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ABSTRACT 
 
This paper extends the edge-based smoothed point interpolation method (ES-PIM) to 
bending strength analysis of asymmetric gears with complex outlines. Five sets of 
asymmetric gears with pressure angles of 20°/20°, 25°/20°, 30°/20°, 35°/20° and 
40°/20° were generated by a specially designed rack cutter. Four key factors, e.g. 
accuracy, convergence, the convergence rate and the computational efficiency of the 
present ES-PIM were checked in great detail on these five models, and the 
distributions of bending stresses at the fillet of the drive side were carefully 
investigated. The finite element method (FEM) was also used to calculate the 
abovementioned factors to stress the advantages of ES-PIM. The numerical results 
indicate that ES-PIM can provide more efficient and accurate solutions in the stress 
field than the FEM, and is very suitable for stress analysis of complicated asymmetric 
gears. 
 
Keywords: Asymmetric gear; Bending strength; Accurate stress; Numerical method; 
Point interpolation method (PIM); Smoothing operation. 
 

INTRODUCTION 
 
Gear transmission is one of the most important mechanical transmissions in 
engineering systems, so its reliability is essential. However, fracture always occurs in 
gear teeth due to their low bending strength, which leads to invalidation and thus 
failure of the entire transmission (Bible et al., 1994). To avoid this failure, several 
methods have been used to improve the bending strength of gear teeth. Among these, 
modifying the shape of the tooth is an effective and widely used method (Bible et al., 
1994; Cavdar et al., 2005). To date, several kinds of asymmetric gears have been 
developed. Deng et al. (2003) made changes to the pressure angle on the coast side to 
increase the bending stiffness of the tooth. Kapelevich (2000) and Kapelevich and 
Kleiss (2002) have suggested using a larger pressure angle on the drive side and a fixed 
pressure angle on the coast side. With a larger pressure angle on the drive side, Litvin 

 

 

 



 
 

Wang et al. / International Journal of Automotive and Mechanical Engineering     4(2011)     373-396 
 

374 
 

et al. (2000) proposed a modified geometry of an asymmetric spur gear drive designed 
as a combination of an involute gear and a double crowned pinion. Muni et al. (2007) 
and Kumar et al. (2008) used a direct gear design method for the optimisation of 
bending strength of asymmetric spur gear drives. Xiao et al. (2006), Xiao et al. (2008) 
and Xiao (2008) have used a non-stranded asymmetric rack cutter to generate the gear 
pair via a series of analyses on bending stresses, vibration, thermal conduction, etc. All 
these researches have put forward a series of solutions to improve the load carrying 
ability of asymmetric gears. 

During gear transmission, the teeth withstand tensile stresses on the loaded side 
(drive side) and compressive stresses on the opposite side (coast side). Tooth fracture 
always occurs at the fillet of the tensile-stress side (drive side), where there is also a 
stress concentration. So, it is essential to carry out accurate bending stress analysis at 
the fillet of the tensile-stress side (drive side) in order to check the strength of the teeth 
(Wang, 2003). Among these stresses at the fillet, the maximum bending stress of the 
tooth has a significant impact on fracturing and should be carefully checked. 
Examination of run-in teeth reveals that when a single tooth carries the full load and 
the load is applied at the highest point of single tooth contact (HPSTC), the maximum 
bending stress occurs (Wang, 2003). Therefore, when performing bending stress 
analysis, the load is always applied at the HPSTC. 

In the literature, the bending strength analysis of the gear is always dealt with as 
a 2-D problem, and the finite element method (FEM) is utilised to perform the analysis 
(Bible et al., 1994; Cavdar et al., 2005; Deng et al., 2003). Since the linear triangular 
element can be generated efficiently without manual operation, even for complicated 
domains, it is quite suitable for the gear problems with complex outlines. However, 
because of the well-known overly-stiff behaviour of the fully compatible displacement 
of the FEM model based on the Galerkin weak form, the FEM using linear triangular 
elements usually gives poor solutions, especially for stress components. Recently, a 
generalised gradient smoothing technique, employing a definition of G space which 
includes both continuous and discontinuous functions and the notion of a weakened 
weak (W2) formulation, also called the Generalised Smoothed Galerkin (GS-Galerkin) 
weak form, has been developed by Liu (2008, 2010). The W2 formulation is the 
foundation of a series of novel and effective numerical methods which can effectively 
overcome the problems discussed previously (Liu and Zhang, 2008). Compared to the 
compatible FEM model, these methods behave more softly and possess a number of 
attractive properties according to the formation of smoothing domains (Liu and Zhang, 
2008; Liu, 2008, 2010). 

