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ABSTRACT - Ti-6Al-4V, a titanium alloy, is widely employed in various engineering sectors due to 
its attractive combination of strong corrosion resistance and specific strength. However, titanium 
alloys frequently result in serrated chips, which present considerable machinability issues compared 
to other materials. The cutting medium plays a vital role in the chip formation mechanism, further 
affecting the machined part integrity and thermo-mechanical properties. Chip morphological 
parameters such as shear angle, compression ratio, and segmentation degree are essential aspects 
of estimating machined part surface roughness, tool wear, cutting forces, and energy consumption. 
Therefore, it is important to understand the entire mechanism of chip formation in terms of chip 
morphology in high-speed cutting. This fundamental research aims to analyze and compare the 
shear angle model and chip formation of titanium alloy Ti-6Al-4V for cutting speeds ranging from 50 
m/min to 150 m/min and feed rates ranging from 0.12 mm/rev to 0.24 mm/rev under dry and 
cryogenic cutting environments. Single-point turning experiments were conducted on Ti-6Al-4V 
workpieces with uncoated tungsten carbide inserts (without chip breakers), which are advantageous 
for heat transfer. After the chip analysis, it was observed that the shear angle obtained practically 
with model-4 is the most appropriate model for shear angle calculation, and the cryogenic cutting 
medium is suitable for Ti-6Al-4V machining. At the feed rate of 0.12-0.24 mm/rev and cutting speed 
of 50-150 m/min, the shear angle in dry-medium machining ranges from 32° to 42°, while in 
cryogenic medium machining, it ranges from 34.6° to 44.6°. Overall, a larger shear angle has been 
observed in cryogenic turning compared to dry turning, which is advantageous for reduced cutting 
forces owing to a lesser shear plane. The tool-chip contact length, which is the intimate contact 
between the tool face and chip surface, significantly decreases under cryogenic media. A smaller 
tool-chip contact length results in an elevated shear angle, which improves process sustainability 
and economy during cryogenic turning, as described. 
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1.0 INTRODUCTION 

Economics, environment and social sustainability are the three main stones of the sustainability foundation, which 

can be achieved by minimizing the machine tool’s energy utilization and improving the cutting tool’s life [1], [2]. In 

manufacturing industries, the electrical energy consumed in the machining process contributes significantly to the overall 

energy used [3]. In the industry, the machining operation is mainly utilized to get the desired part, having a designed 

geometric configuration and surface finish after removing the unwanted material with the help of a cutting tool from the 

initial raw material. The undesirable material is removed in the form of chips. The energy spent on the tool-chip interface 

while removing a specific volume of a material is commonly called Specific Cutting Energy (SCE) and is based on 

machining conditions and the type of chips produced [4], [5]. There are three basic types of chips (shown in Figure 1): 

continuous without build-up-edge (BUE), continuous with BUE, and serrated or segmented chips. The continuous chips 

are produced during the turning of ductile material under proper conditions, while the build-up-edge (BUE) is produced 

during the turning of difficult-to-cut material to break the chips. However, the particles of the cutting tool’s BUE may 

deposit on the freshly machined surface. Segmented chips are produced in the machining of titanium alloys and lead to a 

reduction in tool life and poor surface finish, which ties up to an increase in the energy needed and less mechanical 

efficiency of the machined parts [6].  
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(a) (b) (c) 

Figure 1. Types of chips: (a) continuous chip without BUE; (b) continuous chip with BUE; (c) segmented chips 

Titanium alloys are classified as α alloys, near α, α-β alloys, and β alloys, and Ti-6Al-4V is an α-β alloy (Grade 5) 

that has high-ranking properties at elevated temperatures, such as high fatigue, corrosion and strength resistance among 

these alloys. This alloy is a highly versatile titanium alloy and is utilized across multiple industries: aerospace, for 

airframes, landing gear, and engine components, including turbine blades and compressor parts; marine applications, such 

as propeller shafts, hulls, and underwater structures; and biomedical fields, for knee joints, bone plates, and spinal fusion 

cages [7], [8]. Ti-6Al-4V is lighter in weight as compared to steel and offers the benefits of lower fuel consumption and 

efficient working at high temperatures in jet engines. Due to this, 40% of this alloy is consuming the aeronautical industry 

