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1University Center of FEI, São Bernardo do Campo, São Paulo, Brazil 
2University Center of Maua Institute of Technology, São Caetano do Sul, São Paulo, Brazil 

ABSTRACT – The accurate measurement of forces and torques acting on a vehicle’s chassis, 
originating from wheel-pavement interactions, is essential for optimizing suspension systems, axles, 
and other structural components. A critical challenge in optimizing wheel load cell (WLC) design is 
to enhance sensitivity without compromising mechanical robustness. To address this question, this 
study developed a six-axis load cell designed to decouple force and torque measurements, 
achieving high sensitivity and reliability. The objective was to design an optimized WLC for multi-
axis force measurement by maximizing sensitivity through a metamodel-based hybrid optimization 
framework. The methodology began with a fractional factorial Design of Experiments (DOE) to 
identify key parameters affecting load cell sensitivity and to define the optimization search space. 
This was followed by a dual-step parametric optimization process, utilizing the finite element method 
(FEM) to evaluate load cell performance and an inner-point optimization algorithm for convergence. 
After completing the DOE and FEM stages, the load cell was physically constructed and calibrated 
using a universal testing machine MTS 810, where experimental data closely matched simulation 
results, validating the design’s effectiveness. The main findings indicate that the optimized load cell 
can reliably measure six components, with a sensitivity increase of 14% compared to conventional 
designs. Numerical results from FEM analyses showed stress levels at 215 MPa, displacements 
around 0.16 mm, and a first-mode vibration frequency of 1351 Hz, meeting all structural integrity 
and performance requirements. Calibration confirmed minimal cross-talk effects, supporting the 
robustness of the final design. The developed load cell met optimal design criteria, showing 
substantial improvements in sensitivity and accuracy over existing designs, with potential 
applications in automotive, aerospace, and engineering testing. 
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1. INTRODUCTION 

The need to measure efforts in six axes induced the development of transducers [1] specifically applied to several areas 

of engineering, such as wind tunnels [2 - 4], structures [5, 6], robotics [7 - 9], biomechanics [10, 11], haptic interaction 

[12], driver-vehicle interaction [13-14], wheel [15-17] and others. Six-axle wheel force load cells (WLC) are used for 

dimensioning and experimentally verifying cars' suspension design. It is necessary to design its mechanical components to 

understand the dynamic influence of the forces and moments acting on the chassis of a vehicle, from the iterations of the 

wheel to the pavement [18]. Significant works, patents, and commercial six-axis load cells for wheels are already produced, 

subdivided into two main groups: the transformation of wheels into load cells [19] and the development of dynamometric 

cubes [16, 20]. Both categories are segmented according to the type of sensitive element used, such as resistive, capacitive, 

piezoresistive, and piezoelectric sensors. The resistive load cells are current in these applications due to their low cost, ease 

of instrumentation, and measurement in static or dynamic loads. 

A critical point in designing multiaxial force load cells is to ensure the absence of cross-talking, that is, the interference 

of one measurement channel on the others. Researchers have tried reducing the effects of cross-talking in dynamometric 

cubes using two principal methodologies: the first, based on the structural optimization that eliminates the coupling of the 

forces and moments acting on the wheel [16], and the second, based on the mitigation of the signal interference, to minimize 

the experimental error by the use of several algorithms [21 - 23]. The errors generated by the simplifications and 

dimensional approximations imply a decrease in the precision of the measurements made by the load cells. These errors 

can be divided into two main areas of study: the first is related to design in the choice of the quantity and positioning of the 

strain gages, and the second is linked to the dimensional uncertainties of the force load cell [16]. 

When discussing the technology for measuring forces and moments in road vehicles, its significance for automotive 

engineering becomes evident. [24] investigated the measurement of forces and moments at various locations on cars, 

emphasizing its impact on active safety and stability-enhancing systems, such as Advanced Driver Assistance Systems 

(ADAS) and fully automated driving. A nonlinear decoupling method utilizing a high-order polynomial model for wheel 

load cells was introduced by [25]. This method reduces the coupling error between axles and is based on an eight-beam 

structure that employs multiple linear regression to enhance accuracy, achieving a maximum error of 44%. Simultaneously, 
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[26] presented a wheel load cell calibration approach aimed at improving accuracy through an interpretable nonlinear 

decoupling model. This model, developed within a primary error polynomial framework and utilizing a hyperbolic 

activation function, demonstrated comparable accuracy to more complex models like neural networks but required fewer 

parameters, suggesting a more efficient calibration method. 