The edge-based smoothed point interpolation method (ES-PIM) is one of these 
novel methods, in which the strains are smoothed over the smoothing domains 
associated with the edges of background triangles (Liu and Zhang, 2008; Liu et al., 
2008). The polynomial and/or radial PIM shape functions, which possess the 
Kronecker delta property and hence facilitate the treatment of essential boundary 
conditions (Liu, 2002), are used to construct displacement fields in this method. Based 
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on the triangular elements, four schemes of selecting support nodes for creating PIM 
(polynomial or radial) shape functions have been proposed, and four models have been 
developed, which are the ES-PIM of T3-scheme (ES-PIM (T3)), the ES-PIM of 
T6/3-scheme (ES-PIM (T6/3)), the ES-RPIM of T6-scheme (ES-RPIM (T6)) and the 
ES-RPIM of T2L-scheme (ES-RPIM (T2L)). The T-scheme can solve not only the 
singularity problem encountered in constructing polynomial PIM shape functions, but 
also improves the efficiency of the numerical methods (Liu and Zhang, 2008). 
Numerical results have demonstrated that the ES-PIM models have a close-to-exact 
stiffness and produce “super-convergence” and “ultra-accurate” solutions (Liu and 
Zhang, 2008; Liu et al., 2008; Liu, 2002). Most importantly, the ES-PIM (T3) model 
has been found to achieve the highest computational efficiency compared to the other 
ES-PIM models and the linear FEM model. However, the conclusions described above 
were drawn based on problems with simple geometries, e.g. beam and plate. The 
efficiency of this method in terms of problems with complex geometries has not been 
carefully checked yet.  

This work just extends the ES-PIM (T3) method to the bending strength analysis 
of an asymmetric gear which possesses very complex outlines. First, the basic 
principles of the ES-PIM (T3) method are introduced briefly. Then, based on a 
specially designed rack cutter, five different asymmetric gear models were generated, 
with a greater pressure angle (20°, 25°, 30°, 35°, 40°) on the drive side and a normal 
pressure angle (20°) on the coast side. Third, some important ES-PIM (T3) properties, 
e.g. computational accuracy in the stress field, convergence of strain energy, the 
convergence rate of the strain energy norm and computational efficiency were checked 
in great detail and compared with the FEM-T3 method. Finally, the bending stress 
distributions at the fillet of the drive side were studied. From this analysis, it can be 
seen that the ES-PIM (T3) method is one of ”super-convergence”, and provides more 
efficient and accurate solutions in the stress field than the FEM with the same coarse 
triangular mesh. The ES-PIM (T3) method is quite suitable for bending strength 
analysis of complicated asymmetric gear problems with complex outlines and is 
capable of dealing with stress concentration problems. 

 
THE ES-PIM (T3) IN BRIEF 

 
The main differences in numerical implementation between the ES-PIM (T3) and FEM 
are the calculation of the strain field and the procedure of numerical integration. A 
brief illumination of the differences is presented in this section. 
 
Displacement Field Approximation Using PIM 
 
The point interpolation method (PIM) obtains an approximation by letting the 
interpolation function pass through the function values at each scattered node within 
the local supporting domain. In total, there are two types of PIM that have been 
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developed using different basis functions, i.e., polynomial PIM using polynomial basis 
functions (Liu and Gu, 2001) and radial PIM (RPIM) using radial basis functions 
(Wang and Liu, 2002).  

For polynomial PIM, the formulations start with the following assumption: 

     T

1

n

i i
i

p a


 u x x p x a                     (1) 

where u(x) is a field variable function defined in the Cartesian coordinate space; pi(x)is 
the basis function of monomials which is usually built utilising the Pascal’s triangles; 

ai is the corresponding coefficient and n  is the number of nodes in the local support 
domain.  