to fabricate engine structures or parts either alone or in fiber metal laminate structure [9],[10]. Apart from its good 

mechanical properties, this alloy is considered difficult to cut alloy on account of its high chemical reactivity, low elastic 

resistance, and low thermal conductivity [11]. Tool and work-piece interaction during machining is more chemical in 

nature, which makes Ti-6Al-4V alloy hard to cut. The critical challenges of machining this alloy are tool life, energy 

consumption, and surface quality, which still need to be overcome [12],[13],[14]. High-speed machining (HSM) is 

basically the cutting speed above which complete shear localization is established in the primary shear zone that has 

developed immense interest among the research community to increase the machining efficiency of Ti-6Al-4V alloy [15], 

[16]. In the machining of titanium alloy, the primary shear zone is where the primary deformation of the workpiece begins, 

experiencing significant deformation. Conversely, the secondary zone is where the chip undergoes further deformation 

and segmentation, as illustrated in Figure 1 and Figure 2. The secondary zone plays a crucial role in determining the final 

chip morphology. The high-speed machining range for titanium alloys begins from 100 m/min, which is a relatively low 

speed [17].  

 

Figure 2. SEM image of segmented chips achieved in the present study indicates primary and secondary zones 

Finally, serrated chips, also known as saw teeth, produced during the machining of titanium alloy at relatively low 

cutting speeds, lead to variation in the cutting forces and tool vibration, resulting in tool failure and more energy 

consumption. There are two main well-known theories that explain segmented chip formation: adiabatic shear theory and 

periodic crack theory [18]. According to the adiabatic theory, the thermoplastic shear instability happens in the primary 

shear zone, which is the root cause of serrated chip formation. It is believed that thermoplastic instability starts when the 

thermal softening rate exceeds the strain and strain hardening. This theory is supported by Semiatin [19], Molinari et al. 

[20], Sutter [21], Joshi et al. [22] and Komanduri et al.[23]. On the other hand, the periodic crack theory proposes that 

segments are formed due to the initiation of cracks periodically from the chip’s free surface, which further propagates to 

the tool tip that weakens the adiabatic shear. This theory was campaigned by Nakayama et al. Vyas, Elbestawi et al. [24]–

[26]. Overall, the discrepancy between these two theories is whether the slide surface of the segment is due to the adiabatic 

shear or not. Nevertheless, this mechanism is not fully comprehended [27]. 
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In orthogonal cutting, chip morphological parameters comprise shear angle, chip peak and valley height, crack pitch, 

tooth pitch, equivalent deform thickness or segment length, shrinkage factor, and segmentation degree, etc., are essential 

features to estimate process stability in terms of the machined part integrity, cutting forces, tool wear and energy 

consumed [28]. The shear angle (𝜑) is the angle between the shear plane and the surface of the workpiece or cutting 

velocity, which is helpful in understanding the mechanism of chip formation. It is the evidence of the facility with which 

the material is cut as lower cutting temperature, lower power requirement, and lower specific shearing energy are the 

benefits of a higher shear angle [29]. A high shear angle yields low cutting temperature and, consequently, less tool wear, 

which reduces the chances of residual stresses and results in improved fatigue life, dimensional stability, and overall 

mechanical performance of the parts. This important morphological parameter is generally calculated theoretically using 

a function of chip thickness ratio (ratio of undeformed chip thickness to deformed or actual chip thickness) and practically 

using chip complementary angle. For theoretical calculations, a single-point turning operation assumes that the 

undeformed thickness is equal to the tool feed rate. However, the challenge lies in accurately calculating the actual chip 

thickness. Using a micrometer may not be the best approach to tackle this issue due to the rough back of the machined 

chip, which can yield inaccurate results [30]. The average chip thickness that is commonly measured with a micrometer 

shows a variation of 10 % to 25 % from their mean values [31]. So, appropriately mounted and ground samples of chips 

can be analyzed under a metallographic microscope to measure chip thickness accurately. However, the problem remains 

unsolved, as there are some controversial views that exist in which geometric parameters are considered for segmented 

chips, either by means of peak and valley height or segment length, which is used as deformed thickness.  

