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ABSTRACT 

 

Shielding interaction effects of two parallel edge cracks in finite thickness plates 

subjected to remote tension load is analyzed using a developed finite element analysis 

program. In the present study, the crack interaction limit is evaluated based on the 

fitness of service (FFS) code, and focus is given to the weak crack interaction region as 

the crack interval exceeds the length of cracks (b > a). Crack interaction factors are 

evaluated based on stress intensity factors (SIFs) for Mode I SIFs using a displacement 

extrapolation technique. Parametric studies involved a wide range of crack-to-width 

(0.05 ≤ a/W ≤ 0.5) and crack interval ratios (b/a > 1). For validation, crack interaction 

factors are compared with single edge crack SIFs as a state of zero interaction. Within 

the considered range of parameters, the proposed numerical evaluation used to predict 

the crack interaction factor reduces the error of existing analytical solution from 1.92% 

to 0.97% at higher a/W. In reference to FFS codes, the small discrepancy in the 

prediction of the crack interaction factor validates the reliability of the numerical model 

to predict crack interaction limits under shielding interaction effects. In conclusion, the 

numerical model gave a successful prediction in estimating the crack interaction limit, 

which can be used as a reference for the shielding orientation of other cracks. 

 

Keywords: Crack interaction limit; interacting cracks; shielding effects; fitness for 

service. 

 

INTRODUCTION 

 

The presence of an edge cracking strip in aging critical engineering structures, e.g., 

aerospace structures and pressure vessel components, always places the structural 

integrity at risk of failure. In structural safety assessments, the presence of isolated 

single edge cracks may be easier to conduct. For multiple surface cracks, the damage 

tolerance of a single crack is no longer applicable owing to the existence of crack 

interaction behavior between the cracks (i.e., shielding and amplification). The pattern 

of evolution of multiple crack interaction is different and becomes increasingly complex 

when two or more cracks are present in close proximity. Table 1 shows the past and 

most recent solution models for evaluating stress-shielding parameters in parallel 

cracks. The list of analytical models and approaches in Table 1 that are used to develop 

the model, can be categorized into energy release rate criterion, stress intensity criterion, 

stress field traction, and the combination of many approaches. These models have 

contributed to the advancement of stress shielding assessment. 
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Table 1. Analytical elastic shielding interaction models. 

  

Parallel multiple 

cracks 

Models and approaches used References 

Parallel and collinear 

cracks 

Simultaneous Singular 

Integral based on 

Disturbance Stress 

(Ratwani and Gupta, 1974) 

Parallel-Collinear 

cracks 

Coefficient of Interaction (Yokobori et al., 1979) 

Parallel cracks Asymptotic Approximation (Chang, 1982) 

Row of periodic 

cracks 

Fredholm Integral Equations (Chen, 1987) 

Parallel and collinear 

cracks 

Kachanov Method by 

Superposition-Average 

Traction 

(Kachanov, 1987, 1993, 2003; 

Kachanov and Laures, 1988; 

Kachanov and Montagut, 

1986; Kachanov et al., 1990) 

Offset parallel cracks Edge function methods (Dwyer, 1997) 

Periodic array cracks Hypersingular Integral 

Equation   

(Choi, 1997) 

Shedding arrays of 

edge cracks 

Energy release rate (Parker, 1999) 

Micro-cracks Actual Displacement 

Discontinuity   

(Gorbatikh and Kachanov, 

2000) 

Collinear and parallel 

interface cracks 

Mushkelishvili and Burger’s 

vector 

(Han et al., 2002) 

Distributed parallel 

cracks 

Rotated Staggered Grid   (Orlowsky et al., 2003) 

Parallel cracks and 

collinear cracks 

Modified Kachanov Method (Gorbatikh et al., 2007; Li et 

al., 2008) 

Inclined and offset 

parallel and collinear 

cracks 

Integral Equation Method   (Chen, 2007; Saha and 

Ganguly, 2005) 

Offset parallel cracks Complex Stress Function 

Method 

(Sankar and Lesser, 2006) 

Parallel cracks Muskhelishvili and 

Laurent’s series 

(Li et al., 2008) 

Parallel symmetric 

cracks 

Schmidt Method (Yang, 2009) 

Parallel surface cracks Singular Integral Method (Feng and Jin, 2009) 

Periodic edge cracks Fourier Integral (Yildirim et al., 2011) 

Parallel edge cracks Fourier and Cauchy Integral (Chen and Wang, 2012) 

 

Safety assessment of the presence of multiple cracks is commonly referred to 

recommended FFS codes. However, the theoretical and practical examination of the 

recommended FFS codes, such as ASME Boiler and Pressure Vessel Code Section XI 

(ASME, 1998, 2004), API 579 (ASME, 2007), British Standard PD6495 (BSI, 1991) 

and BS7910 (BSI, 1997, 2005), Nuclear Electric CEGB R6 (R6, 2006), and JSME 

Fitness-for-Service Code (JSME, 2000), have found that the exception of crack 

interaction in FFS combination rules has resulted in over-estimated and unrealistic 
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fracture and failure predictions, particularly for closely spaced cracks. Burdekin (1982) 

presented elastic and plastic crack interaction solutions based on crack open 

displacement and the J-integral.  

