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ABSTRACT 
 
This paper undertakes a geometric nonlinear large displacement static analysis of 
crossbeam structure. A crossbeam structure comprises two beams in contact with their 
longitudinal axes perpendicular to each other, used effectively in civil and mechanical 
engineering, marine and aerospace structures. The energy method forms the basis for 
the mathematical formulation and the governing set of equations are obtained using the 
principle of extremisation of the total energy of the system in its equilibrium state. To 
obtain the solution, an iterative procedure is developed based on the reaction force 
generated between the two beams of the system. The method is validated by experiment 
and simulation through ANSYS v11. Results are presented in terms of plots of reaction 
force and the displacement of the interaction point versus load in dimensional form and 
additionally, the deflected shapes of the crossbeam structure at static equilibrium 
condition, under a particular load, are provided. The static response of the system has 
been studied for variation of beam thickness, loading pattern and position of the 
supporting beam. 
 
Keywords: Crossbeam, variational method, geometric nonlinearity. 

 
INTRODUCTION 

 
In structural mechanics applications, nonlinear system response can occur for two 
reasons: material nonlinearity and geometric nonlinearity. In the first case, the 
constituent material behaviour, i.e., stress-strain relationship is nonlinear, whereas in 
geometric nonlinearity, the strain-displacement relationship is nonlinear. In cases of 
nonlinear strain-displacement, the large transverse displacement in the system 
incorporates a stretching effect, which provides additional stiffening to the structure. 
This is of particular interest to designers because it helps them achieve designs that are 
more compact with considerable material and cost savings. Therefore, large 
displacement analysis of structural elements due to geometric nonlinearity has always 
generated immense interest among researchers. 

 
One of the basic structural elements is a beam, which can be used separately or 

in association with other beams or plates, to satisfy different structural requirements, 
such as stiffness enhancement, light weight, low cost, material saving etc. Research 
studies carried out in the field of nonlinear beam analysis have been recorded in 
different review papers. Reddy (1979) presented different finite element formulations 
related to structural elements and their vibrations. Sathyamoorthy (1982a) reviewed the 
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works on classical methods of nonlinear (geometric, material and other type of 
nonlinearities) beam analysis. The same author (Sathyamoorthy 1982b) also surveyed 
the developments on nonlinear beam analysis under static and dynamic conditions using 
the finite elements methods. Kapania and Raciti (1989) reviewed advances in the 
analysis of laminated structures (beams and plates) using shear deformation theories and 
finite elements methods and also on the buckling of such structures. More recently, 
Marur (2001) put forward a review work, which reported on the nonlinear vibration 
formulations of beams through different phases of development. Agarwal et al. (2006) 
studied the geometric nonlinear effects of the static and dynamic behaviour of beams 
made of isotropic, composite and functionally graded materials, using first order shear 
deformation theory (FSDT). The free vibration problem of a beam under a large static 
deflection was investigated by Cornil et al. (2007), using the nonlinear equations of 
motion. To obtain a solution, these equations were decomposed into a set of nonlinear 
differential equations for static deflection and a set of linear differential equations for 
the dynamic problem. Kong et al. (2008) obtained analytical solutions for the static and 
dynamic problems of Euler-Bernoulli beams at the micro level, based on strain gradient 
elasticity theory. Marur (2007) developed analytical models for static and dynamic 
analysis of thin-walled frames, representing automotive side structures, considering 
joint flexibility. 

 
In the case of stiffened plates, research work has gone through different phases 

and the evolution process can be traced with the help of the review works of 
Mukhopadhyay and Mukherjee (1989), and Bedair (1998). Different researchers have 
carried out nonlinear analysis of stiffened plates using different techniques and 
methodologies. Sapountzakis and Katsikadelis (2000) investigated elastic deformation 
of ribbed plates subjected to static, transverse and in-plane loading, using the analog 
equation method to solve nonlinearly coupled equations. Koko and Olson (1991) 
developed a new numerical technique for large deflection elastoplastic analysis of 
stiffened plates using super finite elements. Bedair (1997) presented a methodology for 
the analysis of multi-stiffened plates under lateral loading, based on energy formulation 
and to achieve the solution, employed a sequential quadratic programming (SQP) 
technique. Sheikh and Mukhopadhyay (2000) performed geometric nonlinear analysis 
of stiffened plates utilising the spline finite strip method and von Karman nonlinear 
plate theory. Turvey and Salehi (2008) analysed the elastoplastic large deflection 
response of pressure loaded and discretely stiffened circular plates. Bruback and 
Hellesland (2008) studied the strength criterion, both in local and global bending, of 
stiffened plates under in-plane loading, using semi-analytical large deflection analysis. 
Wutzow and Paiva (2008) employed integral equations and the boundary element 
method (BEM) to perform a linear analysis of stiffened plates. Sapountzakis and Mokos 
(2008) presented a general solution for the analysis of plates stiffened by arbitrarily 
placed parallel beams of arbitrary doubly symmetric cross section with deformable 
connections subjected to an arbitrary loading. Fernandes (2009) also introduced a 
boundary element method (BEM) formulation based on Kirchhoff’s hypothesis to 

