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ABSTRACT 

 

Aluminum-stainless steel dissimilar welding processes yield unwanted disadvantages in 

the weld joint due to the large difference between the aluminum-stainless steel sheets’ 

melting points and the nearly zero solid solubility between these two metals. Aluminum 

AA6061 and stainless steel SUS304 were lap-welded by using Metal Inert Gas (MIG) 

welding with aluminum filler ER5356 (Group 1) and stainless steel filler ER308LSi 

(Group 2). The effects of the welding voltage and type of filler metals used on the weld 

joints were studied. The welding voltage had a significant effect on the welding process, 

as higher voltage resulted in poorer appearance of the weld joint and led to defects for 

both groups, such as porosity and incomplete fusion. The microstructure for Group 1 

joints shows enrichment of Si particles, which benefited the joint properties as it 

increased the strength of the metal. The stainless steel substrates that spread into the 

aluminum side are much greater in volume for Group 1 than for Group 2 joints. 

Meanwhile, the microstructure of Group 2 joints (using ER308LSi filler) consists of 

chromium carbide precipitation which yields a high hardness value, but a brittle 

structure. The hardness values of the welded seams in Group 1 and Group 2 range from 

60 to 100 HV and 160 to 230 HV, respectively. The fracture in the tensile test yielded 

the highest tensile strength of 104.4 MPa with aluminum fillers. The tensile strength of 

Group 1 joints ranging from 47.8 to 104.4 MPa was collectively higher than Group 2 

joints, between 20.24 to 61.76 MPa. Based on the investigation throughout this study, it 

can be concluded that the welding voltage of 18 V and aluminum filler ER5356 is the 

optimum filler in joining the dissimilar metals aluminum AA6061 and stainless steel 

SUS 304. 
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INTRODUCTION 

 

Welding is the method of joining two or more pieces of metal to make them act as a 

single piece. Welding has become one of the most important metalworking processes as 

almost everything made of metal is welded (Wang et al., 2006). Products of the welding 

industry include automobiles, airplanes, jet engines, etc. (Zhang & Liu, 2011; Charde, 

2012; Charde, 2013). Some of the advantages of welding are the low cost of this 

permanent joining method and the design flexibility it provides. Dissimilar welding is 

where weldments are made from metals of different compositions or thicknesses, or 

both. It is attracting attention nowadays, due to its many advantages, such as low 

manufacturing cost and the ability to reduce working operations (Saunders & Wagoner, 

1995; Kinsey, Viswanathan, & Cao, 2001; Tusek, Kamous, & Suban, 2001; Chan, 
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Chan, & Lee, 2003). Besides that, this type of joining offers the potential to utilize the 

advantages of different materials, which often produces a whole structure with unique 

mechanical properties. For example, hybrid structures of aluminum alloy and stainless 

steel are suggested for spacecraft, automotives and steamships to improve their fuel 

efficiency, increase their range and control air pollution by reducing weight (Zhang & 

Liu, 2011; Fukumoto et al., 2000; Chan et al., 2003). 

 Even so, the dissimilar welding process yields unwanted disadvantages in the 

weld joint, such as brittle intermetallic reaction phase formation at elevated 

temperatures (Bang et al., 2012; Lin et al., 2010; Song et al., 2009; Dong et al., 2012). 

The defects that may occur in the specimens of this project are due to the large 

difference between the melting points of the steel-aluminum sheets, thermophysical 

properties, and the nearly zero solid solubility of iron in aluminum. Furthermore, 

differences in thermophysical properties, such as expansion coefficient, conductivity 

and specific heat, can lead to residual stresses after fusion welding (Dharmendra et al., 

2011; Qiu, Iwamoto, & Satonaka, 2009; Song et al., 2009; Lohwasser & Chen, 2010). 

The weld joint is the most important area and is heavily affected by the selection of 

filler metals. Several researches have shown that the selection of the filler metal to use 

in the welding process is crucial to the weld joint, as some fillers add to the base metal 

elements to improve the properties of the weld metals (Dong et al. 2012; Shiri et al. 

2012; Saeed et al. 2010). Dong et al. (2012) have proven that different types of 

aluminum and zinc fillers have a significant effect on the IMC formation and weld joint 

strength of aluminum-stainless steel weldments. However, no empirical study has been 

conducted to compare the effect of aluminum fillers and stainless steel fillers on 

aluminum-stainless steel metal inert gas (MIG) welding. This project looks into the 

effect of welding fillers on the quality of the weld joint and microstructure of MIG-

welded aluminum-stainless steel sheets. The mechanical properties of the weld joints 

are also investigated. 