The formulation by Iida (1983) established a new single coalesced crack, but 

crack interaction is excluded. Moreover, based on the Iida solution, Leek and Howard 

(1994a) proposed an estimation of a single coalesced crack and a function of crack 

interaction factor (Leek and Howard, 1994b, 1996) corresponding to stress intensity 

factors (SIFs) at crack tips obtained by finite element (FE) analysis. An FE alternating 

method has been developed by O’donoghue et al. (1984) to solve the problem of 

interacting multiple cracks in a finite solid. Moussa et al. (1999) used the finite element 

method (FEM) to calculate the J-integral and used it to analyze the interaction of two 

identical parallel non-coplanar surface cracks subjected to remote tension and pure 

bending loads in a 3D finite body. The application of the body force method (BFM) by 

Kamaya (2003) justified the direction of coalesced cracks with a proposed new 

formulation. Owing to the limitations of BFM, FEM and the virtual crack extension 

method is employed by Kamaya (2008a, 2008b) to investigate the formation of a single 

coalesced crack as a result of crack growth under fatigue loading. In creep loading 

conditions, Xuan et al. (2009) introduced a creep interaction factor to address the 

interaction between cracks as a reaction to the stress field under loading. Kamaya et al. 

(2010) used an S-version FEM to analyze the crack growth of surface cracks. In relation 

to the FFS code limitations, crack interaction problems are more concentrated on elastic 

crack interaction with crack propagation, rather than on elastic crack interaction without 

crack propagation. In the past, many techniques have focused on the strong interaction 

region, particularly on the combination rule of parallel to coplanar (shielding effect), 

and the assumption of two cracks as a single crack for coplanar cracks (amplification 

effect). Most proposed solutions have considered mainly the strong interaction region 

and none of them question how crack interaction will behave within the weak 

interaction region, especially when the interaction approaches the crack interaction limit 

(CIL) (Zulkifli et al., 2011). To date, there are few investigations with emphasis on 

investigating the shielding effects in the weak interaction region as the interaction 

approaches CIL.  

This paper presents a numerical approach for modeling multiple edge strip 

cracks that experience weak elastic crack interaction in a finite plate (Kamal et al., 

2012; Domínguez Almaraz et al., 2010). The crack interaction is limited to crack 

interaction without crack propagation, where the shielding effect is dominated in 

promoting fracture and failure. The aim of this paper is to study the effect of the relative 

position of two parallel edge cracks, subjected to a variation of crack interval /b a and 

crack-to-width ratio /a W . The numerical analysis was performed using 2D linear FE 

analysis using developed APDL codes in ANSYS. The obtained value of the SIFs and 

elastic crack interaction factor are compared with corresponding FFS rules and 

numerical data from literature.  

For the present investigation of elastic CIL, the BSI codes (1991, 1997, 2005) 

statements and the works of Jiang et al. (1990, 1991, 1992), and Leek and Howard 

(1994a, 1994b, 1996) are taken as the interaction limit reference. It is used for 

determining the onset of weak interaction and where the weak interaction is diminished, 

focusing specifically on the effect of shielding for parallel edge cracks in a finite body. 

For reference, the elastic crack interaction (ECI) of all parallel cracks may be redefined 

to diminish approximately at 3b a  with the assumption that the crack lengths 
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( 1,2.... )ia i n  are equal length. The new analytical ECI factor 
ECI  to address the CIL 

problem is proposed and it written as Eq. (1) 

    ( / , / ) , ( 0,1,2,... )   ECI ECI CIL i ia W b a i n                              (1) 

 

and needs to comply with FFS codes in the condition of  

 

1 2

( / , / ) (ASME,BSI,JSME)

( / , / ) ( 12.7mm, ( ) / 2, 10mm)







    

ECI i i

ECI i i

a W b a FFS

a W b a FFS b b a a b
                              (2) 

 

CRACK INTERACTION LIMIT DETERMINATION 

 