perform a linear bending analysis of plates reinforced by beams. Deb Nath et al. (2010) 
obtained an analytical solution of elastic fields for a stiffened plate subjected to axial 
tension and pure bending, using an alternative displacement potential approach. 

 
A vast amount of research has established that stiffeners have enormous 

influence on the strength and stability of plate structures. However, the effect of a 
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stiffening beam element on another beam has received little attention. Therefore, the 
present paper analyses the static responses of a crossbeam structure under transverse 
loading through energy formulation. A crossbeam structure (Figure 1), which is 
basically two beams in contact with their longitudinal axes perpendicular to each other 
so as to form a ‘cross’, can effectively be used separately or with plate elements, to 
construct civil and mechanical engineering, marine and aerospace structures. This paper 
takes into account the geometric nonlinearity by considering the nonlinear strain-
displacement relations and uses a direct substitution method with a relaxation parameter 
to solve the set of nonlinear equations. The displacement fields are solved through an 
iterative procedure, which is based on the reaction force between the two beams of the 
system and considers the difference between the displacements of the two beams at their 
contact point as the termination criterion. For validation purposes, an experiment is 
performed for a particular loading scenario. In addition, results from the present 
analyses are compared with results generated by the finite element-based commercial 
package ANSYS (ver. 11). The results are presented in terms of reaction force-load and 
displacement-load plots along with the deflected shapes of the structure under loading. 
The distribution of axial displacement and stretching force along the beams is also 
provided. 

 

 
 

Figure 1. Crossbeam structure. 
 

ANALYSIS 
 

The present paper analyses the large displacement static behaviour of a crossbeam 
structure consisting of two beams perpendicular to each other and placed in contact 
(Figure 1). At no loading condition, there is no interaction between the beams, although 
the beams are in surface contact. However, when some transverse load is applied to the 
upper beam (Beam-1), it pushes down on the lower beam (Beam-2), which in turn 
provides a resistance to deformation of Beam-1. It is assumed that external transverse 
loading acts on Beam-1 only and the purpose of Beam-2 is to give the structure a 
stiffening effect. The free body diagrams of the two beams are shown in Figure 2, along 
with the indications of nomenclatures of some system parameters. To maintain static 
equilibrium conditions for a particular loading, it can be said that: 

  43210

1
RRRRdxxpP

L
  , for the total system 

  210

1
RRRdxxpP

L
  , for Beam-1                                                                      (1) 

43 RRR  , for Beam-2 



 
 

Large displacement of crossbeam structure through energy method 

523 
 

where, R  is the unique reaction force generated at the contact between two beams. It is 
also implied that the displacement at the point of interaction of the two beams is equal. 
 

 
Figure 2. Free body diagrams of two individual beams: (a) Beam-1, (b) Beam-2. 

 
Mathematical Formulation 
 
The mathematical formulation of the individual beams is carried out through the energy 
method, which states that,   0 , where VU                                                    (2) 
U = Total strain energy stored in the system 
V = Work function or potential of the external forces 
 = Variational operator 
Furthermore, the formulation is based on the following assumptions: 

i) Beam materials are isotropic, homogeneous and linearly elastic. 
ii) Beams follow the Euler – Bernoulli hypothesis. 
iii) Beams have uniform rectangular cross-section. 
iv) The thicknesses of the beams are small compared to their respective lengths, 

such that the effect of shear deformation and rotary inertia are negligible. 
 
In the case of large displacement analysis of beams, both bending and stretching 

effects are taken into consideration. Therefore, total strain energy stored in Beam-1 is 
given by: 

111 mb UUU                                                                                                                (3a) 

where:  

1bU = Strain energy stored due to bending = dv
vol

b
xx  .

2

1
                                           (3b) 

1mU = Strain energy stored due to stretching = dv
vol

s
xx  .