The complete polynomial basis of orders 1 and 2 can be written as: 

   T 1 x yp x           Basis of complete first order        (2) 

   T 2 21 x y x xy yp x    Basis of complete second order       (3) 

For radial PIM, using radial basis functions augmented with polynomials, the 
field function can be approximated as follows: 

         T T
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i i j j
i j

r a p b
 

    u x x x r x a p x b             (4) 

where ri(x) and pj(x) are the radial basis functions and polynomial basis functions, 
respectively; ai and bj are the corresponding coefficients; n is the number of nodes in 
the local support domain and m is the number of polynomial terms. 

In the ES-PIM (T3), the linear polynomial PIM is used to approximate the 
displacement field and form the global stiffness matrix. The coefficients in Eq. (4) can 
be determined by enforcing the field function to be satisfied at the n nodes within the 
local support domain.  

1
s

a P u                          (5) 

where P is the moment matrix; for a 2-D linear integration problem, P can be expressed 
as: 
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x y
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 
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
 
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P                        (6) 

us is the displacement component vector at all the n nodes of the support domain: 

1 1 1 2

T
s x y nx ny n

u u u u


   u                   (7) 

Note that 1P may not exist. Approaches dealing with this problem can be found 
in the literature (Liu, 2002). Therefore, we just consider that the moment matrix is 
invertible. 
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Substituting Eq. (6) into Eq. (5), we can obtain: 

     T

1

n

i i s
i

u


 u x x Φ x u                      (8) 

where  i x  is the shape function which processes the Kronecker delta property 

(Wang and Liu, 2002) and is defined by (Liu and Quek, 2003): 

   T 1
i jiij

 x p x P                      (9) 

In the above formula, it is noted that we need to properly select n nodes for 
interpolation, thus ensuring a non-singular moment matrix (Liu, 2002). The next 
subsection will focus on the principles of selecting nodes. 
 
Cell-based T-scheme for Node Selection 
 
The problem domain is first discretised with three-noded triangular cells (elements). In 
the frame work of ES-PIM (T3), a linear displacement field is constructed within each 
triangular cell, which is exactly the same as that in the standard FEM. As illustrated in  
Figure 1a, no matter the point of interest x located in an interior element (element i) or 
a boundary element (element j), only the three nodes of the corresponding cell (i1-i3 or 
j1-j3) are selected.  

 
       (a) Node selection   (b) Construction of smoothing domains 

 
Figure 1. Illustration of the T3-scheme 

 
Edge-based Smoothed Strains 
 
In the framework of the W2 formula, the gradient of the field function (strains) will be 
obtained using the following generalised smoothing operation which considers both 
continuous and discontinuous displacement functions (Liu and Zhang, 2008; Liu et al., 
2005).  
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when  u x is discontinuous in k  

where ε  is the compatible strain obtained by:  
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where Ln is the matrix of unit outward normal; kε  is the smoothed strain over the 

smoothing domain k  and d
k

k kA


   is the area of k . 

To perform generalised strain smoothing, the problem domain is first discretised 
using three-noded triangular elements and then the stationary and non-overlapping 
smoothing domains are constructed based on these triangles, such that 

1 2 sN   and ,i j i j     in which Ns is the number of 

smoothing domains. For the ES-PIM (T3), smoothing domains are constructed with 
respect to the edges of the triangular elements by connecting two ends of an edge to the 
centroids of two adjacent cells, as illustrated in 

Figure 1b. Thus, the number of smoothing domains (Ns) equals the number of 
edges of triangles (Nedge). 

Substituting Eq. (2) into Eq. (1), the edge-based smoothed strain, kε , can now be 

written in the following matrix form of nodal displacements: 
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whereΦ is the matrix of PIM shape functions; Ninfl is the number of field nodes 

involved in constructing the smoothed strain fields within k and  i kB x is termed as 

the smoothed strain matrix that can be expressed as: 
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where 

       
1

d ,
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il k i k l k k
k

b n l x y
A




  x x x  (5) 

Using a Gauss integration scheme, the above integration can be further expressed 
as follows: 

       
1 1

1
,

seg gauN N

il k n i mn i m
m nk

b w n l x y
A


 

 
  

 
 x x x  (6) 

where Nseg is the number of segments of the boundary Γk; Ngau is the number of Gauss 
points located in each segment on Γk; wn is the corresponding weight number of Gauss 
integration scheme. As linear shape functions are used in this work, Ngau =1 is adopted 
to perform the integration. 
 