A numerical analysis approach for optimizing Wheel Force Transducer (WFT) component structures using selective 

laser melting manufacturing was developed by [27]. This approach allows for the creation of lightweight, complex 

components with superior performance for dynamic and stability analyses. The reported results indicate a weight reduction 

of nearly 40% while maintaining the original stiffness, which is crucial for operational safety. However, [28] notes that 

existing decoupling models fail to fully describe the coupling process of the Reactive Multi-Force Sensor (RMFS) when 

subjected to centralized loads, a common scenario for off-road Wheeled Mobile Robots navigating challenging terrains. 

The authors propose a corrected decoupling model that incorporates elastic stresses as an intermediate variable, replacing 

the original rotation matrix with a corrected matrix whose elements are odd harmonic functions. This approach aims to 

reduce coupling errors resulting from centralized loads. Calibration experiments demonstrated that the corrected model 

decreased the variance of the calibration error rate from 1.95% to 0.054% compared to a machine learning-based decoupling 

model.  

To achieve high stiffness, sensitivity, and minimal coupling, [29] proposed a Force Wheel Transducer featuring a 

crossbeam elastomer design made from titanium alloy. The paper introduces a Back Propagation-Particle Swarm 

Optimization (BP-PSO) decoupling algorithm that enhances the optimization process of a Back Propagation neural 

network. This algorithm aims to improve the decoupling of inter-dimensional data, addressing a challenge in accurately 

measuring force and torque across multiple axes. The sensor design achieves a sensitivity of 4 mV/V and reports 

improvements in accuracy with crosstalk reduction, with crosstalk values notably below 5% in the vertical force direction, 

marking an advancement in minimizing interference between measurement axes. In data acquisition and design 

methodology, [30] implemented a six-axis force/moment (F/M) sensor integrated with a high-efficiency data acquisition 

(DAQ) system.  

This work proposes a hybrid framework based on fractional factorial experiment and nonlinear parametric optimization, 

subject to mechanical and geometric constraints, to get the maximum sensitivity in acquiring the forces acting on the load 

cell. This proposal is considered innovative compared to previous research that only integrated DAQs in capacitive and 

optical sensors. The structural design of the sensor was optimized using the parametric optimization process method and 

validated through FEM.  

2. HYBRID FRAMEWORK 

2.1 Forces and Moments Components 

The proposed methodology elaborates on a numerical model capable of ascertaining the performance and characteristics 

of wheel force load cells. These devices can measure three forces and moments caused by the tire and track iterations. 

Figure 1(a) represents the six loads generated in the contact region of the tire, three referring to the forces and three related 

to the moments and Figure 1(b) presents the six resulting loads in the center of the wheel. 

  
(a) (b) 

Figure 1. Main forces acting on a generic wheel, a) forces acting on a generic wheel; b) reference of a wheel force load 

cell 

The components of forces and moments (FX; FY; FZ; MX; MY; MZ) expressed by the vector {F'}, which is associated 

with the orthogonal base adopted (Eq. 1), are the quantitative variables obtained by the load cell. 
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(1) 

where θ is the angle between the vehicle's fixed frame and the wheel's orthogonal base system. The variation concerning 

the X and Y axes of the car is the same, thus guaranteeing the condition of perpendiculars in the Cartesian system.  

Strain gages are generally used as embedded devices in the construction of load cells because they are small, light, 

accurate, and relatively inexpensive. With a structure loaded at a given point by a vector of forces {F}, the load cell will 

produce output signals according to Eq. (2): 

{S} = {S1; S2; S3; ... Sf-1; Sf}T (2) 

The conformity of strains portrays the relationship between the field of strains measured in the load cell and the imposed 

loading vector using the relation (Eq. 3): [31], 

{𝑆} = [𝐶𝑛]𝑛×6{𝐹} (3) 

where [Cn] represents the normalized conformity matrix of deformations. The solution of Eq. (3) for {F} is: 

{𝐹} = [𝐶𝑛]6×6
−1{𝑆} = [𝐵𝑛]6×6{𝑆} (4) 

where [Bn] symbolizes the calibration matrix of the sensor, a direct relationship between measured strength and signal 

strength.  The normalized conformity matrix [Cn] can be determined by the formulation expressed by Eq. (5) [31], 

𝑐𝑛(𝑖, 𝑗) =
𝑐(𝑖, 𝑗)

𝑓(𝑗)
 (5) 

That represents the maximum design force in the considered direction. 

