1976). 

In addition to surface roughness, the material removal rate (MRR) is a factor that 

affects the machining productivity and cost. The MRR signifies the total machining 

time for the workpiece. It is also necessary to study the material removal rate along with 

surface roughness in the CNC end milling process. The surface finish of the machined 

surface has been identified as a quality attribute, whereas MRR has been treated as a 

performance index directly related to productivity (Moshat et al., 2010). Both the 

surface roughness and the material removal rate vary greatly with the change of cutting 

process parameters. That is why proper selection of cutting process parameters is also 

essential, along with its prediction to obtain a good surface finish (lower Ra value) and 

higher material removal rate in the CNC end milling process (Moshat et al., 2010). So in 

order to contribute towards the production cost and quality, it is essential to have a 

model that is able to evaluate both indices, i.e., surface roughness and material removal 

rate, before the machining of the part, thus helping to reduce the machining cost and 

time, and increasing the surface quality, hence helping to optimize the machining 

process. 

The purpose of this study is to optimize the end milling process of aluminum 

alloy AA6061T6 under flooded lubrication conditions. Experiments have been designed 

using the central composite design approach. The results obtained have been used to 

investigate the most significant and influential parameters in end milling under flooded 

machining conditions. A genetic algorithm is implemented to optimize the end milling 

parameters. The literature survey indicates that genetic algorithms are thriving in the 

optimization of machining parameters (Ahmad, Tanaka, & Saito, 2004). A multi-
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objective genetic algorithm based approach is used in this work for an end milling 

operation that is assumed as a controlled optimization problem. Multi-objective 

optimization problems usually have many optimal solutions, known as Pareto optimal 

solutions (Miettinen, 1999; Goel et al., 2007). Specimen surface roughness and material 

removal rate are used as the objective functions in this single pass end milling 

constrained parameter optimization problem. Significant parameters affecting the 

surface roughness and material removal rate are indicated by ANOVA. The perthometer 

is used to obtain the average surface roughness Ra. Statistical quadratic models of 

surface roughness are used to fit the experimental data of the surface roughness.  

 

METHODOLOGY 

 

Machining Parameters and Design of Experiments 

 

In this research, the feed rate, speed and depth of cut are set as machining variables. In 

order to find the effects of parameters and the combination of the parameters, design of 

experiments is done. Experiments are designed according to a central composite design 

of response surface methodology. Machining parameters are taken as factors in the 

design of experiments and there are five levels for every factor, as shown in Table 1.  

 

Table 1. Assignment of levels to factors 

 

Factors Levels 

1 2 3 4 5 

Cutting speed (rpm) 866 932 1037 1142 1209 

Axial depth of cut (mm) 0.367 1.0 2.0 3.0 3.63 

Feed rate fz (mm/min) 79 95 120 145 161 

 

   
 

               (a)                                                                                 (b) 

 

Figure 1. (a) Machining pattern on the workpiece; (b) workpiece. 

 

Workpiece and Cutting Tool Material 

 

AA6061T6 aluminum alloy is used as a workpiece material. This is a general purpose 

alloy which offers adequate machinability and gives continuous chips. The main 

constituents of the alloy are Si, Cu and Mg. The dimensions of the workpiece are 100 

mm × 100 mm × 30 mm. Workpieces from the same batch were used in the 

experiments.  A high speed steel end mill with two flutes is selected for the machining. 
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The two-flute tool is selected in order to avoid chip clogging in the tool flutes. A central 

composite design with a quadratic model is applied. Finally, optimization is carried out 

to find the best design. The significance of the input machining parameters on the 

response variable, i.e., surface roughness, is determined by ANOVA. Experiments are 

performed using a vertical CNC milling center, HAAS TM-2 machining pattern on the 

specimen, as shown in Figure 1. 

 

Measurement of Parameters  

 

Surface roughness is the response of the experiments. A perthometer is used to measure 

the surface profile. The average surface roughness is determined from the profile data. 

Surface roughness is measured in µm. 