Discretised System Equations 
 
For the ES-PIM models, the following generalised smoothed Galerkin (GS-Galerkin) 
weak form is used to derive the discretised system equations (Liu, 2008, 2010): 
 

     
T T Td d d 0   

  

     ε u D ε u u b u t  (7) 

which has exactly the same form as the standard Galerkin weak form. Thus, the 
formulation procedure is exactly the same as that in the standard FEM, and all we need 
to do is to use the edge-based smoothed strain ε  in place of the compatible strain ε .  

The overall procedure of the presented methods is as follows. First, the 
displacement field will be constructed by using PIM. Following this, the smoothed 
strains ε  will be obtained using Eq. (3). Finally, by substituting the assumed 
displacements and the smoothed strains into the generalised Galerkin weak form (Eq. 
(7)), and invoking the arbitrary nature of the variation operations, a set of discretised 
algebraic system equations can be obtained in the following matrix form: 

 

Ku f  (8) 
where f  is the force vector that can be obtained as: 

T Td d
 

    f Φ b Φ t  (9) 

and the stiffness matrix K  is assembled from the sub-stiffness matrix for all the 
integration cells, which are exactly the edge-based smoothing domains for the present 
method. 

 
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s sN N
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where the smoothed strain matrixes are obtained using Eq. (4). 

Substituting the stiffness matrix K into the static system of equations: 

KU F  (11) 

where F is the equivalent force vector. 
The vector U of the displacements at all the nodes thus can be calculated by Eq. 

(11) based on any methods, e.g. Gauss elimination, LU decompositions and iterative 
methods (Liu and Quek, 2003). Finally, the interested variables, e.g. stresses and 
strains in the field, can be calculated based on the vector U following standard 
procedures used as in the FEM. 

 
ESTABLISHMENT OF ASYMMETRIC GEAR MODELS 

 
Formulation of the Asymmetric Gear 
 
In this section, five asymmetric gear models, each of which possesses a greater 
pressure angle on the drive side and a normal pressure angle on the coast side, were 
generated by a specially designed rack cutter. Figure 2 presents the schematic of the 
specially designed rack cutter which uses a larger pressure angle on one side and a 
normal pressure angle on the opposite side. Only one round corner where there is only 
one radius (ρ) is designed at the top of the rack cutter as the connection of two straight 
outlines of the rack to ensure that the fillet of the generated asymmetric gears is 
trochoidal. The design parameters of the rack cutter are listed in Table 1. 

. 

 

Figure 2. Profile of the specially designed rack cutter with one fillet at the tip 
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Table 1. Parameters of the specially designed rack cutter 

 

Parameter Symbol Quantitative value 

Module m  5 mm 

Pressure angle on the coast side c  20° 

Pressure angles on the drive side d  20°/25°/30°/35°/40° 

Addendum coefficient on the coast side *
ch  1 

#1Tip radius   
* (tan tan )

cos sec sin tan
p c c d

c d c d

e h m  


   

   


  
 

#2Bottom clearance coefficient on the 
coast side 

*
cc  * (1 sin )c

cc
m

  
  

#3Bottom clearance coefficient on the 
drive side 

*
dc  * (1 sin )d

dc
m

  
  

#4Addendum coefficient on the drive side *
dh  * * * *

d c c dh h c c    

#1,2,3,4 For different d , the quantitative values of  , *
cc , *

dc , *
dh  are different, and are 

listed in Table 2. 
 

Table 2. Quantitative values of  , *
cc , *

dc , *
dh  associated with special d                                                              

Unit: mm 

d  20° 25° 30° 35° 40° 

  2.2424 1.9657 1.6592 1.3186 0.9390 

*
cc  0.2951 0.2587 0.2183 0.1735 0.1236 

*
dc  0.2951 0.2270 0.1659 0.1125 0.0671 

*
dh  1 1.0317 1.0524 1.0611 1.0565 

 
Based on envelope principles (Fetvaci and Imrak, 2008; Su and Houser, 2000), 

the outlines of five asymmetric gear models can be drawn as shown in Figure 3. The 
parameters of these five gear models are list in Table 3. Note that the maximum 
bending stress occurs at the time when a single tooth carries the full load. Therefore, 
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the selection of one single tooth contact is enough for an investigation into the 
maximum bending stress (Wang, 2003). 