According to [32], a slight relationship between the maximum and minimum eigenvalues of the calibration matrix of 

the device causes the strain compliance matrix to have a more uniform and more accurate behavior. The isotropy index of 

C0, given by Eq. (6), can calculate this condition.  

𝐶0 =
𝜑1
𝜑6

 (6) 

where φ1 and φ6 refer to the principal eigenvalues of the load cell compliance matrix, respectively. This characteristic is 

also valid for the calibration matrix [Bn]. The isotropic index depends on the device's structural configuration, the strain 

gages' positions on the load cell, and the maximum design forces for the load cell. This parameter is expected to be closer 

to 1, thus ensuring that the device has a good homogeneity in its measurements and mitigating errors while forming the 

conformity matrix [C] [31]. 

If the variable [Cn] is not purely diagonal, the effects of cross-talking between the loading forces directly influence the 

sensor's calibration matrix calculation. These coupling variations [CSC] can be accounted for according to Eq. (7) expressed 

in [31]: 

𝐶𝑆𝐶(𝑖, 𝑗) =
𝑐𝑛(𝑖, 𝑗)

∑ |𝑐𝑛(𝑖, 𝑗)|
6
𝑗=1

 (7) 

The strains obtained in the output signal of a load cell are not directly acquired and, therefore, must be measured using 

electric circuits [31]. One of the most used circuits is the Wheatstone bridge, which uses complete configuration. It is 

assumed that all gages present in the circuit have the same magnitude of Strain (ε), defined as Eq. (8): 

𝜀 =
𝑉𝑠
𝐾𝑠𝑉𝑒

 (8) 

The bridge sensitivity [Se] of a bridge is given by Eq.  (9): 

𝑆𝑒 =
𝑉𝑠
𝑉𝑒

 (9) 

where Vs and Ve are the output and input voltages, respectively, substituting Eq. (8) into (9) gives: 

𝑆𝑒 = 𝐾𝑠𝜀 (10) 
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A sensitivity greater than 1.0 mV / V is considered reasonable for general load cell applications using metallic Strain gages 

[31]. In multiaxial force load cells, the sensitivity parameter is used to quantify the total deformation measured in the 

electric circuit. Thus, according to [33], sensitivity can be obtained in the load cells by: 

𝑆𝑒 = ‖𝐶𝑖‖ (11) 

where ||Ci|| represents the Euclidean standard of the i-th line of the strain compliance matrix. 

2.2 Force Load Cell 

The geometry adopted in the wheel is based on a design performed at the University of Pretoria [23], and the geometric 

characteristics of the final assembly of the device is presented in Figure 2, a load cell coupled in a SAE (Society of 

Automotive Engineers) Baja car. 

 

Figure 2. Exploded view of the final assembly and the SAE Baja car 

According to Figure 3, the proposed WLC is characterized by (i) four deformable structures, the beams; (ii) four regions of 

flexibility, the plates; (iii) the central region, where the external loads are applied to the assembly and (iv) the area of 

attachment, sector of coupling of the component to the vehicle's wheel. Therefore, nine independent geometric parameters 

were defined (Figure 3). These constitute the structural basis of the load cell base geometry. 

 

b1 base of the sensitive element in the central region 
b2 base of the sensitive element at the extremity 
h1 height of the sensitive element in the central region 
h2 height of the sensitive element at the extremity 
L length of the sensitive element 
Lf length of the plate structure 
t plate structure thickness 
d sensitive element groove 
r distance from the beginning of the sensitive element to the central region 
  

Figure 3. Detail of the parameters of the load cell structure 

The material adopted for this design was AA7075-T6 aluminum alloy, and Table 1 shows the mechanical properties.  

Table 1. Mechanical properties - AA7075 - T6 

Mechanical characteristics – AA7075-T6 

Modulus of elasticity – E 71.7 GPa 

Poisson coefficient - ν 0.33 

Density - ρ 2810.0 kg / m³ 

Yield stress - σesc 503.0 MPa 

Mechanical resistance stress - σres 572.0 MPa 

Fatigue stress - σfad * 185.0 MPa 

*Mechanical parameter for 5x109 completely 

reverses fatigue cycles 

2.3 Model 

The load cell stress numerical solution model was element size 1.5 mm, method tetrahedrons, nodes 460023, and 

elements 299577. The load vector was based on the values usually used to design the entire SAE Baja car set, as follows: 

Force X = 5500N, Force Y = 4268N, Force Z = 2132 N, Torque X = 50 Nm, Torque Y = 50 Nm and Torque Z = 1485 Nm. 
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A sketch is shown in Figure 4(a) for identifying the 24 strain gage's location points employed in the acquisition system, and 

Figure 4(b) for the respective six strain measurement bridges. 