2

1
                  (3c) 
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b
x  and s

x  are axial strains due to bending and stretching, respectively. The axial strain 

due to bending at a distance z from the mid-plane is given by: 
2

1
2

dx

wd
zb

x   and axial 

strain due to stretching of mid-plane is given by: 
2

11

2

1










dx

dw

dx

dus
x . Substituting 

these strain expressions into Eq. (3), the total strain energy stored in Beam-1 is: 
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Similarly, the total strain energy stored in Beam-2 is given by:  
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where: 21, ww  are transverse displacements of mid-plane of Beam-1 and Beam-2, 

respectively, 21,uu  are in-plane displacements of mid-plane of Beam-1 and Beam-2, 

respectively, 21, EE  are elastic moduli of Beam-1 and Beam-2, respectively, 21, LL  are 
lengths of Beam-1 and Beam-2, respectively, yx,  are axial coordinates in two 

orthogonal directions. 21, II  and 21, AA  are second moment of area and cross sectional 
area of the two beams, respectively. The computations are carried out in normalised 
coordinates   and  , respectively, where 1Lx  and 2Ly . The work potential 
of the external loads for Beam-1 and Beam-2 are given by: 
 

 
rp x

L

x wRdxwpwPV || 1
0

111

1

                                                                                 (6) 

rywRV |22                                                                                                                     (7) 

 
where: P and p represent the external concentrated and pressure type loading acting on 
Beam-1 and R is the reaction force generated between the two beams, as mentioned 
earlier. In addition, xp represents the point of application of the external concentrated 
load (P) on Beam1, xr and yr denote the location, where the reaction force (R) acts on 
Beam-1 and Beam-2, respectively. These notations are indicated in Figure 2. 

 
The displacement functions 21, ww  and 21,uu  can be represented approximately 

by sets of orthogonal coordinate functions ii 21 ,  and ii 21 , . 
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where: id1  and id 2  represent unknown coefficients and nw  and nu  are the number of 

functions for w and u, respectively. Appropriate start functions for 11,uw  and 22 ,uw  are 
selected in such a way that they satisfy the necessary geometric boundary conditions of 
the respective beams. The higher order functions are generated from the selected start 
functions using the Gram-Schmidt orthogonalisation scheme. 

 
Substituting Eq. (4), (6), (8) and (5), (7), (9) separately in Eq. (2) gives the 

governing set of equations for Beam-1 and Beam-2, respectively. For Beam-1, the 

governing set of equations in matrix form is given by:     11
1 fdK             (10) 

where,  1K  and  1f  are the stiffness matrix and load vector, respectively and are of 

the following form:   
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Similarly, for Beam-2, the governing set of equations in matrix form is: 
 

    22
2 fdK                                                                                                              (11) 

 

where,  2K  and  2f  are the stiffness matrix and load vector, respectively and are of 

the following form:   
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Solution Procedure 
 
The set of governing equations (Eqs (10) and (11)) are clearly nonlinear in nature, 
because the stiffness matrix itself is a function of unknown coefficients and solved by 
direct substitution technique using a successive relaxation scheme. For each load-step, 
the values of the unknown coefficients are assumed to evaluate the stiffness matrix. 
Using this stiffness matrix, based on the assumed values, new values of unknown 
coefficients are calculated by the matrix inversion technique from the expressions 

     1

11
1 fKd


  and      2

12
2 fKd


 . Calculated values are compared with their 

values in the previous iteration and if the difference is above a predefined error limit, 
the process is repeated with new values of unknown coefficients and modified with a 
relaxation parameter, until the difference becomes less than the predefined error limit. 
When convergence is achieved for both beams,  1d  and  2d  are known and thus, 
from Eqs (8) and (9), the displacement fields for the two beams become apparent. This 
process can only be implemented if the load vectors ( 1f and 2f ) are known 
parameters. However, for a particular load applied to the crossbeam structure, the 
reaction force (R) generated at the contact between two beams is not known beforehand. 
To overcome this hurdle an iterative process is devised, in which the reaction force is 
assumed to be a fraction (q) of the total load applied to the structure, i.e., 






   PdpqR
1

0
)(  . Using this assumed value, the load vectors are calculated and 

the set of unknown coefficients, as well as the displacement fields are solved.  
 