 
 

  
a) Model 1 with pressure angles 20°/20° b) Model 2 with pressure angles 25°/20° 

  

c) Model 3 with pressure angles 30°/20° d) Model 4 with pressure angles 35°/20° 

 

e) Model 5 with pressure angles 40°/20° 
 

Figure 3. Five asymmetric gear models with modified pressure angles (20°, 25°, 30°, 
35° and 40°) on the drive side and a normal pressure angle (20°) on the coast side 

 
Table 3. Basic parameters of the five asymmetric gears 

 

Module 
Number 
of teeth 

Pressure angle 
Addendum 
coefficient 

Tooth 
width 

m =5 mm 20z   

20c   

20 / 25 / 30 / 35 / 40d   

* 1ach   
20B 

mm 
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Load Application 
 
Figure 4 shows the load F applied at HPSTC M which is located on the drive side of 
the asymmetric tooth. Here, the load F is divided into the tangent load Ft and the 
normal load Fn. As the transferred power is assumed to be P=50 kW and the rotation 
speed of the gear is assumed to be n=1000 r/min in this analysis, the transferred 
tangent load Ft and the normal load Fn can then be calculated based on Eq. (14); thus, 
the exact values are listed in Table 4. 

The torque applied at the tooth is: 

9550
P

T
n

   (12) 

The whole force applied at the tooth is: 

cosM dM b

T T
F

B r B r
 

  
 (13) 

and the tangent force and normal force applied at the tooth are: 

cos

sin
t FM

n FM

F F

F F





 


 
 (14) 

where B is the width of the gear; z is the tooth number of the pinion; dM  is the 

pressure angle at point M, 
 

*

2π 1
arctan tan arccos db

dM
ac

r

r h m z




    
          

; 

FM  is the load angle at point M , FM dM dM dinv inv
z


        and d  is the 

contact ratio on the drive side. 

 

 
Figure 4. Force applied at the HPSTC on the drive side of the asymmetric tooth 
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Table 4. Forces applied at the HPSTC with different asymmetric gear models 

Unit: N/mm 

Pressure angle Total force F Tangent force Ft Normal force Fn 

20°/20° 508144.89 481551.68 162231.99 
25°/20° 526862.96 476574.41 224636.17 
30°/20° 551369.51 471014.73 286624.24 
35°/20° 582919.87 465552.06 350794.59 
40°/20° 623331.98 460744.50 419830.04 

 
COMPUTATIONAL INVESTIGATION OF THE ES-PIM (T3) METHOD 

 
In this section, the gear model with the pressure angle of 20°/20°, as shown in Figure , 
was investigated to test the key properties of the present ES-PIM (T3), e.g. the 
accuracy of stresses, the convergence properties of the strain energy, the convergence 
rate of the strain energy norm and the computational efficiency.  
 

 
Figure 5. Gear model subjected to Dirichlet and Neumann boundary conditions 
 
An ES-PIM (T3) code developed in MATLAB was used to perform the bending 

stress analysis. For comparison, the FEM in-house code was also developed here. The 
properties of the material of the gear were E=2.16×1011 Pa and v=0.3. A mesh with 521 
irregularly distributed nodes, as shown in Figure 6a, was generated for the analysis. As 
the exact stress was not available for the gear problem, a refined mesh with 10,233 
irregular nodes (see Figure 6b) was also generated to calculate the reference stress. 
Note that there as a higher node density at the fillet in order to pay special attention to 
the stress distribution at that location. The plane strain triangular element was used in 
this analysis. 
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a) Mesh with 521 nodes b) Mesh with 10,233 nodes 

 
Figure 4. Meshes generated for analysis 

 

 

a) Particular mesh near the load point 

 
b) Concentrated load applied 

at the HPSTC 
c) Distributed load applied 

at the nine points associated with the HPSTC 
 

Figure 5. Load distribution from a concentrated load to a distributed load 
 
The Dirichlet and Neumann boundary conditions were applied at the gear, as 

shown in Figure 5. For the Dirichlet boundary, the displacements of relevant nodes 
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were constrained in both the X and Y directions. For the Neumann boundary condition, 
the loads of Ft =481551.67 N and Fn =162231.99 N were applied at the HPSTC. In 
order to avoid the infinite value because of the concentrated load, the region near the 
HPSTC was particularly meshed (Figure 5a); the concentrated load was linearly 
discretised to nine extremely adjacent nodes on a line associated with the HPSTC using 
the Gauss integration method, as shown in Figure 5b and Figure 5c.  
 