Numerous studies have been published that analytically examined the Ti-6Al-4V alloy chip shape and production 

mechanism and created theoretical models [32], [33]. Regardless, numerous interacting variables in the chip development 

process make the analytical studies more complex for application. There is a need for the application of simplifications 

that frequently result in inaccurate estimates of various chip-geometric parameters [34]–[36]. Other studies numerically 

investigate the serrated chips mechanism using finite element (FE) methods [36]–[42]. The usefulness of these models is 

limited when the governing laws of the materials being used (tools and workpieces) are not well established. This often 

results in inaccurate estimation of certain chip geometric parameters [34],[43]. Experimental studies to calculate chip 

morphological parameters were also carried out by real-time image/video capturing and using metallographic procedures 

(hot mounting, grinding/polishing and chemical etching) along with optical microscopy or scanning electron microscopy 

(SEM). After that, digitally captured images are imported into the image processing software to calculate the chip's 

geometric parameters. Many studies have been done to investigate the effect of the most common machining parameters, 

such as cutting speed and tool feed rate, on the morphology of the segmented chip. The main issue is with the estimating 

of a critical geometric parameter, which is the shear angle. As already discussed, it is the relation between deformed 

(actual thickness) and un-deformed chip (feed rate) thickness and the issue is regarding the consideration of the actual 

chip thickness after the cut. Either it will be a segment length or mean of peak and valley height. So, in this regard, there 

are four main shear angle calculation methods/models that are being used by most of the researchers for estimation, which 

are contrasted below in Table 1, along with cutting material and environment.  

Table 1. Summary of shear models 

Shear Angle Model 
Type of Process and 

Work Piece Material 
Ref. 

Model-1  Chip Thickness Ratio: r = 
𝑃𝑐

𝑃
 

Shear Angle:  𝜙 = 𝑡𝑎𝑛−1(𝑟) 

Where, Pc is tooth’s pitch and P is crack pitch 

Dry-Turning 

Carburized steel, 

Ti-6Al-4V 

[44] , [45] 

Model-2  Chip Thickness Ratio: 𝑟 =
h1

h2
 

Shear Angle:   𝜙 = tan−1(r) 

where h1 is undeformed thickness, which is equal to feed rate in 

single point turning, and h2 is after cut thickness, which is chip 

segment length 

Dry-Turning 

Ti-6Al-4V, 

AISI 1045 steel 

[46], [47] 

Model-3  Chip Thickness Ratio: 𝑟 =
𝑡0

𝑡𝑐
 

 𝑡𝐶 =
h𝑃+h𝑣

2
 

Shear Angle:   𝜙 = tan−1(r) 

t0 is feed rate and 𝑡𝐶  is the actual chip thickness (mean value of 

chip tooth’s peak and valley)  

Dry-Turning 

Ti-6Al-4V 

[34], [48]–[51] 

Model-4  Shear Angle: 𝜙 =
𝜋

2
− 𝜃′ 

where, 𝜃′ is segment angle 

Dry-Turning 

Ti-6Al-4V 

[52]–[56] 

Thus, from the literature study, it is clear that four methods or models are being used to estimate the shear plane angle 

for serrated chips (shown in Table 1). The first three models are developed based on chip thickness ratio in terms of pitch 

ratio or tooth mean height, and it is supposed that a continuous chip is produced when calculating the chip thickness ratio. 

These models are theoretical models. Model 4 is a practical model based on the experimentally measured angle by 
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subtracting the segment complementary angle from 90◦. On the other hand, segmented chips produced under a cryogenic 

cutting environment were not morphologically assessed in a cryogenic environment. Thus, there is a need to research 

which model and cutting medium is the most suitable for shear plane angle and compression ratio. This can contribute to 

the development of an SCE map and wear map (interlinked with temperature and residual stresses distribution), which 

may further help the shop floor to achieve dimensionally precise and mechanically efficient parts.  