  

EXPERIMENTAL METHOD 

 

Materials used are AA6061 aluminum alloy and SUS304 stainless steel plates in 2.0 

mm thickness. Both materials are commonly used in industry due to their high corrosion 

resistance and versatility (Lippold & Kotecki, 2005; Mandal, 2005; Callister, 2000). 

The filler metals used are stainless steel based ER 308LSi and aluminum based ER 

5356, with a diameter of 2.5 mm for both fillers. Table 1 represents the chemical 

composition of AA6061 and aluminum filler ER 5356 (Gomez de Salazar et al., 2003). 

The chemical composition for SUS 304 and stainless steel filler ER 308LSi is shown in 

Table 2 (Taban et al., 2012). All plates were cut to sizes of 110 mm × 25 mm using an 

MVS/C 6/31 shearing machine with a maximum capacity of 209 kN.  

 

Table 1. Chemical composition of AA6061 and ER 5356 (wt%) 

 

 Mg Al Si Mn Fe Cu Cr Zn Ti 

AA 6061 0.84 97.7 0.54 0.01 0.40 0.24 0.18 0.006 0.031 

ER 5356 4.5 Bal. 0.25 0.20 0.40 0.05 0.05 0.15 0.15 
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Table 2. Chemical composition of SUS 304 and ER 308LSi (wt%) 

 

 Cr Ni Mo Cu C Si Mn P Fe 

SUS 304 18.36 9.23 0.07 0.08 0.051 0.76 0.97 0.027 Bal 

ER 308LSi 20.0 9.79 0.10 0.10 0.02 0.76 1.51 0.03 Bal 

  

Aluminum and stainless steel were lap-welded using an MIG welding 

Migatronic 3000 Duo, where the aluminum sheets were placed above the stainless steel 

counterpart. Two different sets of specimens were fabricated during the welding process 

for the tensile test and for the microstructure as well as a hardness analysis. Figures 1 

and 2 show schematic diagrams of the aluminum-stainless steel lap joints for the tensile 

test specimen and for the microstructure and hardness analysis, respectively. Figure 3 

shows the schematic diagram of the experimental setup. 

 
Figure 1. Schematic diagram of aluminum-stainless steel lap joint for tensile test 

specimen. 

 
Figure 2. Schematic diagram of aluminum-stainless steel lap joint for microstructure 

and hardness analysis. 
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 The specimens were divided into two groups. Group 1 represents aluminum-

stainless steel joints using aluminum filler, while Group 2 represent aluminum-stainless 

steel joints using stainless steel filler. As well as the filler metal, the welding voltage 

was also varied. The varied welding parameters of the two groups are shown in Table 3. 

Through trial and error, it was found that the weldable voltage range to cater for both 

fillers in this particular setting was very limited, between 17 and 19 V. 

 

  

Figure 3. Schematic diagram of the experimental setup. 

 

The specimens were mounted using a cold mounting machine and were 

manually ground in the longitudinal and latitudinal directions with a sequence of 240, 

320, 400 and 600 grit papers. To get a mirror-like surface finish, Forcipol 2V Grinder-

Polisher was used to polish the ground specimen. Etching of specimens at ambient 

temperature was performed to draw out the material microstructure for observation 

under the optical microscope as well as for scanning electron microscopy (SEM). Since 

dissimilar specimens require different etching solutions for the etching process, Keller’s 

etchant and electrolyte etchant were separately dabbed using cotton buds and washed 

using distilled water on the aluminum and stainless steel surfaces respectively. 

 

Table 3. Welding parameters for Group 1 and Group 2. 

 

Joint Voltage (V) Filler metals 

Group 1   

1 17 ER 5356 

2 18 ER 5356 

3 19 ER 5356 

Group 2   

4 17 ER 308LSi 

5 18 ER 308LSi 

6 19 ER 308LSi 

  

 The Vickers hardness test and tensile test were conducted to analyze the 

mechanical properties of the samples. The Vickers hardness profile across the base 

metals and fusion zone was observed using the Miyazu MMT-X7 hardness tester with 

500 gf for 10 seconds dwell time. On the other hand, the fracture behavior was analyzed 

Aluminum/stainless steel filler 

Aluminum 
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using a Shimadzu Universal Testing machine with 100 kN capacity. The tensile 

specimens were prepared with reference to ASTM D1002, namely for the lap shear test 

specimens. The gauge length and grip length for all specimens were 130 mm and 25 

mm respectively. The tensile test was carried out at a temperature of      ,  t   

crosshead speed of 1.3 mm/min.   