Let the deflection of Beam-1 and Beam-2 at the point of contact be 1b  and 2b , 

respectively. If   min21 tbb    [where, mint  min( 21, tt )] is outside a permitted 

tolerance limit, the assumed reaction force is changed by modifying the fraction (q) and 
using this new assumed reaction force, the process is repeated. When   min21 tbb    

falls within the permissible value, the process is said to have converged and the unique 
reaction force and the displacement fields concerned with that particular load value is 
established. The modification of the assumed reaction force is carried out as follows: At 
the start, the correct value of q  ( exactq ) is unknown but the minimum and maximum 

values of q  are known to lie between 0 and 1, i.e., 0min q  and 1max q . At the end of 

each iteration step, a part of the solution space can be eliminated depending on whether 

1b  is greater or lower than 2b , thus changing minq  or maxq . 
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If 21 bb   : q  needs to be increased in order to lower 1b  and increase 2b . This 

implies that exactq  cannot be lower than the present q  and minq  can be upgraded to this 

q  value. After modification of the limit, the new value q  is determined using the 

following expression,  minmax1min qqqqq  , where 1q  is another load distribution 

parameter and 1q  lies between 0 and 1 ( 10 1  q  ) . 
 
If 21 bb   : q  needs to be decreased in order to increase 1b  and lower 2b . This 

implies that exactq  cannot be greater than the present q  and maxq can be upgraded to this 

q  value. After the modification of the limit, the new value q  is determined using the 

following expression,  minmax1max qqqqq  , where 1q  is another load distribution 

parameter and 10 1  q . The solution procedure is elaborated in the flow chart, shown 
in Figure 3.  

 

 
 

Figure 3. Flow chart of the solution algorithm. 
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In the present paper, four different loading patterns are considered: concentrated 
load, uniformly distributed load, triangular load and hat load, as shown in Figure 4. 
However, for all these types of loading, boundary conditions of the beams have been 
considered as all ends are clamped (CC-CC). For membrane boundary conditions, it is 
assumed that in-plane displacements are zero at the boundaries, i.e., the boundaries are 
sufficiently rigid to support the axial load generated in the beams. In all the cases, the 
contact point is assumed to be at the mid-span of Beam-2, i.e., 25.0 Lyr  . 
Consequently, the crossbeam structure can be equivalently represented by two 
individual beams; one carrying the external transverse loading along with the reaction 
force and the other only carrying the reaction force equal in magnitude and opposite in 
direction compared with the reaction force in the first beam.  
 

 
 

Figure 4. Different loading conditions applied on Beam-1: 1) Concentrated load, 2) 
Uniformly distributed load (UDL), 3) Triangular load and 4) Hat load. 

 
EXPERIMENT 

 
To validate the present method an experiment is carried out wherein a crossbeam 

structure is subjected to a concentrated load. The experimental setup comprises the 
following main components: channel frame, crossbeam structure, loading device and 
measurement instrument. Two slender beams are bolted firmly to the frame to make the 
crossbeam structure and the loading device is bolted to the frame and positioned over 
the crossbeam. This loading device consists of a loading platform fixed rigidly to a 
vertical loading rod with a pointed tip and a travelling arrangement with provisions for 
transverse and rotational adjustments for varying the point of application of the load. 
The travelling arrangement is a guideway (lubricated with oil) through which the 
loading rod can slide smoothly. The loading device is adjusted so that the tip of the 
loading rod just touches the upper beam under no loading condition and a dial gauge 
(Maker: Baker Mercer, Type: C02, Least Count: 0.01mm) is set under the structure at 
the desired position. Figures 5 and 6 show a photograph and a schematic diagram of the 
experimental setup. The load of dead weights placed on the loading platform, is 
transferred through the pointed tip of the rod onto the crossbeam structure and the 
resulting deflection is obtained from the reading of the dial gauge. 
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Figure 5. Photograph of the experimental set up. 
 
 

 
 

Figure 6. Schematic diagram of the experimental setup. 
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RESULTS AND DISCUSSION 
 
The effects of variations in beam thicknesses, loading pattern and position of Beam-2 on 
the static behaviour of the system have been studied. The results are presented through 
plots of reaction force and displacement of the interaction point versus load. It is to be 
noted that in case of concentrated and uniformly distributed loads, the total load is 
considered, whereas for triangular and hat loads the maximum load is considered for the 
plots. In addition, the deflected shapes of the crossbeam structure at static equilibrium 
conditions, under a particular load, are provided.  

 
The start functions for 11,uw  and 22 ,uw  are selected to satisfy the flexural and in-

plane boundary conditions of the beams. The start functions for the definition of beam 
deflection  21 ,ww  come from the flexural boundary conditions, i.e., both ends 

clamped. The start functions for the stretching of the beam  21 ,uu  come from the 
membrane boundary conditions and are assumed zero at the boundaries. Both sets of 
start functions are shown in Table 1. These selected start functions are used to generate 
the higher order functions with the help of the Gram-Schmidt orthogonalisation 
principle. 
 