Accuracy of the Stress Field 
 
It has been noted that gear teeth usually fail by cracking at the base of the tooth on the 
tensile-stress side (Wang, 2003). Therefore, it is meaningful to focus on the stress 
distribution at the fillet of the drive side.  

Figure 6 presents the distribution of the von Mises stress at the fillet of the drive 
side using both the present ES-PIM (T3) and FEM. From these three figures, it can be 
seen that, at the region near the load point, the stress distribution of the ES-PIM (T3) 
was much closer to the reference distribution, which means that the ES-PIM (T3) can 
deal with a concentrated load problem better than the FEM. The distribution of von 
Mises stresses from the solutions of the present ES-PIM (T3), the FEM and the 
reference mesh are shown in Figure 7. Figure 8 presents the curves of the stress 
distributions. From a comparison of the curves in these two figures, it can be seen that 
the present ES-PIM (T3) solution was much closer to the reference solution compared 
to the FEM, which means that the ES-PIM (T3) solution was more accurate than that 
obtained from the FEM computation. Considering the maximum von Mises stress, a 
23.67% reduction in the error was found with the ES-PIM (T3) compared to the FEM. 
 
Convergence of Strain Energy 
 
The strain energy indicator of a whole domain is defined as follows: 

T T 11 1
= d d

2 2exact exact exact exact exacte 

 

   σ ε σ D σ  (15) 

where σexact is the exact stress vector of an arbitrary point of the domain; εexact is the 
exact strain vector corresponding to the arbitrary point and D  is the material constant 
matrix. 

Five sets of mesh (321 nodes, 521 nodes, 1102 nodes, 1984 nodes and 4225 nodes) 
were generated in this subsection for analysis. As the exact strain energy cannot be 
directly obtained for the gear problem with complex outlines, a reference strain energy 
based on a refined mesh of 10,233 nodes, which will replace eexact in Eq. (24), was also 
calculated. Table 5 lists the strain energies of the present ES-PIM (T3), the FEM 
method and the reference solution. Figure 9 shows the convergence process of the 
solutions with an increase in the DOFs. From this figure, it can be seen that i) the strain 
energies of both the ES-PIM (T3) and FEM converge to the reference solution with an 
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increase in the DOFs; ii) the strain energy of the ES-PIM (T3) is much closer to the 
reference solution than that of FEM. It is well-known that the linear FEM model shows 
overly stiff behaviour and hence gives poor stress solutions. A softening effect has 
been introduced into the ES-PIM (T3) owing to the implementation of the strain 
smoothing operation, which makes it behave more softly and hence obtains more 
accurate results than the FEM model (Liu and Zhang, 2008). 

 

 

 

 

 
a) ES-PIM (T3) solutions with 521irregular nodes 

 

 

 

 

b) FEM solutions with 521irregular nodes 

 

 

 

 
c) Reference solutions with 10,233 irregular nodes 

 
Figure 6. Rainbow figures of the von Mises stress from ES-PIM (T3), FEM and reference 

solutions 
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Figure 7. Sketch map of the von Mises stress at the fillet based on the present ES-PIM (T3) 
and FEM 

 

 
Figure 8. Comparisons of the von Mises stress at the fillet based on the present ES-PIM 

(T3) and FEM 
 

Table 5. Strain energy with different DOFs 
 

Case DOF Strain energy of ES-PIM (T3) Strain energy of FEM 

1 642 4.1680 3.9507 
2 1042 4.2037 4.0429 
3 2204 4.2945 4.1925 
4 3968 4.3157 4.2385 
5 8450 4.3459 4.2920 
Reference 4.3591   (20466 DOFs) 
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Figure 9. Solutions (in strain energy) converging to the exact solution for the gear using 
both ES-PIM (T3) and FEM 

 
Convergence Rate of Strain Energy Norm 
 
The strain energy error norm indicator is defined as follows: 

1 2

exact num
e

exact

e e
e

e

 
  
 

 (16) 

where eexact is the exact strain energy of the gear model obtained by Eq. (16) and enum is 
the numerical strain energy of the gear model. Here, the eexact is also replaced by the 
reference strain energy from a refined mesh as in section 4.2. The convergence rate in 
energy error norm, converging with the reducing average nodal spacing (h), is plotted 
in Figure 10. From this figure, it can be found that the convergence rate of the present 
ES-PIM (T3) of 0.99 is 1.46 times higher than that of the FEM of 0.68.  

