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ABSTRACT 

 

This paper is based on a study of vibrational responses of different vibrating systems 

with uncertain parameters. The concept of uncertainty plays an important role in the 

design of the practical mechanical system. So it becomes important to study its effects 

on the mechanical system. A large and varied amount of research has been dedicated to 

developing techniques which predict the dynamic responses of structures in all 

frequency domains and structures with uncertainty. The structural element selected in 

this work is the plate. The plate is considered in terms of mass, stiffness and a 

combination of mass and stiffness uncertainty. The dynamic characteristic of the plate 

with all uncertain parameters is found by using the Finite Element Method. In this paper 

modal and harmonic analysis of the plate is done. In modal analysis the natural 

frequencies and mode shapes of the plate are found. The response of a bare plate is 

compared with plates for which different uncertain parameters are considered. 

Similarly, in harmonic analysis the frequency response function of the bare plate and the 

plates with all uncertain parameters are compared. During comparison, it was found that 

due to mass uncertainty minor changes in the natural frequency and in mode shape were 

obtained. However, due to stiffness the natural frequency, mode shape and FRF were 

drastically changed. Similarly, due to a combination of mass and stiffness uncertainty 

drastic changes were observed in the plate response. Because of these uncertainties the 

complete vibrational characteristics were changed. So it becomes important to consider 

these uncertainties to avoid misinterpretation while designing plates. 

 

Keywords: Uncertain Parameters; vibration analysis; modal analysis; harmonic analysis; 

FEM. 

 

INTRODUCTION 

 

Predicting the dynamic response of a vibrating system generally involves determining 

the equations of motion of the structure and solving them in order to find the natural 

frequencies and mode shapes of the system to give boundary conditions. The natural 

frequencies and mode shapes can then be used to predict the response due to an applied 

excitation [1-3]. For more complex systems, the equations of motion can be 

approximated using various deterministic modelling techniques such as finite element 

analysis (FEA) and dynamic stiffness techniques [4-10]. These methods are extensively 
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used to predict the linear dynamic response of structures in the low frequency region. 

Energy methods such as Statistical Energy Analysis (SEA) are appropriate dynamic 

predictive techniques at high frequencies [11, 12]. In engineering design, it is important 

to calculate the response quantities such as the displacement, stress, vibration 

frequencies, and mode shapes of design parameters. The study of mathematical models 

involves physical and geometric parameters such as mass density ρ, elastic modulus E, 

Poisson’s ratio v, lengths, and cross-section shape characteristics [13]. In many practical 

engineering applications, these parameters frequently do not have well-defined values 

due to non-homogeneity of the mass distribution, geometric properties or physical 

errors, as well as variation arising from assembly and manufacturing processes [14, 15]. 

For many dynamic structures it is not possible to know their exact material properties or 

geometry. This uncertainty can be due to a number of factors such as variation in 

material properties, structural dimensions or changes in excitation over time. Changes in 

excitations over time can be caused by wear or fatigue. For example, the wearing of 

gear teeth or the development of cracks in the teeth can affect the frequency and the 

amplitude of the harmonic excitations caused by these rotating components. Because of 

this, it is very important to study and investigate the effect of uncertainty on the overall 

dynamic characteristics of the structure [16-19]. 

Vibroacoustic tests were carried out by Kompella and Bernhard [20] on 98 similar 

vehicles. They measured both airborne and structure-borne transfer paths across the 

fleet of vehicles and found that both responses varied by up to 20 dB in the high-

frequency range. For many vibratory systems, uncertainty can have a significant effect 

on the vibrational response even at low frequencies. Wood and Joachim [21], [22] 

showed that for a four cylinder car the scatter in structure-borne interior noise can vary 

by as much as 15 dB. Cornish [23] found great variability in the vibroacoustic responses 

of five identical vehicles across the entire frequency range from 100 Hz to 400 Hz.In 

engineering design these uncertainties in material properties, geometric parameters and 

boundary conditions are often unavoidable and must be considered. This concept of 

uncertainty plays an important role in the investigation of various engineering 

problems [13].  

The uncertainty concerned in this paper is the variation in material properties such 

as mass and stiffness. The response of any system with uncertainty will differ from the 

response of a system model. The level of variation of the response will depend on the 

degree of uncertainty. At low frequencies, the effect is often negligible, but as the 

frequency increases, the effect becomes more significant. In this paper modal and 

harmonic analysis is done to find and compare the response of a bare plate and plates 

for which all uncertain parameters are considered. 