 

Statistical Modeling 

 

In order to optimize the surface roughness, a statistical model of surface roughness is 

needed that constructs a relationship between the cutting parameters and the response 

variable, i.e., surface roughness. The measured values of average surface roughness (Ra) 

and material removal rate obtained for the design of experiments are listed in Table 2. 

The statistical modeling of the data obtained is done with the help of MATLAB.  

 

Table 2. Measured values of average surface roughness 

 

Speed 

(RPM) 

Feed rate 

(mm/min) 

Depth of cut 

(mm) 

Surface roughness 

(µm) 

MRR 

(mm
3
/min) 

932 95 1.00 1.52 1140 
932 145 3.00 1.47 5220 
1037 120 2.00 0.94 2880 
1142 145 1.00 0.97 1740 
1037 120 2.00 1.21 2880 
1142 95 3.00 0.87 3420 
1037 120 2.00 1.10 2880 
1037 120 2.00 0.97 2880 
932 145 1.00 1.68 1740 
1142 95 1.00 1.30 1140 
1142 145 3.00 1.70 5220 
932 95 3.00 0.96 3420 
1037 79 2.00 0.95 1900 
1037 120 3.63 0.96 5232 
1209 120 2.00 1.26 2880 
1037 120 0.37 1.44 528.0 
1037 120 2.00 0.82 2880 
866 120 2.00 0.75 2880 
1037 120 2.00 0.94 2880 
1037 161 2.00 1.98 3860 
932 95 1.00 1.52 1140 
932 145 3.00 1.47 5220 
1037 120 2.00 0.94 2880 
1142 145 1.00 0.97 1740 
1037 120 2.00 1.21 2880 
1142 95 3.00 0.87 3420 
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 The estimated regression coefficients, the analysis of variance for the surface 

roughness and the effects or significance of the regression terms are summarized in 

Table 3. The Analysis of Variance table summarizes the linear terms, the squared terms, 

and the interactions. The statistical significance of variables is indicated by the p-value 

of the variables. This is the probability of obtaining a test statistic that is at least as 

extreme as the actual calculated value (Jiang et al., 2010). It is the level of trivial 

significance within a statistical hypothesis test, representing the probability of the 

occurrence of a given variable. In this research, the level of significance is set at a 

standard cut-off value of   = 0.05  The small p-values for the main (p = 0.026), linear 

(p = 0.048) and squared terms (p = 0.054) imply that there is curvature in the response 

surface. According to the regression analysis, the statistical model contains three two-

way interactions (speed x feed rate, speed x depth of cut, feed rate x depth of cut). The 

p-value of 0.039 for the feed rate by depth of cut interaction is less than 0.05, which is a 

significant interaction effect. That is, the effect of the depth of cut on the surface 

roughness depends on the feed rate. The model contains three squared effects (depth of 

cut × depth of cut, feed × feed and speed × speed). Squared terms are used to assess 

whether there is curvature (quadratic effect) in the response surface. 

 

Table 3. Estimated regression coefficients for surface roughness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The squared terms are identified as significant in the analysis of variance table (p 

= 0.048). The p-values for squared effects (feed rate × feed rate = 0.012) are less than 

0.05. Therefore, there are significant quadratic effects from the feed rate. The 

relationship between feed and surface roughness follows a curved line, rather than a 

straight line. The p-value for the linear terms is also less than the standard α = 0.05 

value, as shown in the analysis of variance table (p-value = 0.048). This depicts that the 

linear effects of some of the variables are also significant. The p-value for the depth of 

cut is 0.015, i.e., it also has a significant linear effect on the model. The quadratic model 

for surface roughness can be expressed as follows: 

 

Source                     Significant* 

(at  = 0.05) 