 

Figure 10. Convergence rate of the numerical results in the energy norm for the gear 
using both ES-PIM (T3) and FEM 
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Computational Efficiency 
 
A comparison of computational efficiency was investigated on the same computer 
(Dell PC with an Inter® Pentium(R) 2.80GHz CPU, 1 GB of RAM) using models with 
the same DOFs. In order to carry out this study in an efficient manner and to test the 
computation time with reduced measurement error, a model with four types of 
irregularly distributed nodes (3010 nodes, 10461 nodes, 30286 nodes and 44407 nodes) 
was developed and the MFree2D© was used in a test where a well-coded “bandwidth” 
solver with an on-column storage technique was available (Liu and Liu, 2003; Wu et 
al., 2008; Chen et al., 2010). As is known, the computation costs mainly come from 
two parts: the cost of solving the system equations and the cost of interpolation which 
mainly solves the inverse of moment matrix to form the shape functions. Table 6 and 
Table 7 list the CPU time required for these two parts (Chen et al., 2009), respectively. 
From these two tables, it can be seen that i) the CPU time of ES-PIM (T3) and FEM of 
interpolation was shorter than that of solving the system equations (especially as the 
number of nodes became larger) and could be neglected for the whole computation, 
especially when the model was huge with more DOFs; ii) the CPU time of ES-PIM 
(T3) for solving the system equations was 2-3.5 times longer than that of FEM. This 
was mainly because more local nodes were selected by ES-PIM (T3) to approximate 
the displacement field, which made the bandwidth of the global stiffness matrix two 
times greater than that of FEM (Wu et al., 2008; Chen et al., 2009). Actually, the CPU 
time of ES-PIM (T3) for solving the system equations should be four times greater 
than that of FEM based on bandwidth theory (Chen et al., 2009). Therefore, the test 
results agree very well with theoretical considerations. 

Although more CPU time (2-3.5 times more) was used by ES-PIM (T3), the 
ES-PIM (T3) method stands out if we consider the computational efficiency (strain 
energy error norm/CPU time). Tests (Liu and Zhang, 2008; Liu et al., 2008; Chen et al., 
2009) have indicated that the solution accuracy of ES-PIM (T3) is much better (by 
about 10 times) than the linear FEM with the same triangular mesh. Thus, ES-PIM (T3) 
is a much better choice for the calculation of mechanical problems. 
 

Table 6. Comparison of the CPU time (s) required to solve the system equations by 
ES-PIM (T3) and FEM with triangular background elements 

                                                         Unit: seconds 

Case DOF ES-PIM (T3) FEM 

1 7020 0.359 0.156 
2 20922 3.807 1.331 
3 60572 23.309 9.314 
4 88814 63.391 19.22 
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Table 7. Comparison of the CPU time (s) of interpolation by ES-PIM (T3) and FEM 
with triangular background elements 

                                                         Unit: seconds 

Case DOF ES-PIM (T3) FEM 

1 7020 0.281 0.267 
2 20922 1.227 0.767 
3 60572 4.228 2.353 
4 88814 4.478 3.622 

 
INVESTIGATION INTO THE STRESS DISTRIBUTION  

  
The fillet stress distribution on the drive side of an asymmetric gear was investigated in 
this section. The five asymmetric gear models established in section 3 were utilised. 
The respective models with their design parameters can be found in  
Figure 3 and Table 3. The materials assigned at the models were all linear elastic, with 
a Young’s modulus of E=2.16×1011 Pa and a Poisson’s ratio of v=0.3. During the 
analysis, the five gear models were discretised with approximately irregularly 
distributed nodes and the equal node space was set on the outline; the node density was 
higher at the fillet with a node spacing of 0.0003 mm and was normal in the other parts 
of the outline with a node spacing 0.0007 mm. Five sets of refined meshes were 
generated, respectively, for their reference solutions. The node information is listed in 
Table 8. The element type, Dirichlet and Neumann boundary conditions are the same 
as those used in section 4.  