 

MATHEMATICAL MODELLING 

 

All the mechanical structures such as machines, vehicles, aircraft, home appliances and 

civil engineering structures are made up of plate or combination of plates. Plates possess 

uncertainty during their manufacturing. It becomes necessary to study the vibration of 

plate with and without uncertainty. Using the Lagrange–Rayleigh–Ritz technique [24], 

the equations of motion of a dynamic plate in modal space can be derived. Initially a 

bare plate dynamic is derived and then the addition of different uncertainty in the plate 

is derived. 
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Bare Rectangular Plate 

 

The simply supported rectangular bare plate (with no structural uncertainty) is 

considered as shown in Figure 1. The Lagrange–Rayleigh–Ritz technique is applied to a 

range of dynamic systems in order to examine the natural frequency statistics. Using the 

Lagrange–Rayleigh–Ritz technique, the equations of motion of a dynamic system in 

modal space can be derived. This technique is used to obtain the natural frequencies of 

the bare plate. 

 

 

 

 

 

 

 

 

 

Figure 1. Simply supported rectangular bare plate. 

 

For a simply supported plate the eigen function is: 

 

)()()( yxx nmmn                                            (1) 

 

where  is mode shape and mn are mode number. 

The sinusoidal mode shapes in the x and y directions, respectively, are described 

by [24]: 

 

)/sin()()/sin()( ynxm LxnyandLxmx                        (2) 

 

where Lx and Ly are the length of plate in x and y directions, respectively. 

The flexural displacement of a bare rectangular plate in modal space is given by [24] 

 

)()(),,( xtqtyxw mn

mn

mn                                     (3) 

 

where q is the modal coordinate and m andn are the mode numbers of the shape 

functions in the x and y directions, respectively, and 

 

)()()( yxx nmmn                                          (4) 

 

are the mass-normalised eigen functions which satisfy the following orthogonality 

condition [25]: 
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Lxand Ly are respectively the lengths of the plate in the x and y directions, h is the plate 

thickness and ρ is the density. 

For a plate simply supported on all four sides, the mass normalised eigen 

functions are given by: 
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whereMn =ρhLxLy/4 is the modal mass. 

Using the orthogonality condition, an expression for the kinetic energy of a bare 

plate becomes: 
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where𝑤̇denotes the derivative of w with respect to time. 

Expression for the potential energy of the plate can be obtained as: 
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corresponds to the natural frequencies of the bare plate and 
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is the plate flexural rigidity and E and v are respectively Young’s modulus and 

Poisson’s ratio. Lagrange’s equation for a particular modal coordinate j is given by [24]: 
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Differentiating the kinetic and potential energies with respect to the modal 

coordinate and substituting into Lagrange’s equation results in the equation of motion of 

the bare plate: 

 

02  qq                                                   (10) 
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The natural frequencies can then be obtained by eigenvalue analysis [27]. 

 

Uncertain Mass Loaded Plate 

 

Now consider the uncertain mass loaded plate as shown in Figure 2. For this the 

equation of motion is: 

 

0)()( 2  pqpqmpqmmnmn

N mn

apq qxxqmq
m

         (.11) 

 

where Nm is the number of point masses, ψmn(x) are the mass-normalised eigen 

functions, and xm corresponds to the random locations of the added masses. 

 

 

 

 

 

 

 

 

Figure 2. Simply supported rectangular plate with mass uncertainty. 

 

Uncertain Spring (Stiffness) Loaded Plate 

 

Now consider the uncertain spring loaded plate as shown in Figure 3. For this the 

equation of motion is: 
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where Nk springs with ground (of stiffness k) and ψmn(x) are the mass-normalised eigen 

functions and Xk correspond to the random locations of the added springs 

 

 

 

 

 

 

 

 

 

Figure 3. Simply supported rectangular plate with stiffness uncertainty. 

 

Uncertain Mass-and-spring-loaded Plate 

 

Now consider a mass-and-spring-loaded plate as shown in Figure 4. For this the 

equation of motion is [16]: 

 

m 

Uncertain masses (m) 

Uncertain spring with 

stiffness (k) 

k 
k 



 

 

Prediction of dynamic characteristics of vibrating structure with uncertain parameters 

1882 
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where Nm number of point masses and Nk springs to ground (of stiffness k) and ψmn(x) 

are the mass-normalised eigen functions, and xm and xk respectively correspond to the 

random locations of the added masses and springs. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Simply supported rectangular plate with mass and stiffness uncertainty. 

 

MODELLING OF RECTANGULAR PLATE WITH AND WITHOUT 

UNCERTAITY 

 

A rectangular plate of dimension 500 mm × 600 mm × 2 mm of steel material with 

properties of ρ = 7.86×10
–9

 tone/mm
3
,ν = 0.3, Y = 2×10

5
 MPa was created. All material 

properties and simply-supported boundary conditions were applied to all edges. The 

type of element selected is quadratic shell element 181. Shell 181 is suitable for 

analysing thin to moderately-thick shell structures. It is a four-node element with six 

degrees of freedom at each node translations in the x, y, and z directions, and rotations 

about the x-, y-, and z-axis.  