Regression - 0.026 yes 
Linear - 0.048 yes 

Square - 0.054 yes 

Interaction - 0.091 no 

Constant 9.99288 0.217 no 

Speed 0.00472 0.710 no 

Feed rate 0.07163 0.104 no 

Depth of cut 2.69197 0.015 

 

yes 

Speed x speed 0.00000 0.798 no 

Feed rate x feed rate 0.00030 0.012 yes 

Depth of cut x depth of cut 0.09002 0.178 no 

Speed x feed rate 0.00001 0.815 no 

Speed x depth of cut 0.00128 0.123 no 

Feed rate x depth of cut 0.00759 0.039 yes 

javascript:BSSCPopup('../../SHARED_Glossary/analysis_of_variance_table_def.htm');
javascript:BSSCPopup('../../SHARED_Glossary/interaction_def.htm');
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docdocrateFeedrateFeedSpeedSpeed

docrateFeeddocSpeedrateFeedSpeed

docrateFeedSpeedRa







0002.000030.000000.0

00759.000128.0(00001.0

69197.207163.000472.099288.9

    (1) 

 

where 

Ra   = Average surface roughness measured, m 

Speed   = Spindle speed measured, RPM 

Feed rate  = Feed rate measured, mm/min 

doc   = Depth of cut measured, mm. 

 

Response Surface Charts and Function plots 

 

A 3-dimensional response surface perspective plot and a 2-dimensional contour plot 

give a pictorial representation of the response surfaces, showing the combined effects of 

the input variables. Response surface plots showing the mutual effect of feed rate and 

depth of cut on the surface roughness and material removal rate are shown in Figure 2. 

Function plots for the surface roughness against the feed rate and depth of cut are shown 

in Figure 3. Function plots for the surface roughness against the feed rate and depth of 

cut are shown in Figure 4. 

 

 
(a) 

 

 
(b) 

Figure 2. Surface contour plots against (a) surface roughness; (b) material removal rate. 

http://www.ualberta.ca/~csps/JPPS5%283%29/P.Ellaiah/alkaline.htm#Figure%201
http://www.ualberta.ca/~csps/JPPS5%283%29/P.Ellaiah/alkaline.htm#Figure%201
http://www.ualberta.ca/~csps/JPPS5%283%29/P.Ellaiah/alkaline.htm#Figure%201
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                                     (a)                                                                  (b) 

 

Figure 3. Function plots for surface roughness (m) versus (a) feed rate (mm/min);  

(b) depth of cut (mm). 

 

            
 

(a)      (b) 

 

Figure 4. Function plots for material removal rate (mm
3
/min) vs (a) feed rate (mm/min),

 (b) depth of cut (mm). 

 

OPTIMIZATION MODELING 

 

Objective Functions  

 

In order to optimize an operation, the objective functions have to be defined. In this 

research, average surface roughness, Ra and material removal rate are set as objective 

functions. While the MRR is a quantitative measure of productivity, surface roughness 

defines the quality of the machining. These two objectives are conflicting, i.e., one has 

to be compromised in order to achieve a gain in the other. The two objective functions, 

namely, the surface roughness and the material removal rate, along with the input 

variables, are listed in Table 3 in the earlier section. 

 

Machining Constraints 

 

Machining constraints are defined by the process capabilities and the final product 

requirements. The constraints are defined by the experimental range. The boundary 

conditions are defined by Eq. (3) through Eq. (8). 
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Minimize surface roughness, ) , , ,( rate flowMQLdocrateFeedSpeedfnRa  ; 

 

Maximize material removal rate, ) , ,toolofdiameter ( docrateFeedfnMRR  ;  

 

subject to: 

 

1. maxmin  SpeedSpeedSpeed                             (3) 

2. maxmin rateFeedrateFeedrateFeed                       (4) 

3. macdocdocdoc min                         (5) 

4. maxmin rateFlowMQLrateFlowMQLrateFlowMQL                     (6) 

 

while 

5. maxmin RaRaRa                          (7) 

6. maxmin MRRMRRMRR                         (8) 

 

A two-step optimization was performed based on the genetic algorithm strategy. 

