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ABSTRACT 

 

Time-frequency imaging provides a straightforward means to understanding machinery 

conditions. The methods of short-time Fourier transform (STFT), Wigner-Ville 

distribution (WVD) and smooth-windowed Wigner-Ville distribution (SWWVD) are 

applied to the condition monitoring of rotating machines. The sound and vibration signals 

of a rotating fan are tested, and time-frequency images are illustrated in terms of STFT, 

WVD and SWWVD. The results show that the resolution of STFT is low, and the 

resolution of WVD is high but with interference. To overcome the interference in the 

WVD image, a variable smooth-windowed weighting function is applied. The smoothing 

window function resulted in interference attenuation but also in reducing the 

concentration. The SWWVD is a compromise between STFT and WVD. The SWWVD 

exhibits better resolution than STFT and has less interference than WVD. 

 

Keywords: Time-frequency analysis; smooth window weighting; sound and vibration; 

condition monitoring. 

 

INTRODUCTION 

 

The sound and vibration signals of rotating systems have become more and more 

complex, as wind excitation, run up or shut down, rotor cracking and chattering can lead 

to frequency modulation and amplitude modulation. For the condition monitoring of 

these problems, the most important and fundamental variables in signal processing are 

time and frequency. The fundamental ideal of time-frequency analysis is to understand 

and describe those conditions where the frequency content of a signal changes in time. 

The short-time Fourier transform (STFT) is the most widely used tool for the display of 

stationary and non-stationary signals in time-frequency analysis. For better resolution, the 

quadratic time-frequency signal representation of the Wigner-Ville distribution (WVD) is 

considered. Unfortunately the WVD presents cross-terms (interferences) in 

multicomponent signals. Thus the WVD is a general tradeoff between good 

time-frequency resolution and small interference terms. Signals analysis simultaneously 

considered in time and frequency domain is well reviewed (Cohen, 1989; Hlawatsch and 

Boudreaux-Bartels, 1992; Nuawi et al., 2011; Hammond and White, 1996; Sejdic et al., 

2009). In recent years, time-frequency methods have been widely used in gearbox fault 

detection (Staszewski et al., 1997), the diagnosis and surveillance of diesel engines based 

on vibration and acoustics signals (Delvecchio et al., 2010), and the vibration monitoring 

of rotating machines (Lee et al., 2001; Al-Badour et al., 2011; Climente-Alarcon et al., 

2011; Peng et al., 2012). In this paper, a parameter-controlled smooth-windowed WVD 

method (SWWVD) is presented. The SWWVD allows the smoothing of the time spread 
and the smoothing of the frequency spread. In practical application, the sound and 
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vibration signals of a rotating fan are considered, and time-frequency images are 

illustrated in terms of STFT, WVD and SWWVD. 

 

SHORT-TIME FOURIER TRANSFORM 

 

The basic ideal of the short-time Fourier transform is that if one wants to know what 

frequencies exist at a particular time, then take a small part of the signal around that time 

and analyse it, neglecting the rest of signal. Since the time interval is short compared to 

the whole signal, this process is called a short-time Fourier transform. For a given signal 

x(t), the Fourier transform is  

 

,x(t)eFT(x(t))
-

ftj2- dt



 

       (1) 

 

where f is frequency in Hz. Now we multiply the signal )(x   by a window function 

)t(w   to obtain a weighted signal. Considering this signal as a function of   and 

taking the Fourier transform, the STFT is 
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where * is a complex conjugate. In Eq. (2), the smoothing window is applied by a 

parameter controlled function (Lee, 2010), 
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where 0 , Γ is a gamma function and      2/1
/3/1  . The parameter   

controls the symmetric window shapes on the left side (x<0) and right side (x>0) in Eq. 

(3). The window shape of 1  represents the Laplace distribution and 2

represents the Normal distribution. When   tends to zero the function tends to an 

impulse distribution, and when   tends to infinity the function tends to a uniform 

distribution. Figure 1(a) shows the window shapes of  0.5, 1, 2 and 10, and the 

corresponding spectrum plots are presented in Figure 1(b). For example, considering a 

multicomponent signal consisting of the sum of two chirp waveforms 

 

]),4[2sin(])4[2sin()( 2

2

2

1 ttfttfts        (4) 

 

where 51 f Hz and 452 f Hz. Figure 2(a) shows the time series of Eq. (4) at a 

sampling rate 1 kHz. The signals include two non-stationary chirp waveforms. As time 

advances, the first chirp signals start at 5 Hz with increasing frequency, and the second 

chirp signals start at 45 Hz with decreasing frequency. The spectrum is shown in Figure 

2(b), where information on the signal’s frequency change over time is not provided. 

Using the STFT method and Figure 2 data, the time-frequency contour plot is shown in 
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Figure 3. The STTF image shows the complete information in the time and frequency 

domains. Two directions of moving frequency are illustrated, where the first and the 

second chirp signals cross at 2.5 seconds. The colour bar indicates the amplitude of the 

spectrum in intensity. 

 

 
 

Figure 1. Smoothed window (N=128) for parameters =1.0, 2.0 and 10; (a) time series, 

(b) spectrum. 

 

 
 

Figure 2. Simulation signals of the sum of two chirp waves: (a) time series, (b) spectrum. 