Table 1. Start functions for 11,uw  and 22 ,uw . 
 

Beam-1 
 11    21    

 11    1  

Beam-2 
 21    21    
  21    1  

 
The number of functions ( nw  and nu ) to be used is determined from a 

convergence study, where a crossbeam structure (Dimensions: 
mtmbmL 005.0,02.0,1 111   and mtmbmL 005.0,02.0,1 222   , Material 

property: GPaEE 21021  , 3
21 /7850 mkg  , Support Locations: 15.0 Lxr   

and 25.0 Lyr  ) under uniformly distributed loading is analysed for variations in 
number of functions. The results, provided in Figure 7, show plots of displacement vs. 
load for variations in number of functions and thus, a value of 8nunw  is chosen for 

further studies. Also, the error limit ( 1 ) for convergence of individual beams is taken 

as 0.01 and the error limit ( 2 ) for convergence of the outer loop, i.e., for 

  min21 tbb    is taken as 0.001. 
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Figure 7. Plots for Displacement vs. Load for variation in number of functions - 
Loading type: UDL, Beam-1 dimensions: 005.002.01111  tbL (in m), Beam-2 

dimensions: 005.002.01222  tbL (in m), Support locations: 15.0 Lxr   and 

25.0 Lyr  . 
Validation Study 
 
The crossbeam structure subjected to concentrated loading in the performed experiment 
comprises two slender beams with the following dimensions: Beam-1: L1 = 400 mm, b1 
= 24.7 mm, t1 = 3 mm and Beam-2: L2 = 400 mm, b2 = 24.7 mm, t2 = 3 mm. The beam 
material is mild steel and the material properties are assumed as GPaEE 21021  , 

3
21 /7850 mkg  . Experiments are carried out for two positions of Beam-2, 

which are 15.0 Lxr   and 1335.0 Lxr  . The concentrated load is applied on Beam-1 

over the contact point between the beams i.e,. 15.0 Lx p   and 1335.0 Lx p   for the 

respective cases and the dial gauge is placed directly below the point of application of 
the load, touching the lower surface of Beam-2. Figure 8(a) and (b) compares the 
experimental data with the results generated through the present method for the two 
cases mentioned above. Figure 9 shows the displacement-load plots for experimental 
data and the present method for a case where Beam-2 is positioned at 1335.0 Lxr   but 

the load is applied at a different location ( 15.0 Lx p  ). In this case, the dial gauge is set 

below the point of load application but in contact with Beam-1. These figures show that 
in all the experimental results, the nature of the displacement vs. load curves is similar 
to those predicted by the present method but the actual displacement values are higher. 
This variation may be because the stretching boundary conditions are not satisfied. By 
bolting the ends of the beams, zero transverse displacement is ensured but the same 
cannot be said about the axial displacement conditions. Additionally, the difference 
between the results of the experimental and present method increases with an increase 
in load, which also indicates that at higher loads, the stretching forces come into effect. 
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    (a)                                                                  (b) 

Figure 8. Comparison of experimental results with the present method - Plots for 
Displacement vs. Load for (a) 15.0 Lxr  , 15.0 Lx p   and (b) 1335.0 Lxr  , 1335.0 Lx p   

with Loading type: Concentrated, Beam-1 dimensions: 37.24400111  tbL (in 

mm), Beam-2 dimensions: 37.24400222  tbL (in mm).  
 

 
 

Figure 9. Comparison of experimental results with the present method - Plots for 
Displacement vs. Load for 1335.0 Lxr  , 15.0 Lx p   with Loading type: Concentrated, 

Beam-1 dimensions: 37.24400111  tbL (in mm), Beam-2 dimensions: 

37.24400222  tbL (in mm). 

2-D Analysis: The beams are individually modelled as 2-D elements and 
separately analysed with the reaction force (R) being used as an input. Comparing the 
displacement fields produced with those generated by the present method shows 
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excellent agreement. Figure 10 shows the load-displacement plots corresponding to the 
contact point of the beams. 

 

    
      (a)                                                                  (b) 

Figure 10. Validation plots with ANSYS 2-D analysis for Displacement vs. Load for (a) 
Beam-1 and (b) Beam-2 - Loading type: UDL, Beam-1 dimensions: 

01.002.01111  tbL (in m), Beam-2 dimensions: 01.002.01222  tbL (in 

m), Support locations: 15.0 Lxr   and 25.0 Lyr  . 
 