 

 

 

 

 

(a) (b) 

Figure 4. (a) Positioning of the Strain gages in the structure of the force load cell, and (b) bridges I to VI measure the 

forces Fx, Fy, Fz, and moments Mx, My, and Mz, respectively 

2.4 Parametric Optimization 

The objective of the methodology is to maximize the total load cell sensibility of (Eq. 11) and can be expressed by the 

objective function Eq. (12): 

𝑓1(𝑥) = (‖𝐶1‖ + ‖𝐶2‖ + ‖𝐶3‖ + ‖𝐶4‖ + ‖𝐶5‖ + ‖𝐶6‖), (12) 

The indices of the deformation conformance matrix represent the sensitivity of each of the six channels of the load cell, 

shown in Figure 4 and Eq. (13): 

𝑐1,𝑗 =
1

4
(𝜀1 − 𝜀2 + 𝜀3 − 𝜀4)              𝑗 = 1 𝑡𝑜 6 

(13) 

𝑐2,𝑗 =
1

4
(𝜀5 − 𝜀6 + 𝜀7 − 𝜀8)               𝑗 = 1 𝑡𝑜 6 

𝑐3,𝑗 =
1

4
(𝜀9 − 𝜀10 + 𝜀11 − 𝜀12)           𝑗 = 1 𝑡𝑜 6 

𝑐4,𝑗 =
1

4
(𝜀13 − 𝜀14 + 𝜀15 − 𝜀16)         𝑗 = 1 𝑡𝑜 6 

𝑐5,𝑗 =
1

4
(𝜀17 − 𝜀18 + 𝜀19 − 𝜀20)         𝑗 = 1 𝑡𝑜 6 

𝑐6,𝑗 =
1

4
(𝜀21 − 𝜀22 + 𝜀23 − 𝜀24)        𝑗 = 1 𝑡𝑜 6 

2.5 Constraints 

The inequalities constraints (Figure 5) are imposed as functions limiting the design of the load cell and are fragmented 

into two main groups, the geometric constraints, exclusively dependent on the wheel dimensions, and the mechanical 

limitations linked to the responses obtained in the structure of the load cell. The dimensional inequality constraints confirm 

that the load cell, obtained during the parametric optimization procedure, will comprise the wheel's internal region. 

 

Figure 5. Mechanic and geometric constraints imposed by the vehicle wheel 
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2.6 Hybrid Optimization 

Since the optimization problem is nonlinear and non-convex, its numerical solution depends on the initial estimate. One 

must choose a favorable region to start the gradient-oriented search. The proposed methodology employs fractional 

planning of design of experiments (DOE) simulation to obtain an initial estimate for an optimization problem that uses the 

same design variables as the DOE. The formulated optimization problem involves the determination of the total load cell 

sensibility using the finite element method (FEM).  

 

Figure 6. Algorithm of the hybrid optimization method 

Since there is no guarantee of convergence of the optimization problem, the proposed method incorporates a scheme of 

redefining the ranges of the DOE variables whenever convergence fails. When convergence occurs, we offer to solve a new 

optimization problem based on the previous convergence. The second optimization is conducted using a method different 

from the first one, expecting that the local minimum obtained differs from the first. Again, convergence failure may occur, 

forcing a new choice of number range for the DOE, and the process repeats from the beginning. When both optimization 

schemes converge, the more extreme value is chosen as the solution. The flowchart in Figure 6 illustrates the proposed 

methodology.  

The Statistica® software obtained the fractional factorial experiment methodology points. The contours of the system 

are defined by the limits of the parametric optimization routine and can be visualized in Table 2. The sub-optimum 

sensitivities obtained with the design of experiments are used as starting points of the parametric optimization routine using 

the Inner Point Optimization Algorithm. The endpoint of the iteration is defined as the acceptable optimal condition of the 

system [34]. 
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Table 2. The fractional factorial parameters 