The new model of CIL is based on the formulation of the state of no interaction or a 

single cracked body to the state of having weak interaction, until the interaction 

becomes stronger as the crack interval decreases. The elastic CIL is based on the 

analytical works of Jiang et al. (1990, 1991, 1992), and Leek and Howard (1994a, 

1994b, 1996) as reference. The SIF calculation is limited to a linear elastic problem with 

a homogeneous, isotropic material near the crack region. The SIF determination is based 

on the creation of a singular element at the crack tip based on a quadratic isoparametric 

finite element. A quarter-point singular element or 8-node collapsed quadrilateral 

element developed by Henshell and Shaw (1975) is used; this has distinct advantages in 

terms of time, meshing, and re-meshing over the other quarter-point element (Banks 

Sills, 2010). The singularity is obtained by shifting the mid-side node ¼ points close to 

the crack tip. To calculate the SIF, we assumed the elements to be in rigid body motion 

and constant strain modes. The accuracy of this special element has been addressed by 

Murakami (1976), where the crack tip nodal point is enclosed by a number of special 

elements and in analysis, the size, number, and compatibility of special elements really 

affect the accuracy.  

 By assuming the crack interaction will be diminished at 3
i

b a  and therefore, 

it is about equivalent to the SIF of a single crack in the state of zero crack interaction 

factor, the analytical single crack Mode I SIF proposed by Brown and Strawley (1966) 

is used as the SIF reference 
I ref

K , expressed as Eq. (3). 

 
2 3 4

1.12 0.23 10.6 21.7 30.4 
        

                    
I ref

a a a a
K a

W W W W
       (3) 

 

Theoretically, to validate the model, the Mode I SIF of the CIL model 
I CIL

K  

must be close to the value of 
I ref

K  or 



I CIL I ref

K K , but it cannot be equal, i.e., 




I CIL I ref
K K . Therefore, based on Tada et al. (2001), the new 

I CIL
K  function is 

written as: 

 
2 3 4 1

1 2 3 4 5 





 
          

                         

n

I CIL i n

a a a a a
K a C C C C C C

W W W W W
        (4) 

 

where the constants 
1
,.....

n
C C  are assumed to be constant over the crack surface. Shown 

in Figure 1(a) are two straight parallel edge cracks in a finite plate and the two cracks 
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are under uniform far-field tension  ( )P  normal to crack faces, and where the cracks 

are of equal lengths: 
1a  and 

2a . In this analysis, the ratios of ( / )a W  and ( / )b a  are 

used to evaluate the 
I  in the weak interaction region, which is assumed to be in the 

range of 1 / 3b a  . Therefore, the following cases are considered, where ( / )b a  = 1.5, 

2.0, 2.5, 3.0 and ( / )a W  = 0.05, 0.1, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50. 

Figure 1(a)–(c) also shows the two-dimensional configuration of the singular element. 

Based on Arakere et al. (2008), the meshing scheme is generated using ANSYS, as 

shown in Figure 1(d). The mesh encompassing the interacting cracks is divided into two 

zones: a global mesh, and the local mesh zone. Both zones are meshed with the 8-node 

isoparametric quadrilateral element that is used to build up the entire element for the 

two-dimensional plate, as illustrated in Figure 1(b). The SIF calculation is limited to the 

linear elastic problem with a homogeneous, isotropic material near the crack region. The 

studies are conducted in a pure Mode I loading condition with the specified material, 

Aluminium Alloy 7475 T7351 solid plate with constant thickness, homogenous 

isotropic continuum material, linear elastic behavior, small strain and displacements, 

and crack surfaces are smooth with the crack surfaces are almost contacting each other 

1 2( 0)c c  .  

 

 
 

Figure 1. (a) Two parallel edge cracks in finite body, (b) 8-node quadrilateral element, 

(c) Barsoum singular element, and (d) complete meshing. 
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The SIF for CIL 
I CIL

K , is evaluated at the both crack tips of the edge strip 

cracks, as shown in Figure 1(a). The reduction of 
I CIL

K  comparative to 
I ref

K  is 

denoted as 



I CIL

K  and is expressed as 
I CIL I CILI refK K K    . The SIF for 

Mode I 
IK , is determined using the displacement extrapolation method using written 

APDL macro code in ANSYS, and is expressed as Eq. (5). 

 

         
1/2

3 52 4/ 3(1 )(1 ) 2 / / 24yI CIL E l v vK v v                    (5) 

  

where E=Young’s Modulus, 3 4    for plane stress, 3 4 /1      for plane 

strain, ly is the length of element, v and u are displacements in a local Cartesian 

coordinate system, and υ is Poisson’s ratio. 