 
 

Figure 11. Validation plot with ANSYS 3-D analysis for Displacement (at the contact 
point between the beams) vs. Load with Loading type: UDL, Beam-1 dimensions: 

01.002.01111  tbL (in m), Beam-2 dimensions: 01.002.01222  tbL (in 

m), Support locations: 15.0 Lxr   and 25.0 Lyr  . 
 
3-D Analysis: A 3-D model of the crossbeam with the previously mentioned 

geometry, generated in solid modelling software, is exported to the ANSYS Workbench 
(Version 11.0) and the analysis performed under uniformly distributed loading and fixed 
end conditions. The simulated displacement field has good agreement with the 
displacement field obtained by the present method. Figure 11 shows the displacement-
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load plot at the interaction point between the two beams for ANSYS and the present 
method. The matching of the results in both the cases of the 2-D and 3-D analysis are 
found to be excellent and establishes the present method within the limitations of the 
mathematical boundary conditions. Effects of different system parameters are studied 
and displacement-load plots are furnished in each case along with the visualisation of 
the deflected shape. 
 
Variation in Beam-1 Thickness 
 
To investigate changes in the static response of the system due to variations in the 
thickness of Beam-1, other dimensions, loading pattern and end conditions are kept 
constant. The reaction-load and displacement-load plots of the system are shown in 
dimensional form, in Figure 12(a) and (b), respectively. As mentioned earlier, the 
displacement at the point of contact between the two beams is considered as the system 
displacement. Figure 12(a) shows that for a thicker Beam-1, reaction force is low and it 
increases with a decrease in the thickness of Beam-1. This is because the thicker upper 
beam takes up a greater portion of the external load and thus, generates lower reaction 
force. Figure 12(b) shows that the displacement-load curves become steeper for lower 
Beam-1 thickness, i.e., the stiffness of the system reduces. Figure 13 shows the 
deflected shapes for each of the cases considered in Figure 12(a) and (b), corresponding 
to the maximum load (denoted by points A, B, C and D in the displacement-load plots 
of Figure 12(b)).  

 

   
 

       (a)                                                                 (b) 
 

Figure 12. Plots for (a) Reaction force vs. Load and (b) Displacement vs. Load for 
variation of thickness of Beam-1  1t  - Loading type: UDL, Beam-1 dimensions: 

1111 02.01 ttbL  (in m), Beam-2 dimensions: 01.002.01222  tbL (in m), 

Support locations: 15.0 Lxr   and 25.0 Lyr  . 
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   (a)                                                                  (b) 

 
  (c)                                                                (d) 

Figure 13. Deflected shapes of the structure under loading for variation of Beam-1 
thickness - (a) 020.01 t , (b) 015.01 t ,(c) 010.01 t , (d) 005.01 t , taken at points 

A, B, C and D in the displacement-load plots of Figure 12(b). 
 

 
Figure 14. Plots for normalised maximum displacement of the system vs. load for 
variation of thickness of Beam-1  1t  - Loading type: UDL, Beam-1 dimensions: 

1111 02.01 ttbL  (in m), Beam-2 dimensions: 01.002.01222  tbL (in m), 

Support locations: 15.0 Lxr   and 25.0 Lyr  . 
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It may appear from Figure 12(b) that for 005.01 t m, the deformation of the 
system is low compared with the other cases. However, it is to be noted that this figure 
depicts the displacement of the contact point of the beams in dimensional form, whereas 
the maximum deflection of the system is at a different location along Beam-1 (clearly 
shown in Figure 13(d)). If the maximum displacement of the system (may be on Beam-
1 or Beam-2) normalised by the corresponding beam thickness is considered, it is seen 
that the degree of nonlinearity achieved is more or less same. This is elaborated in 
Figure 14, where the plots for normalised maximum displacement of the system versus 
load are shown for variations of thickness of Beam-1  1t . 
 
Variation in Beam-2 Thickness 
 
Investigations of the effects of variation in the thickness of Beam-2 are carried out 
following the same procedure and the reaction-load and displacement-load plots of the 
system in dimensional form, are shown in Figure 15(a) and (b). Figure 15(a) clearly 
shows that for a thicker Beam-2 a large reaction force is generated and lower reaction 
forces occur as the thickness decreases. This behaviour may seem contrary to the 
previous case but in actual effect, these two cases are identical. In relative terms, a 
decrease in Beam-2 thickness amounts to an increase in Beam-1 thickness. Therefore, it 
is observed that for a particular loading and boundary conditions, the reaction force 
generated depends on the relative geometry of the two beams. Generally, a thicker 
Beam-1 (compared with Beam-2) means a lower reaction force and a thinner Beam-1 
generates a higher reaction force. Figure 15(b) shows that for a greater thickness of 
Beam-2, the displacement of the contact point is lower for the same load, which means 
that the stiffening effect of Beam-2 increases with an increase in its thickness. The 
deflected shapes of the structure under loading, corresponding to the points A, B, C and 
D (representing maximum loads) in Figure 15(b), are shown in Figure 16. 
 