Points b1 b2 h1 h2 L Lf t d r 

1 10 40 40 40 41 94 0.5 1.5 30 

2 10 10 10 40 41 94 8.0 8.0 30 

3 10 40 10 10 52 94 0.5 8.0 30 

4 10 40 10 40 52 41 8.0 1.5 32 

5 40 10 10 40 52 94 0.5 1.5 32 

6 40 40 40 40 52 94 8.0 8.0 32 

7 10 10 40 10 52 94 8.0 1.5 30 

8 40 10 40 10 41 94 0.5 8.0 32 

9 40 10 10 10 52 41 8.0 8.0 30 

10 40 40 10 40 41 41 0.5 8.0 30 

11 10 40 40 10 41 41 8.0 8.0 32 

12 40 40 40 10 52 41 0.5 1.5 30 

13 40 10 40 40 41 41 8.0 1.5 30 

14 10 10 10 10 41 41 0.5 1.5 32 

15 10 10 40 40 52 41 0.5 8.0 32 

16 40 40 10 10 41 94 8.0 1.5 32 

3. RESULTS AND DISCUSSIONS 

The sub-optimum sensitivities obtained by the experimental design method (Figure 6) are shown in Table 3. 

Table 3. Objective functions at the points defined by the experimental design 

 
Total sensibility 

[mV/V] 
  

Total sensibility 

[mV/V] 

Experiment 1 4.014  Experiment 9 0.335 

Experiment 2 0.279  Experiment 10 1.175 

Experiment 3 2.539  Experiment 11 0.726 

Experiment 4 0.335  Experiment 12 3.598 

Experiment 5 3.877  Experiment 13 5.329 

Experiment 6 1.488  Experiment 14 4.071 

Experiment 7 0.313  Experiment 15 1.044 

Experiment 8 4.403  Experiment 16 4.049 

Considering experiment #13, which presented the best sub-optimal solution of the experimental design, the results of the 

available load cell and the project variables are presented in Figure 7 and Table 4. Figure 7 presents the results for 

experiment #13, highlighting three aspects: Figure 7 (a) the von Mises stress criterion, which illustrates the distribution of 

stress within the material. Figure 7 (b) shows the displacements, indicating how the material deforms under applied forces. 

Figure 7 (c) is the first vibration mode, indicating the primary frequency at which the structure vibrates.  

The mechanical analysis of the load cell model produced significant values regarding its structural integrity and 

performance characteristics when subjected to simulated conditions. In Figure 7(a), the von Mises stress distribution 

revealed stress levels approaching approximately 215 MPa at the base of the sensitive element within the load cell. In 

addition to the stress analysis, Figure 7(b) shows that the displacement analysis indicated an approximate movement of 

0.16 mm in the sensitivity regions of the load cell. This displacement measurement is especially relevant as it highlights 

the areas where external forces most affect the component. Therefore, these locations are the most appropriate for the load 

cell instrumentation. In Figure 7(c), the analysis of the component's vibrations at 1351 Hz provided essential insights into 

its dynamic behavior, particularly in the first vibration mode. This frequency represents a key resonance point, where the 

structure is more prone to oscillations. The resulting value is close to that obtained by Nouwens [23]. 
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(a) (b) 

  

 
(c) 

Figure 7. Results for experiment 13, (a) von Mises Stress criterion, (b) displacements and (c) first vibration mode 

Table 4. Summary of parametric optimization results for experiment 13 

Variable Value  Variable Value 

b1 [mm] 37.74  Von Mises Stress [MPa] 131.0 

b2 [mm] 15.42                                                     Displacement [mm] 0.163 

h2 [mm] 15.29  Natural Frequency [Hz] 1351 

L [mm] 41.75  Sensitivity - Channel 2 [ mV / V] 1,180 

Lf [mm] 94.00  Sensitivity - Channel 2 [ mV / V] 0.916 

t [mm] 4.26  Sensitivity - Channel 3 [ mV / V] 0.426 

d [mm] 1.47  Sensitivity - Channel 4 [ mV / V] 0.258 

r [mm] 29.96  Sensitivity - Channel 5 [ mV / V] 0.258 

b2 [mm] 15.42  Sensitivity - Channel 6 [ mV / V] 2.288 

L [mm] 41.75  Sensitivity – Total [ mV / V] 5.326 

The most influential parameter in determining the sensitivity is the groove of the sensitive element d since it is directly 

related to the region of installation of the gages present in the system of acquisition of the load cell. Consequently, any 

alteration in this region interferes intensively with the result obtained. However, it was found that the system is limited by 

the restriction of the maximum working stress, which makes it impossible to reduce the dimension of the beam, which 

would result in a higher sensitivity of the measured signal. 