The elastic crack interaction factor for Mode I SIF is expressed as Eq. (6). 

 

0/I I CILK K    (6) 

 

where 
I  denotes the elastic interaction factor for Mode I and Ko is the SIF for the plain 

specimen.  

 

RESULTS AND DISCUSSION 

 

Figure 2 shows the relationship between elastic crack interaction factor 
I  and the 

crack-to-width ratio /a W  for the crack interval ratios ( / 3)b a   and ( / 2.5)b a  . The 

elastic crack interaction factor 
I  is based on the SIF at the crack tips 

I CIL
K  and is 

normalized by 
0

K , which is the SIF for the plain specimen. In the weak interaction 

range, (1 / 3)b a   for ( / 3)b a  , strong interaction 
I  appears at / 0.5a W   and it 

rapidly decreases when /a W  approaches / 0.05a W  . Therefore, the intensity of 
I  

depends on the variation of /a W ; it becomes larger as /a W  increases. Figure 2 also 

shows a very small discrepancy (0.035%) between the intensity of 
I  for crack tips 

1Ct  

and 
2Ct . This indicates that under the assumption of a homogenous material with equal 

length cracks, the intensity of I  can be assumed equal. 

According to FFS codes by ASME (2004, 2007), BSI (1997, 2005), and JSME 

(2000, 2008), parallel cracks can be assumed a single coplanar crack under certain 

conditions of crack interval. In reduction of the /a W  ratio from 0.5 to 0.05, the present 

numerical model supports the FFS code by the indication of the intersection point at 0.1 

and 0.07 (see Figure 2) and 0.05 (see Figure 3) as the crack interval decreases from 

/ 3b a   to / 1.5b a  . The prediction by Jiang et al. (1990) of ( )
n I

F K
 
shows no 

intersection point for a single crack of ( )
I I ref

f K (Brown and Strawley, 1966), and 

shows no possible sign for single coplanar crack agreement, as outlined by the FFS 

codes. Again, the present 
 1

( )
I CIL

C  and 
 2

( )
I CIL

C  show a good trend line 

prediction of elastic crack interaction intensity and comply with the recommended FFS 

codes. 
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(a) 

 
(b) 

 

Figure 2. Elastic crack interaction factor: (a) / 3b a  , and (b) / 2.5b a  . 
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(a) 

 

 
(b) 

 

Figure 3. Elastic crack interaction factor: (a) / 2.0b a  , and (b) / 1.5b a  . 
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 In order to validate the numerical model, the comparison is made with single 

crack SIF reference 
I ref

K  (Brown and Strawley, 1966) Eq. (3) expressed as ( )
I I ref

f K . 

Good agreement was obtained, which provides confidence on the FE modeling and CIL 

interaction analysis of shielding effects. When compared with the condition of CIL 

claimed by Jiang et al. (1990), denoted as ( )
n I

F K , the present numerical model shows 

a significant improvement in the reduction of errors as /a W  increases, as shown in 

Table 2. 

 

Table 2. Crack interaction factor at ( / 3.0)b a  . 

 

a/W 
Analytical  Analytical  Present 

( )
I refI

f K   ( )
n I

F K   
 1

( )
I CIL

Ct  
 2

( )
I CIL

Ct  

0.05 1.133  1.085  1.178 1.178 

0.1 1.184  1.158  1.174 1.173 

0.15 1.266  1.251  1.214 1.205 

0.2 1.373  1.358  1.311 1.305 

0.25 1.505  1.486  1.457 1.449 

0.3 1.665  1.645  1.638 1.628 

0.35 1.864  1.842  1.851 1.838 

0.4 2.113  2.086  2.111 2.096 

0.45 2.432  2.392  2.424 2.408 

0.5 2.843  2.799  2.817 2.816 

 

 

CONCLUSION 

 

An alternative solution for the elastic CIL for multiple parallel and equal edge strip 

cracks in a finite continuum body has been presented based on FE analysis. The close 

agreement with well-known analytical solutions for single edge cracks in a finite body 

validates the proposed solution for further applications for CIL analysis for closer crack 

distance, which involves higher crack interaction. Meanwhile, the compliance with 

recommended ASME codes, BSI codes, and JSME FFS codes provides additional 

evidence corroborating the present CIL prediction. Finally, it can be concluded that the 

CIL for equal and parallel edge cracks is depicted best at / 3b a   because the crack 

interaction factor is approximately the normalized SIF value of a single edge crack with 

zero crack interaction. 
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