   
      (a)                                                                   (b) 

Figure 15. Plots for (a) Reaction force vs. Load and (b) Displacement vs. Load for 
variation of thickness of Beam-2  2t  - Loading type: UDL, Beam-1 dimensions: 

01.002.01111  tbL (in m), Beam-2 dimensions: 2222 02.01 ttbL  (in m), 

Support locations: 15.0 Lxr   and 25.0 Lyr  . 
 



 
 

Large displacement of crossbeam structure through energy method 

537 
 

 
        (a)                                                                    (b) 

 
     (c)                                                                     (d) 

Figure 16. Deflected shapes of the structure under loading for variation of Beam-2 
thickness - (a) 020.02 t , (b) 015.02 t ,(c) 010.02 t , (d) 005.02 t , taken at points 

A, B, C and D in the displacement-load plots of Figure 15(b). 
 
Variation in Beam-2 Position 
 
The system behaviour for different positions of Beam-2 along the span of Beam-1 is 
analysed. For this case, all the boundary conditions are taken as clamped and the 
loading type is UDL. The dimensions of the two beams are kept constant at 

01.002.01111  tbL  and 01.002.01222  tbL (all dimension are in m). 
Positions of Beam-2 are varied along one side of the mid-span of Beam-1, as the 
geometry is symmetric. Figure 17(a) and (b) shows the reaction-load and displacement-
load plots of the system in dimensional form, respectively. From Figure 17(a) it can be 
said that higher reaction force is generated when Beam-2 is positioned at the mid-span 
of Beam-1 and as it shifts towards one of the ends, the reaction force becomes lower. 
Figure 17(b) shows that for a particular load, the displacement of the contact point is 
higher near the mid-span position of Beam-2 than the positions towards the ends. 
However, the contact point displacement might not be the maximum displacement along 
Beam-1. This is shown through the deflected shapes illustrated in Figure 18, for 
different positions of Beam-2. In addition, the plots of maximum displacement-load are 
provided along with the displacement-load plot of the contact point. From these figures, 
it is evident that as Beam-2 shifts towards the ends, the contact point displacement 
decreases but maximum displacement of the system increases. Therefore, the optimum 
stiffening effect may be obtained from a centrally placed supporting beam. 
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      (a)                                                                    (b) 
 

Figure 17: Plots for (a) Reaction force vs. Load and (b) Displacement vs. Load for 
variation of Beam-2 position ( rx ) - Loading type: UDL, Beam-1 dimensions: 

01.002.01111  tbL (in m), Beam-2 dimensions: 01.002.01222  tbL  (in 

m), Support locations: 25.0 Lyr  . 
 

Variation in Loading Pattern 
 
The effect of different loading patterns on the crossbeam structure is investigated for 
two different geometries of Beam-1 and Beam-2. The position of Beam-2 is kept fixed 
at the mid-span of Beam-1, i.e., 50.0rx . For the two different beam geometries, 
Figures 19(a) and 20(a) plot the reaction force vs. load for various types of loading. It is 
evident from these figures that in both cases the concentrated load generates the highest 
reaction force, whereas for triangular loading the reaction force is lowest. The plots of 
displacement vs. load for the two geometries are presented in Figures 19(b) and 20(b). 
The deflected shapes of the structure for different types of loading, corresponding to the 
second geometry (Figure 20), are given in Figure 21. Additionally, in this case it is 
observed that the point of interaction of the two beams may not be the point of 
maximum displacement of the structure. This is in fact dependent both on the relative 
geometry of the two beams and the nature of loading applied to Beam-1. For example, a 
concentrated load applied over the point of interaction of the two beams, irrespective of 
the geometry, produces the maximum deflection of the system at the point of 
interaction. However, for symmetrically distributed loading (UDL and Hat load), the 
relative geometry of the beams becomes important in determining the point of 
maximum deflection. For asymmetrically distributed loading (Triangular load) or a 
concentrated load, applied at locations other than the interaction point, the maximum 
deflection is likely to occur away from the contact point of the beams. 
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(a) 