 

 
 

Figure 5. Discrete rectangular plate with 10 uncertain mass elements. 

 

The degenerate triangular option should only be used as filler elements in mesh 

generation. Shell 181 is well-suited for linear, large rotation, and/or large strain 

nonlinear applications. The change in shell thickness is accounted for in nonlinear 
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analyses [28]. The total mass of the plate is 4.698×10
–2

 tons. Mass uncertainty is taken 

as 2% of the total mass [1]. The number of masses taken is 10. All are randomly placed 

on a plate and located by black spots in Figure 5[4]. The discrete rectangular plate with 

the location of 10 uncertain mass elements is shown in Figure 5. For uncertain masses 

‘mass 21 element’ is taken which has three degree of freedom at each node [28]. 

 

 
Figure 6. Discrete rectangular plate with 10 uncertain spring elements. 

 

The 10 spring elements are added at the random locations. The locations are the 

same as the locations of the uncertain masses in Figure 6. The stiffness of each spring is 

0.1N/mm. The stiffness element used is ‘COMBIN14’. It has longitudinal or torsional 

capability in 1-D, 2-D, or 3-D applications. The longitudinal spring-damper option is a 

uniaxial tension-compression element with up to three degrees of freedom at each node 

translation in the nodal x, y, and z directions [28]. 

 

EFFECT OF UNCERTAIN PARAMETERS ON NATURAL FREQUENCY AND 

MODE SHAPES 

 

The frequency range is taken from 0 Hz to 500Hz. The plate is excitedin10 modes. The 

solver used is Block Lanczos [28]. It gives 10 natural frequency values for the bare 

plate, mass uncertainty plate, stiffness uncertainty plate and a combination of mass and 

stiffness uncertainty plates as shown in Table 1 and also in Figure 7 and Figure 8.   

 

Table 1. Natural frequency value for 10 mode shapes. 

 
Mode 

No. 

Bare 

plate 

(Hz) 

Mass 

uncertain 

plate 

(Hz) 

% decrease in 

frequency due 

to mass 

uncertainty 

Stiffness 

uncertain 

plate 

(Hz) 

% increase in 

frequency 

due to 

stiffness 

Mass and 

stiffness 

uncertain 

plate (Hz) 

% increase in 

frequency 

due to mass 

and stiffness 

1 32.481 32.413 0.21 60.39 85.92 60.29 85.62 

2 72.53 72.41 0.166 110.12 51.82 109.9 51.52 

3 90.16 90 0.178 136.369 51.25 136.094 50.95 

4 130.4 130.229 0.131 186.857 43.29 186.546 43.06 

5 139.479 139.272 0.149 190.913 36.87 190.575 36.63 

6 186.546 186.157 0.209 253.338 35.8 252.647 35.43 

7 198.207 197.443 0.387 273.848 38.16 273.358 37.92 

8 227.385 227.076 0.136 301.768 32.71 301.227 32.47 

9 234.237 233.9 0.144 309.504 32.13 308.881 31.87 
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(a)     (b) 

 

    
  

(c)                            (d) 

 

Figure 7. First mode shape of the plate: (a) bare plate, (b) mass uncertainty, (c) stiffness 

uncertainty, (d) mass and stiffness uncertainty. 

 

The natural frequency is reduced due to mass uncertainty and its percentage 

decreased is shown in Table 1. Due to stiffness uncertainty, natural frequency very 

prominently increases. These are the effects of uncertainty on the natural frequency. In 

the first mode, there is no change in mode shape obtained, as shown in Figure 7. 

However, in the second mode, as shown in Figure 8, due to mass uncertainty the mode 

shape is changed and due to stiffness the phase is changed. These effects of uncertainty 

on the mode shapes were found. 

 

PREDICTING FREQUENCY RESPONSE FUNCTION 

 

The frequency response function (FRF) is obtained by harmonic analysis [29]. 

Harmonic analysis of the plate is done for all edges simply supported. The same plate 

models are considered with all the uncertain parameters and of the same dimensions, 

which were considered in modal analysis. In this force vibration study, a force of 1 N is 

applied at node location 211, as shown in Figure 9. A frequency range of 0 Hz to 500Hz 

is given. 
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 (a) (b) 

 

  
 (c) (d) 

 

Figure 8. Second mode shape of the plate: (a) bare plate, (b) mass uncertainty, (c) 

stiffness uncertainty, (d) mass and stiffness uncertainty. 