 

RESULTS AND DISCUSSION 

 

Macrostructure and Microstructure Analysis 

 

Figure 4 shows the weld bead appearance of Group 1 samples (Figure 4(a)-(c)) and 

Group 2 samples (Figure 4(d)-(f)) made with different weld voltages. Some common 

welding defects can be seen, such as porosity and incomplete fusion. For Group 1, the 

spreading degree of the molten aluminum on the steel surface was limited (Zhang et al., 

2011). This is due to the wide difference between the melting temperatures of aluminum 

( ppro i  tel        ) and stainless steel ( ppro i  tel         ). The aluminum melts 

and flows away well before the stainless steel has melted. This situation explains why 

the aluminum is just barely intact with the stainless steel surface and they are not 

soluble with each other. Based on observation of the macrostructure of all joints, the 

joints with welding voltage 18 V have the best appearance.   

 

   
 

   
 

Figure 4. Appearance of weld joints for Group 1: (a) 17 V (b) 18 V (c) 19 V and Group 

2: (d) 17 V (e) 18 V and (f) 19 V, respectively.  

 

On the other hand, the weld appearance in Group 2 is relatively poor compared 

to the Group 1 joints, as hot cracking occurs on the aluminum side. Since aluminum 

melts long before stainless steel does, this leads to the hot cracking and shrinkage of the 

aluminum through the cooling process. Figure 5 shows the cross-sections of Group 1 

and Group 2. It is evident that the aluminum filler in Group 1 mixed very well with the 

aluminum sheet but not with the stainless steel one, whereas the stainless steel filler in 

Group 2 mixed very well with the stainless steel sheet but not with its aluminum 

counterpart. 
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Figure 5. Cross-section of (a) Group 1 and (b) Group 2  

  

            
 

           
 

Figure 6. Metallographic photos of fusion zone with different scales for Group 1: (a) 50 

μ  (b)     μ   nd Group  : (c)     μ  (d)     μ  

 

 Figure 6 shows the metallographic photo of the fusion zone with varying scales 

for both groups. In Figure 6(a), enrichment of eutectic Si can be seen, since both the 

filler metal and the base metal aluminum contained a certain percentage of silicon. Like 

the grain size, smaller eutectic Si particles mean that the hardening agents are better 

dissolved, thus increasing the hardness of the joint. In addition, the existence of Si 

elements in the aluminum matrix helps the solubility and dissolution rate of Fe in the Al 

molten pool to increase significantly and prevent thick IMC formation (Song et al., 
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2010) (Figure 6(b)). IMC is known to affect the crack sensitivity, ductility and strength 

of the joint. A thicker layer of this will result in more brittle joints and reduce the 

strength and hardness. Preheating or the existence of a secondary heat source other than 

the MIG torch such as a laser or TIG torch can be a means to suppress this IMC 

formation (Budkin, 2011; Bang et al., 2013; Powell et al., 2011; Thomy & Vollertsen, 

2012). On the other hand, Figure 6 (c)-(d) for Group 2 shows a different microstructure. 

Cr-rich δ-ferrite (bcc) skeletal regions can be observed throughout the fusion zone, 

indicating a Type F (primary ferrite) stainless steel solidification. The outer portions of 

the dendrites having less Cr transform into an austenite (fcc) matrix. The calculated 

ferrite number for this composition is 18 FN. This type of solidification is also not 

sensitive to solidification cracking (Kou, 2003; Lippold & Kotecki, 2005; Kotecki & 

Siewert, 1992).  

 The stainless steel filler contains alloying addition chromium and traces of 

carbon. Chromium is a strong carbide former and a ferrite promoter. It is also the main 

component in the formation of the brittle IMC layers, which will have a detrimental 

effect on the aluminum-stainless steel joint strength, as is evident in the fracture test 

conducted below (Lippold & Kotecki, 2005). During welding, carbon will combine with 

chromium to form chromium carbides at grain boundaries through the sensitization 

process (Kou, 2003). Though materials with such microstructures possess high strength, 

they also have brittle properties, which will be discussed in further detail in the 

mechanical property analysis. 

 

Mechanical Property Analysis 

 

The Vickers hardness pattern across the base materials and the welded seam is measured 

using a macrohardness tester. A total of 11 points were indented across the specimen in 

order to measure the hardness value of the joint. The hardness distribution profiles of 

aluminum-stainless steel joints for Group 1 and 2 are shown in Figure 7. For both 

groups, the base metal stainless steel and base metal aluminum area has an average 

hardness value range of 160–200 HV and 60–85 HV, respectively. For the aluminum 

filler welded seam, the average hardness value ranges between 60 and 100 HV, which is 

similar to base metal aluminum. As for the stainless steel filler, the average hardness 

value ranges between 180 and 230 HV. These values are higher than for the base metal 

stainless steel. The hardness value in the stainless steel filler welded seam (180–230 

HV) is acceptable, since it is in the range of the theoretical value of similar welding 

stainless steel joints (220–240 HV). From Figure 7(b) it can be seen that the hardness 

values in the welded seam are higher than the hardness of the base metal due to the 

addition of manganese, chromium and molybdenum in the fusion zone from the 

ER308LSi filler and due to refinement of the grain size.  