  
(b) 

 

 
(c) 

    
(d) 

Figure 18. Deflected shapes of the structure under loading for variation of Beam-2 
position along with maximum displacement and contact point displacement 

comparisons – (a) 150.0 Lxr  , (b) 140.0 Lxr  , (c) 133.0 Lxr  , (d) 125.0 Lxr  . 
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(a)                                                                   (b) 
 

Figure 19. Plots for (a) Reaction force vs. Load and (b) Displacement vs. Load for 
different loading pattern - Beam-1 dimensions: 01.002.01111  tbL (in m), Beam-

2 dimensions: 01.002.01222  tbL (in m), Support locations: 15.0 Lxr   and 

25.0 Lyr  . 
 

 
 

(a)                                                                 (b) 
 

Figure 20. Plots for (a) Reaction force vs. Load and (b) Displacement vs. Load for 
different loading pattern - Beam-1 dimensions: 005.002.01111  tbL (in m), 

Beam-2 dimensions: 015.002.01222  tbL (in m), Support locations: 15.0 Lxr   

and 25.0 Lyr  . 
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(a) 

 

 
(b) 

  
(c)  

                                                       

 
(d) 

Figure 21. Deflected shapes of the structure under loading for various types of loading 
pattern along with maximum displacement and contact point displacement comparisons 

– (a) Concentrated load, (b) Uniformly distributed load (UDL), (c) Triangular load,    
(d) Hat load. 
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Figure 22(a) shows the variation of maximum axial displacement of the two 
beams for a uniformly distributed loading and a given geometry of the structure. It is 
evident that the axial displacements for Beam-2 are considerably lower than that for 
Beam-1. Figure 22(b), which represents the distribution of the axial displacements along 
the beams for maximum load, highlights the low stretching of Beam-2 compared with 
Beam-1. This directly relates to the geometry of the beams and a thinner beam would 
have larger stretching in comparison with a thicker beam. The axial displacement fields 
for the two beams are symmetrical about their mid-point.  

 
 

  
        (a)                                                                    (b) 

 
Figure 22. Plots for (a) Maximum axial displacement vs. Load and (b) Distribution of 

axial displacement along the beams for - Loading type: UDL, Beam-1 dimensions: 
005.002.01111  tbL (in m), Beam-2 dimensions: 

015.002.01222  tbL (in m), Support locations: 15.0 Lxr   and 25.0 Lyr  . 
 

  
     (a)                                                                 (b) 

 
Figure 23. Plots for (a) Maximum stretching force vs. Load and (b) Distribution of 

stretching force along the beams for - Loading type: UDL, Beam-1 dimensions: 
005.002.01111  tbL (in m), Beam-2 dimensions: 

015.002.01222  tbL (in m), Support locations: 15.0 Lxr   and 25.0 Lyr  . 
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Figure 23 shows the variation of maximum stretching or membrane force of the 
two beams with load and the stretching force distribution along the two beams for the 
maximum load, respectively, under the same loading pattern and geometry as that of 
Figure 22. In accordance with the previous figures, the stretching forces in Beam-1 
show higher values compared with those of Beam-2. 

 
CONCLUSIONS 

 
In the present paper, large displacement static analysis of a crossbeam structure is 
presented using an energy method and variational formulation. An iterative method 
based on the reaction force between the two beams of the system is developed to obtain 
the solutions for static equilibrium case. An experimental setup is prepared and 
experiments are performed for concentrated loading scenarios. Although the 
experimental results have the same nature as those generated through the present 
analyses, the actual displacement values are higher than the theoretical results. This may 
be attributed to insufficiency in replicating stretching boundary conditions of the 
system. 2-D and 3-D simulation studies are also carried out using ANSYS v11.0, in 
order to validate the present method and both sets of results show good agreement with 
the results from the present analyses. The system response is studied for variation of 
thickness of the constituent beams and changes in position of one of the beams. The 
results are presented in terms of reaction force-load and displacement-load plots in 
dimensional form, followed by the deflected shapes of the system at static equilibrium 
conditions, under a particular load. The results lead to conclusions that a relatively 
thicker Beam-2 (in comparison with Beam-1) provides a greater stiffening effect and a 
centrally located supporting beam (i.e., Beam-2) provides the optimum stiffening effect. 
Also, the effect of various loading patterns on the structure is investigated and it is 
found that the system response is dependent both on the relative geometry of the two 
beams and the nature of loading.  
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