Genetic algorithms have been used in function optimization since their inception, 

optimizing large poorly understood problems that arise in many areas of science and 

engineering (Adeli & Cheng, 1994). Optimization was carried out using two-step 

process optimization. The first optimization step was performed to identify the feasible 

designs and the second optimization was done to find the optimal design. In the first 

optimization step, three machining parameters (speed, feed rate, depth of cut) were 

defined as input variables while the measured surface roughness and material removal 

rate were selected as the response variables. The objectives were to minimize the 

surface roughness and maximize the material removal rate. The two objectives were 

bound by the constraints defined from the experimental scope. The multi-objective 

optimization managed by the multi-objective optimization genetic algorithm (MOGA), 

was stopped after 100 generations, and 239 Pareto designs were selected to find the 

optimum design. In the current study, 239 Pareto designs were obtained. The set of all 

Pareto optimal points is known as the Pareto frontier. The Pareto frontier for the current 

designs is presented in Figure 5. Starting from the design considerations obtained from 

the primary optimization, a second optimization was performed in order to find the most 

optimal design point.  

From the statistical model of surface roughness, the most significant factors are 

identified. According to the statistical model obtained for the surface roughness and 

material removal rate, feed rate and the depth of cut appear to be the most significant 

factors, which is in complete agreement with the earlier research (Jiang et al., 2010). A 

two-step optimization was performed. The first step was performed in order to 

determine the range of parameters for feasible designs. The second optimization was 

done to focus on finding the final optimal design. In the first step of optimization, the 

selected cutting parameters were used as input variables while the response variables, 

i.e., surface roughness and the material removal rate, were taken as output. The main 

objectives selected were in conflict with each other, i.e., to minimize the surface 

roughness and to maximize the material removal rate. Constraints were applied to the 

problem within the experimental scope. In order to initialize the algorithm, a set of 20 

designs obtained from the central composite designs was used. In the first step of 

optimization, 100 generations were run which resulted in 2625 feasible designs. From 
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these feasible designs, 239 Pareto designs were selected for the second optimization. 

The reason for doing a second optimization was to help the algorithm converge and find 

the optimum design point. The constraints were selected from the range of variables 

from the Pareto designs.  

The reason for selecting these constraints was to ensure that the algorithm, while 

trying to optimize the two conflicting objectives, leads to a design not too far from the 

original one, so as to not break the constraint. In doing two optimizations, the advantage 

can be observed as in the first optimization phase; at the beginning the algorithm 

reaches the best region as a compromise between the objectives, while in the second one 

there is a refinement or convergence in order to identify the best designs. As initial 

designs, 239 Pareto designs were chosen to start the optimization. After 100 

generations, the algorithm stopped and a convergence was obtained for the best optimal 

design within the Pareto designs range. After the second optimization, the optimization 

algorithm converged to a design with a spindle speed of 866 rpm, feed rate of 119.5 

mm/min, depth of cut value 3.64 mmm and the compromise values of the surface 

roughness and material removal rate were 0.752 µm and 5231 mm
3
/min respectively. 

 

 
Figure 5. Pareto frontier for the output variables.  

 

CONCLUSION 

 

The foregoing study deals with the multi-objective optimization of a CNC end milling 

operation by applying a genetic algorithm. For carrying out the optimization, 

mathematical modeling of the surface roughness was performed using RSM. Design of 

experiment was made using a central composite design approach resulting in 20 

designs. From the modeling of the response, it is clear that surface roughness is more 

sensitive to feed rate and depth of cut. The quadratic model was used for fitting 

experimental data. Multi-objective optimization based on the Pareto optimal designs 

approach was used for the selection of optimal designs within the experimental scope. 

This approach has many advantages. Since the Pareto designs are selected from the 

feasible designs, the feasibility of the optimal design is ensured.  All the constraints 

considered were selected from the real experimental conditions. The optimization was 

performed in two steps. Firstly, the algorithm converged to a set of feasible designs after 
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100 generations. In the second step of optimization, the algorithm converged to the best 

optimal Pareto design. The best design obtained was the design at 866 rpm, feed rate of 

119.5 mm/min and a depth of cut of 3.64 mm. The optimum values for the two 

objectives, i.e., surface finish and material removal rate, were found to be 0.752 µm and 

5231 mm
3
/min respectively. 
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