Figure 11 shows the distribution of von Mises stress, and Figure 12 and 
Figure 13 present the comparisons of these stresses at the fillet. From these figures, it 
can be seen that i) the solutions from both ES-PIM(T3) and FEM gave the same trends 
of stress distribution; ii) the maximum bending stress decreased with an increase in the 
drive side pressure angle; iii) the fillet moved to the negative direction of the X-axis 
and the length of fillet decreased with an increase in the drive side pressure angle and 
iv) the location of the maximum stress moved to the top of the fillet with an increase in 
the pressure angle on the drive side. Figure 14 presents a comparison of the maximum 
bending stress with different pressure angles on the drive side. It was again noted that 
the maximum bending stress decreased with an increase in the drive side pressure 
angle. It can also be seen that the stresses calculated by ES-PIM (T3) were much closer 
to the reference values than those of the FEM, which means that the ES-PIM (T3) 
should give more accurate solutions than the FEM. The reduced errors were 23.67%, 
26.31%, 25.90%, 25.41% and 29.73%, respectively, for the present ES-PIM (T3). This 
conclusion can verify the conclusions found in section 4. Another conclusion drawn 
from Figure 14 is that the maximum bending stresses decreased approximately linearly 
with an increase in the drive side pressure angle. This curve can be synthesised in a 
straight line with the expression in Eq. (17):  
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a1) ES-PIM (T3) solutions for the 20°/20° model a2) FEM solutions for the 20°/20° model 

 

 

   
b1) ES-PIM (T3) solutions for the 25°/20° model b2) FEM solutions for the 25°/20° model 

 

 

  

 

 
c1) ES-PIM (T3) solutions for the 30°/20° model c2) FEM solutions for the 30°/20° model 

 

 

  

 

 
d1) ES-PIM (T3) solutions for the 35°/20° model d2) FEM solutions for the 35°/20° model 

 

 

  

 

 
e1) ES-PIM (T3) solutions for 40°/20° model e2) FEM solutions for 40°/20° model 

 
Figure 11. von Mises stress rainbow of ES-PIM (T3), FEM and reference solutions based on the 

five asymmetric gear models with pressure angles 20°/20°, 25°/20°, 30°/20°, 35°/20° and 40°/20° 
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0.877 245.22Max d     (17) 

where αd is the pressure angle on the drive side and σMax is the maximum bending stress 
corresponding to αd in MPa. 

 
Table 8. Node information of the five asymmetric gear models 

 

Gear model Nodes numbers for comparison Node number for reference 

20°/20° 521 10233 
25°/20° 524 11100 
30°/20° 519 11061 
35°/20° 510 10919 
40°/20° 500 10928 

 

 
Figure 12. Stress distributions at the fillet of the five asymmetric gear models based on 

ES-PIM (T3) 
 

 
Figure 13. Stress distributions at the fillet of the five asymmetric gear models based on 

FEM 
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Figure 14. Maximum bending stress comparison based on the present ES-PIM (T3) and 

FEM using the same coarse triangular elements 
 

CONCLUSIONS 
 
In this work, newly designed asymmetric gears which use modified pressure angles on 
the drive side and a standard pressure angle on the coast side were proposed, and the 
ES-PIM (T3) method using the background mesh of triangular cells was used to 
conduct asymmetric gear bending stress analysis. Through the formulation and 
numerical examples, it can be concluded that ES-PIM (T3) possesses significant 
advantages over the FEM in problem analysis with very complex geometries. More 
accurate solutions in the stress field were drawn by the ES-PIM (T3) than by FEM. 
Higher convergence, a higher convergence rate of the strain energy error and a higher 
computational efficiency were also obtained by the ES-PIM (T3) in this analysis. The 
problem with stress concentration can be better solved by the present method. With the 
attractive properties of good accuracy, “super-convergence” and high computational 
efficiency, the ES-PIM (T3) is very convenient for bending strength analysis of 
complicated asymmetric gears, which involves complex outlines, stress concentration 
at the fillet and concentration load at the HPSTC.
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