Another dominant parameter is the thickness in the region of the plates. It directly influences the rigidity of the device, 

thus mitigating the strains obtained in the sensitive elements. The measured stress, close to the region between the boards 

and the beams, restricts parameter d. Variable b1 is directly related to the moments of inertia in the structure of the sensitive 

element. Therefore, any variation in this parameter interferes punctually with the system's sensitivity. However, like the 

other parameters, it is delimited by the stresses and the geometric constraint imposed on the system. The length of the 

component's sensitive element, in the same way, that the plate thickness parameter, affects the system rigidity, and its 

increment makes it more flexible. At the same time, its decrease imposes a greater rigidity on the assembly. The b2, r, and 

h2 parameters are less sensitive in determining the deformations. Then, the normalized compliance matrix is: 

[𝐶𝑛] =

[
 
 
 
 
 
0.1020 0 0 0.0003 0 0
0 0.1020 0 0 0.0003 0

−0.0001 0.0001 0.0947 0 0 0
−0.0060 0 0 0.0025 0 0

0 0.0060 0 0 0.0025 0
0.0001 −0.0001 0.0204 0 0 0.0073]

 
 
 
 
 

× 10−6 (14) 
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The inverse of the strain compliance matrix gives the calibration matrix of the force load cell is: 

[𝐵𝑛] =

[
 
 
 
 
 
0.0097 0 0 −0.0011 0 0
0 0.0099 0 0 −0.0011 0
0 0 0.00106 0 0 0

0.0236 0 0 0.3994 0 0
0 −0.0239 0 0 0.4045 0

−0.0017 0.0017 0.2943 0 0 1.3624]
 
 
 
 
 

× 109 (15) 

The isotropic index can be verified according to the result presented by: 

𝐶0 = 8,84 (16) 

Subsequently, there is cross-talk in the load cell acquisition system, according to: 

[𝐶𝑆𝐶] =

[
 
 
 
 
 
0.9983 0 0 0.1074 0 0
0 0.9983 0 0 0.1074 0

0.0010 0.0010 0.9774 0 0 0
0.0580 0 0 0.9942 0 0
0 0.0589 0 0 0.9942 0

0.0010 0.0010 0.2111 0 0 0.9999]
 
 
 
 
 

 (17) 

The sensitivity vector of the acquisition system is: 

{𝑆𝑒} =

{
 
 

 
 
1.18
0.92
0.43
0.26
0.26
2.29}

 
 

 
 

mV/V (18) 

Therefore, the vector of forces measured by the load cell is:  

{𝐹} =

{
 
 

 
 

5500
4268
2132
50000
50000
1485000}

 
 

 
 

N (19) 

The first three parameters in Eq. 19 are related to the design forces and are in N, while the others represent the moments 

imposed on the model in Nm. The techniques used to validate the load cell numerical model were:  

a) Three-dimensional model resolution of the load cell by the finite element method using Ansys ® software;  

b) Load cell calibration after construction and instrumentation (Figures 8, 9, and 10) using HBK's QuantumX Data 

Acquisition System. The force transducer calibration values, in N and Nm, presented in Table 5, were calculated for the 

standard sensitivity of 2 mV/V, corresponding to a strain of 4000 x 10⁻⁶ in the Wheatstone bridge for each measurement 

channel. One can notice a good agreement between the values of the efforts and the values of the models. The 

inconsistencies are due to the errors obtained from the reverse operation performed under the strain conformance matrix. 

 

Figure 8. (a) Load cell instrumentation and (b) calibration test 

Figure 8(a) presents the load cell meticulously prepared and instrumented adequately with strain gauges positioned at 

the specific points of interest. These points were identified based on the simulation of the displacements observed in Figure 

7(b), which corresponded to the base of the sensitive element within the load cell. In addition, Figure 8(b) illustrates the 
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load cell once it had been mounted onto the adaptation device designed for installation on the MTS 810 universal testing 

machine. The MTS 810 machine was utilized to apply the various loads necessary during the calibration process of the load 

cell. The adaptation device's design was executed carefully to ensure a robust and secure attachment to the grips of the MTS 

810 universal testing machine. Furthermore, it also guaranteed the precise centralization of the load cell on the MTS 810, 

thus enhancing the accuracy and reliability of the testing and calibration procedures. 

Figure 9 displays the calibration curves for channels 1, 2, and 3, each represented by distinct colors and corresponding 

loading points. Channel 1, in red, utilizes four loading points for calibration purposes, while channel 2, in blue, incorporates 

five loading points for its calibration curve. Channel 3, shown in black, also employs five loading points for calibration. 