 

WIGNER-VILLE DISTRIBUTION 

 

The STFT suffers time-frequency resolution limitations: a good time resolution requires a 

short window weighting function and a good frequency resolution requires a long 
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window weight function. Thus a fundamental resolution tradeoff exists: it is impossible to 

simultaneously achieve both good time and frequency resolution. To improve the 

time-frequency resolution, a quadratic time-frequency representation of the Winger-Ville 

distribution is considered (Hlawatsch and Boudreaux-Bartels, 1992). For a signal x(t), the 

WVD is defined as 
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Figure 3. Time-frequency contour plot using STFT ( 2 ) method and Figure 2 data. 

 

The STFT in Eq. (2) is a linear time-frequency representation to satisfy the 

superposition principle that if x(t) is a linear combination of some signal components, 

then the STFT of x(t) is the same linear combination. However, the quadratic 

representation of WVD in Eq. (5) is violated in terms of its linearity structure. 

Considering multicomponent signals )()()( 21 txtxtx  , then WVD is given by 
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where 

,)
2

()
2

(),(WVD 2*

2121 
  detxtxft fj

xx





       (7) 

 

.)
2

()
2

(),(WVD 2*

1212 
  detxtxft fj

xx





       (8) 



 

 

Lee /International Journal of Automotive and Mechanical Engineering  7(2013) 811-819 

 

815 

 

The 11WVD xx , 22xxWVD  are auto-terms, and 21WVD xx  , 12xxWVD  are cross-terms 

which satisfy 

 

).,(),( *

1221 ftWVDftWVD xxxx         (9) 

 

Thus cross-terms ),(),( 1221 ftWVDftWVD xxxx   is a real and Eq. (6) is written as 

 

)].,(Re[2),(),(),(WVD 212211 ftWVDftWVDftWVDft xxxxxxx     (10) 

 

Equation (10) indicates that the WVD of the sum of the two signals is not only the sum of 

two auto-terms, but also includes the cross-terms. These cross-terms cause interference in 

the distribution over both time and frequency. For example, using the WVD method and 

Figure 2 data, the time-frequency contour plot is shown in Figure 4. As expected, the 

WVD image shows a high concentration when compared to the STFT in Figure 3. But the 

cross-terms (interference) occurs midway between the two chirp signals. 

 

 
 

Figure 4. Time-frequency contour plot using WVD method and Figure 2 data. 

 

SMOOTH-WINDOWED WIGNER-VILLE DISTRIBUTION 

 

In practical applications, the interference terms of WVD are often a problem for condition 

monitoring. In order to suppress the cross-terms, a window weighted method is applied. 

Two smoothed windows are processed for WVD in both the time and frequency direction. 
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This is a smooth-windowed Wigner-Ville distribution and is defined as 
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where h(t) and g(t) are smoothing windows for time and frequency, respectively. In the 

following investigation, the window function in Eq. (3) is applied for h(t) and g(t). 

The smoothing window process resulted in interference attenuation, but also in 

reducing the time-frequency concentration. Thus the SWWVD is a compromise of STFT 

and WVD. For example, using the SWWVD method and Figure 2 data, the 

time-frequency contour plot is shown in Figure 5. As expected, the interference terms in 

Figure 4 are suppressed in both the time and frequency directions. The colour bar of 

Figure 5 show that the intensity is reduced when compared to Figure 4. However, the 

resolution is far better than in Figure 3. Thus the SWWVD shows a compromise result 

between STFT and WVD. The SWWVD has better resolution than STFT and has less 

interference than WVD. 

 

 
 

Figure 5. Time-frequency contour plot using SWWVD ( 10 ) method and Figure 2 

data. 

 

SOUND AND VIBRATION SINGALS ANALYSIS 

 

For application in condition monitoring, the above methods are applied to real rotating 

fan signals. Figure 6 shows the measured vibration (acceleration) and sound pressure 

signals at a sampling rate of 25 kHz, and the corresponding spectra are shown in Figure 7. 

The vibration signal shows two resonance peaks located at 150 and 700 Hz; and the main 

peak of the acoustic noise is located at 180 Hz. Using the vibration signals in Figure 6(a) 
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and the acoustic noise in Figure 6(b), the time-frequency contour plots of the STFT, WVD 

and SWWVD methods are illustrated in Figures 8, 9 and 10, respectively. As expected, 

the STFT image shows the frequency content in time, but the time-frequency resolution is 

poor. The WVD image shows a high resolution but with interference in the time and 

frequency domains. Thus for multicomponent signals analysis, the STFT and WVD 

methods might mislead the system conditions due to the low resolution or interference. 

However, the SWWVD image indicates that the interference is significantly reduced and 

has better resolution than the STFT method. 

 
 

Figure 6. Time series of rotating fan signals: (a) vibration, (b) sound pressure. 

 

 
 

Figure 7. Spectrum of rotating fan signals: (a) vibration, (b) sound pressure. 
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Figure 8. Time-frequency contour plots using STFT (=2) method and Figure 6 data: (a) 

vibration, (b) sound pressure. 

 

 
 

Figure 9. Time-frequency contour plots using WVD method and Figure 6 data: (a) 

vibration, (b) sound pressure. 

 

 
 

Figure 10. Time-frequency contour plots using SWWVD (=10) method and Figure 6 

data: (a) vibration, (b) sound pressure. 
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CONCLUSION 

 

The time-frequency representations of the STFT, WVD and SWWVD methods are 

presented and applied to the condition monitoring of a rotating system. The results 

demonstrate that the time-frequency image is a straightforward means to understanding 

machinery conditions. To improve the resolution of the SFFT and to overcome the 

interference of the WVD, parameter control of the smooth-windowed SWWVD method 

is demonstrated. The results show that SWWVD is a compromise version between STFT 

and WVD. The SWWVD has better resolution than STFT and less interference than 

WVD. 
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