 It is also interesting to note that for both filler cases, almost all samples show a 

slight hardness decrease compared to the base metal counterparts in the heat affected 

zone (HAZ), i.e., the area between the welded seam and base metal. This indicates that 

there is not enough heat generated in the region during welding to impose 

microstructural change and grain refinement (Uzun et al., 2005; Borrisutthekul et al., 

2010).  
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Figure 7. Hardness distribution of aluminum-steel joint for (a) Group 1 and  

(b) Group 2. 

 

 The tensile strength of joints obtained with different weld voltages is listed in 

Figure 8. For Group 1, the tensile strength of Joint No. 2 (18 V) reaches 104.4 MPa, 

which is higher than Joints No. 1 and No. 3, which have tensile strength values of 47.8 

MPa and 88.6 MPa, respectively. As for Group 2, the tensile strength of Joint No. 5 (18 

V) reaches 61.76 MPa, which is the highest value in the group. Joints No. 1 and No. 3 

yielded tensile strength values of 20.24 MPa and 53.6 MPa, respectively. Since there 

has been no research that specifies the joining of stainless steel 304 and aluminum 

AA6061, the experimental value cannot be compared to the actual value of tensile 

strength for this joint. Thus, a comparison was made with a similar butt-welded welding 

aluminum joint (AA6061) for Group 1 (163 MPa) and with a similar butt-welded 

welding stainless steel joint (SUS304) for Group 2 (550 MPa). The tensile strength 

values in the experiment are much lower due to insufficient solubility between the 

aluminum-stainless steel, which resulted in the decrease of tensile strength.  

 

 

 
 

Figure 8. Tensile strength of the weld under different voltages for (a) Group 1 and       

(b) Group 2. 
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Comparing the results for Group 1 and Group 2, aluminum filler welded seams 

show a much better tensile strength, despite their relatively low weld seam hardness. 

Upon inspection, it can be seen that for both cases, the fracture occurs in the region 

where the filler did not mix well, i.e., for Group 1 the fracture is between the aluminum 

filler and stainless steel, and for Group 2, the fracture is between the stainless steel filler 

and aluminum. This region is the weakest point in the joint in both cases. Since Group 1 

yielded a much higher tensile strength than stainless steel, this shows that despite the 

high hardness value of the weld seam for Group 2, the weld seam region possesses 

brittle characteristics.  

 

CONCLUSION 

 

Dissimilar welding between aluminum AA 6061 alloy and stainless steel SUS 304 was 

lap-joined successfully by MIG welding with aluminum and stainless steel filler. The 

conclusions from this study can be summarized as follows: 

i)  The welding voltage had a significant effect on the welding process, as 

higher voltage resulted in poorer appearance of the weld joint and led to 

defects for both groups, such as porosity and incomplete fusion.  

ii)  The microstructure for Group 1 joints (using ER5356 filler) shows 

enrichment of Si particles, which benefited the joint properties by increasing 

the strength of the metal. The stainless steel substrates that spread into the 

aluminum side are much greater in volume for Group 1 than for Group 2 

joints. Meanwhile, the microstructure of Group 2 joints (using ER308LSi 

filler) consists of chromium carbide precipitation which yields a high 

hardness value, but has a brittle structure. 

iii)  The hardness value of the welded seam in these joints ranges from 60 to 230 

HV, with Group 2 joints having higher values than Group 1 up to 230 HV. 

The Vickers hardness values of Group 1 joints indicate that the welded seam 

has a similar value to the base metal aluminum and Group 2 joints show 

similar values to base metal stainless steel. The fractures in the tensile tests 

yielded the highest tensile strength of 104.4 MPa with aluminum fillers 

(Group 1). The tensile strength of Group 1 joints ranging from 47.8 to 104.4 

MPa were collectively higher than for the Group 2 joints, which was 

between 20.24 and 61.76 MPa.  

iv)  Based on the investigation throughout this study, it can be concluded that the 

welding voltage of 18 V and aluminum filler ER5356 is the optimum filler in 

joining dissimilar metal aluminum AA6061 and stainless steel SUS 304. 
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