All calibration loads were generated using the MTS 810 universal testing machine. The calibration methodology involved 

linear regression to model the relationship between the dependent Strain measured in micrometers (μm) on the load Force 

(N). The resulting regression equations for each channel have been included alongside the legends for each respective 

channel, providing a comprehensive overview of the relationships established through the calibration process. Channels 1 

and 2 exhibited similar behavior with an approximate strain limit of 3500 (μm) and channel 3's strain limit of approximately 

1500 (μm). 

 

Figure 9. Calibration curves for channels 1, 2 and 3 

Figure 10 presents the calibration curves for channels 4, 5, and 6, showing their respective load points and strain limits. 

Channel 4 is represented in red and was calibrated using five load points, while channel 5, displayed in blue, also underwent 

calibration with five load points. Channel 6, shown in black, was calibrated with only two load points. All calibrations were 

performed using the MTS 810 universal testing machine, employing a linear regression method to fit the data. The 

regression equations for each channel are provided in the legend next to their corresponding colors. The Strain (μm) relative 

to the load Moment in Nm. Notably, channels 4 and 5 exhibited similar behavior, reaching a strain limit of 1000 μm, and 

channel 6 displayed a higher strain limit of approximately 2500 μm. The performance criteria are experimentally verified 

on the wheel force load cell to compare them with the numerically obtained parameters, either by the simplified 

methodology or the three-dimensional model analyzed. Thus, the strain conformity matrix is experimentally determined, 

and the errors associated with mathematical modeling are shown in Table 5, where indexes 1 and 2 represent the simplified 

and three-dimensional models, respectively. At the same time, subscript 3 represents the parameter obtained experimentally. 

 

Figure 10. Calibration curves for channels 4, 5 and 6 

Notably, in Table 5, the experimental strain conformity matrix has terms in all positions of the matrix; these errors are 

due to uncertainties in the positioning of the gages in the device, as well as possible failures in the strain-gages adherence 

and resistivity interference of the electrical circuit wires. Therefore, the errors evaluated only include comparing the terms, 

which effectively represent the phenomenon of cross-talking in the measurement system. Thus, it is verified that more 

significant strains were obtained than previously calculated in the numerical analysis for channels 1, 2, and 6, which later 

represented a greater sensitivity to the system. In contrast, smaller signals are verified in the electrical circuits 4 and 5, 

lowering load cell sensitivity. 
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Table 5. Comparison between the load cell compliance matrices [Ct] 

[𝑪𝒕]𝟏 =

[
 
 
 
 
 
561.24 0 0 13.43 0 0
0 435.53 0 0 13.43 0

−0.57 0.44 201.90 0 0 0
−33.07 0 0 124.39 0 0
0 25.69 0 0 124.39 0
0.57 −0.44 43.61 0 0 1089.95]

 
 
 
 
 

× 𝟏𝟎−𝟔 (20) 

Numeric model  

[𝑪𝒕]𝟐 =

[
 
 
 
 
 
639.00 0 0 14.50 0 0
0 494.00 0 0 14.50 0
0 0 228.00 0 0 0

−36.50 0 0 142.00 0 0
0 27.50 0 0 142.00 0
0 0 49.00 0 0 1220.00]

 
 
 
 
 

× 𝟏𝟎−𝟔 (21) 

Three-dimensional model  

[𝑪𝒕]𝟑 =

[
 
 
 
 
 
749.00 −14.80 −17.20 20.70 0.90 42.00
11.20 571.70 0.70 1.00 22.50 −22.00
−6.50 −60.00 242.00 9.30 −18.00 40.00
−44.20 2.20 16.00 106.00 −0.10 72.00
77.50 32.70 −16.50 8.00 107.00 −48.00
−22.00 −37.50 58.10 0.30 −14.70 1540.00]

 
 
 
 
 

× 𝟏𝟎−𝟔 (22) 

Real model  

The errors obtained in the comparison between the simplified and the experimental model is more significant since they 

consider, besides experimental errors, the numerical inaccuracies caused by the simplifications imposed on the model. 

However, it is noted that the measured deviations are proportional between the simplified methodology and the three-

dimensional model, thus validating the method used in elaborating the force load cell. The force transducer by Nouwens 

[23], considered FX = FY = FZ = 5200N e MX = MY = MZ = 1400Nm, and the concept incorporated statically indeterminate 

four-cantilever-spoke and hub force transducers. Nouwens's project proceeded to an optimized geometry using a 

mathematical model, and strain compliance was calculated using the FE model. Low sensitivities were obtained compared 

with the present project. Table 6 compares the results obtained by the two conceptions. Considering the design forces and 

moments, the current concept is better balanced than the Nouwens concept, contributing to an increased sensitivity of the 

force transducer. 