 
 

Figure 9. Force loading plate for harmonic analysis. 
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Frequency Response Function Analysis  

 

An FRF was plotted on a linear graph scale. The frequency (Hz) is on the x-axis and 

amplitude (mm) on the y-axis, as shown in Figure 10. At node number 127of the plate 

FRF is taken. The FRF for the bare plate is shown in Figure 10(a) in which first 

resonance pick occurs at a frequency of 32.481Hz and amplitude of 0.41mm. In 

Figure 10(b) amplitude is increased by 0.47mm because of mass uncertainty at the same 

frequency. In stiffness uncertainty, Figure 10(c), major changes are observed which 

indicate that the complete resonance points are shifted to another frequency and their 

amplitude is also changed. For stiffness and mass uncertainty, Figure 10(d), the 

frequency of the resonance point is the same, but its amplitude is changed compared 

with the stiffness uncertainty.  

To know the response in more details it is necessary to plot it on a log scale, as 

shown in Figure 11. This figure is a harmonic response of the plate at node number127 

in the log scale. Here it clearly shows node and antinodes points which are missing in 

the linear scale (Rao, 2000).Figure 11(a) shows the response of the bare plate which 

indicates its resonance and anti-resonance point of its different modes. Due to mass 

uncertainty at frequencies between400 Hz and500 Hz some different modes of the plate 

get excited, which was not at the bare plate, as shown in Figure 11(b). Similarly, in 

stiffness and mass and stiffness uncertainty resonance peaks are shifted to another 

frequency, the magnitude of the amplitude is also changed, as shown in Figure 11(c, d), 

compared with the bare plate. 

 

  
 (a) (b) 

  
 (c) (d) 

Figure10. FRF Plot on Linear Scale: (a) bare plate, (b) mass uncertainty, (c) stiffness 

uncertainty, (d) mass and stiffness uncertainty. 
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 (a) (b) 

   
 (c) (d) 

Figure 11. FRF Plot on Log Scale: (a) bare plate, (b) mass uncertainty, (c) stiffness 

uncertainty, (d) mass and stiffness uncertainty. 

 

RESULTS AND DISCUSSION 

 

During the modal analysis of the plate, as shown in Table 1, in the fundamental mode 

the natural frequency of the plate with mass uncertainty decreased by 0.21% compared 

with the bare plate. Due to stiffness uncertainty the natural frequency is drastically 

increased by 85.92%. Due to mass and stiffness uncertainty the natural frequency is 

increased by 85.62%. In the harmonic analysis the FRFs are plotted on a linear as well 

as on a log-log scale. All the FRFs of node 127 for all the parameters of the plate are 

combined together in Figures 12 and 13 to study the characteristics of the plate 

effectively. All edges in the simply supported condition plate are excited by an external 

force and the response of the plate is plotted on the FRF graph, as shown in Figure 12. 

The frequency of the bare plate in the first fundamental mode (green colour) is32 Hz 

and the amplitude is 0.408448 mm. The mass uncertainty (black colour)is added and the 

frequency obtained is 32 Hz and the amplitude is 0.474298mm. When the stiffness (blue 

colour) uncertainty is added a very prominent pick with a major shift in frequency of 

60Hz and large amplitude of 0.281087mm is obtained. Due to mass and stiffness 

uncertainty (red colour)a major frequency shift of 60 Hz and amplitude of 0.429595mm 

is obtained. The complete resonance point is shifted. 
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Figure 12. Comparison Linear Plot of Node 127. 

 

 
 

Figure 13. Comparison Log Plot of Node 127. 

 

The FRF of the plate for all edges, simply supported condition is shown in 

Figure 13. The response of the bare plate is compared with the all other uncertain 

parameters. In this log-log scale, many details of plate characteristics are studied. In the 

fundamental mode due to stiffness (blue colour) and a combination of mass and 

stiffness (red colour) uncertainty, the resonance point is completely shifted compared 

with the bare plate (green colour). Due to mass uncertainty (black colour) at a high 

frequency between 50Hz and100Hz and 400 Hz and450Hz different modes of vibration 

are obtained which were not present in the bare plate characteristic. The completely 

different characteristics of the plate are obtained due to mass uncertainty. 

 

CONCLUSIONS 

 

In this analysis four different mass and stiffness uncertain parameters were considered 

and their effects on vibrational characteristics of the plate were found. During analysis, 

it was found that due to mass uncertainty very minor changes occurred in the value of 

natural frequencies. However, due to stiffness uncertainty, it changed dominantly. Due 

to mass uncertainty mode shape changed and due to stiffness uncertainty its phase was 

changed. At a high-frequency domain some hidden mode was excited due to a mass 

uncertainty which was not previously known in the bare plate response. Uncertainty 
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affects resonance points due to stiffness uncertainty changes which occur drastically, the 

complete picks of resonance were shifted and amplitude also changed. Due to mass 

uncertainty much less change occurred at the resonance points. Because of uncertainty 

the complete vibrational characteristics were changed. Therefore it becomes important 

to consider these uncertainties otherwise misinterpretation will occur while designing 

plates. 
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