Table 6. Comparisons between Nouwens [23] concept and Delijaicov, et al. concept 

Nouwens, concept [23] Delijaicov, et al. concept 

FX = FY =FZ = 5200 N e MX = MY = MZ = 1400Nm 
FX = 5500N, FY = 4268N, FZ = 2132 N, MX = 50 Nm, MY = 50 

Nm, MZ = 1485 Nm 

[𝑪𝒕] =

[
 
 
 
 
 
341.60 0 3.10 34.00 0.90 1.60
0 340.90 2.50 −0.70 24.50 6.70

−13.70 13.90 306.10 −0.90 −1.00 −12.40
4.70 0 0 1581.00 0 0
0 −0.10 0 −0.10 1583.00 −11.10

14.40 −15.30 −0.20 −1.90 9.70 803.7 ]
 
 
 
 
 

𝑥10-6 [𝑪𝒕] =

[
 
 
 
 
 
749.00 −14.80 −17.20 20.70 0.90 42.00
11.20 571.70 0.70 1.00 22.50 −22.00
−6.50 −60.00 242.00 9.30 −18.00 40.00
−44.20 2.20 16.00 106.00 −0.10 72.00
77.50 32.70 −16.50 8.00 107.00 −48.00
−22.00 −37.50 58.10 0.30 −14.70 1540.00]

 
 
 
 
 

𝑥10-6 

1st Modal Frequency (min) = 1153 Hz 1st Modal Frequency (min) = 1351 Hz 

Displacement (máx) = not shown Displacement (máx) = 0.163 mm 

Given the geometric symmetry of the two force transducers, cross-talking should be zero, and what was observed can be 

justified by the non-rigorous positioning of the strain gages and the possible loss of measurements during machining. 

Several authors [15, 16, 17, 20, 21, 22, 25, 26] have presented concepts of force transducers in wheels with exciting 

methodologies. However, these works cannot be directly compared to the concept discussed in this paper due to the 

differences in the geometries and types of efforts used. 

4. CONCLUSION 

In this work, a decoupled six-axis wheel load cell was successfully designed and optimized using a hybrid parametric 

optimization approach based on metamodeling techniques. The process was carefully structured, beginning with a fractional 

factorial design of experiments (DOE) to obtain an initial estimate of the optimization parameters, followed by the use of 

the finite element method (FEM) to compute the total load cell sensitivity. A gradient-based optimization search was 

subsequently performed using the Inner Point Optimization Algorithm, with a fallback mechanism that allowed the 

redefinition of DOE variable ranges if convergence was not achieved. This iterative approach ensured that the optimization 

continued until convergence was reached. 
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The methodology employs two different optimization schemes. Once the convergence was attained in the first 

optimization, a new optimization problem was defined and solved using a different method. This dual-optimization strategy 

was designed to explore alternative local minima and enhance the robustness of the final solution. When both schemes 

converge, the more extreme value between the two is selected as the final solution. This scheme ensured the optimal design 

was robust and could achieve the desired performance characteristics. The DOE simulation results were used as the starting 

point for the parametric optimization. The final result was a load cell capable of accurately measuring the six force and 

moment components. The load cell was further validated using a combination of numerical modeling through FEM 

simulations and experimental calibration. The calibration process, carried out using the MTS 810 universal testing machine, 

showed a strong correlation between the numerical model and the experimental results, confirming the reliability of the 

design. 

Moreover, mechanical analysis, including von Mises stress distribution, displacement analysis, and vibration mode 

analysis, was conducted further to evaluate the load cell's structural integrity and performance. The load cell exhibited stress 

levels around 215 MPa, displacements of approximately 0.16 mm, and a first vibration mode frequency of 1351 Hz, all 

within acceptable ranges for its intended application. Through this comprehensive design process, simulation, and 

experimental validation, the developed load cell was shown to meet the criteria for six-axis force and moment measurement. 

Additionally, the comparison between this design and previous load cell designs in the literature demonstrated good 

performance in sensitivity and accuracy, particularly in reducing cross-talk effects. This load cell contributes to the field of 

force measurement, with potential applications in automotive, aerospace, and mechanical engineering testing environments 

where precise multi-axis load measurements are critical. 
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