2.0 METHOD AND MATERIALS 

A solid bar of aerospace titanium alloy Ti-6Al-4V (Grade 5) was selected as a workpiece material. The chemical 

composition (% weight) of the selected alloy is shown in Table 2. The turning experiments were carried out using a 

computer numerically controlled (CNC) turning machine with the characteristics indicated in Table 3, both in dry and 

cryogenic environments. Conventional coolant systems and MQL present several challenges, including increased cutting 

forces resulting in reduced sustainability and high disposal costs.  Similarly, chilled air throw can result in uneven cooling 

across the workpiece and cutting tool, adversely affecting surface finish and tool life. As a result, these conditions were 

not included in the present study [57]. Thus, in this study, liquid nitrogen was used as a cryogenic media during a 

cryogenic turning environment. This was achieved using a cylinder with a capacity of 160 liters, along with a vacuum-

insulated cryogenic decanting pipe and two copper nozzles, each with a diameter of 4 mm. The pressure and flow rate 

were maintained at 20 psi and 4 LPM, respectively. Dual nozzles, positioned at the flank and rake face, were employed 

to maximum efficiency [58]. Uncoated tungsten carbide inserts H13A (rhombic 80°) mounted on tool holder “SCACL 

1616 K 09-S” and used to perform turning experiments. Although coated inserts provide the benefits of high wear 

resistance, they also provide less heat dissipation, which is disadvantageous for Ti-6Al-4V due to their low thermal 

conductivity [59]. Less heat dissipation may affect the machined part's thermo-mechanical properties and surface 

integrity. The turning tool inserts have zero rack angle and 7° clearance angle with no chip breaker, which were chosen 

based on published work as well as on the recommendations of tool manufacture for Ti-6Al-4V. The actual machining 

setup, along with cutting inserts provided by SANDVIK COROMANT is shown in Figure 3.  

Table 2. Chemical composition of Ti-6Al-4V 

Chemical composition (%) 

Ti V Al Fe Cu Cr 

89.44 4.2 5.7 0.15 0.003 0.0023 

 

 

Figure 3. Actual machining setup 

 

Table 3. Machine tool’s specifications 

ML-300 CNC Turning 

Manufacturer YI-DA Precision Machinery Co., Ltd., Taiwan 

Control FANUC 

Stroke 700 mm 

Chuck diameter  300 mm (maximum) 

Spindle power 15kW 

Spindle speed 3300 rpm (maximum) 

Total power 26kW 
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The turning experiments were performed under varying cutting speeds and tool feed rates, whereas the depth of cut 

was kept constant throughout both dry and cryogenic mediums. The parameter ranges were selected based on available 

literature [60], [61], ISO standards [62], and guidelines from the tool manufacturer [63]. These input parameters, along 

with their ranges, are depicted in Table 4. Experiments were performed according to the full factorial design of the 

experiment, as illustrated in Table 5, along with output responses. After execution of each experiment, the chips were 

dried and stored with care (in a plastic zipper bag) to obtain chip cross-section for chip morphology and shear angle 

calculations. Every plastic zipper bag is properly codified with cutting parameters immediately after the experiment is 

performed to avoid the shuffling of chips, which leads to destroying research goals. The research goal was to calculate 

shear angle and chip geometric features, which cannot be measured and analyzed directly from the workpiece. So, to get 

information about chip morphology, chip samples are first prepared. The standard route map shown in Figure 4 was 

chosen to prepare good samples such as hot mounting, grinding, polishing, and optical microscopy. A hydro-press 

mounting machine was used to hot mount chips in conductive Bakelite powder. Conductive Bakelite powder gives the 

advantage of exploring the samples in a scanning electron microscope (SEM), which will reduce the chance of any drift 

or charging during SEM analysis. Chips were bent in a V-shape so that they might not fall flat during powder pouring. 

After hot mounting, each sample was ground using waterproof silicon carbide grinding papers of grades P800, P1200, 

P2000, and P2400 to achieve a completely highlighted microstructure. The samples were mirror polished with 6, 3 and 1 

microns diamond paste. The machine “PRESI Mecatech 264” was used for grinding polishing. Meiji MT-8530 

metallurgical microscope was used to analyze the chip morphology under 10X and 20X magnification. The focused 

images were imported into the INFINITY software to get a calibrated scale.  

Table 4. Input parameters and their ranges for the design of experiment 

Parameters Units Range 

Cutting speed-Vc m/min 50, 75, 100, 125, 150  

Tool feed rate-f mm/rev 0.12, 0.16, 0.20, 0.24  

Depth of cut-d mm 1 

Cutting medium  Dry 

  Cryogenic 

 

  
(a) (b) 

  

 
(c) 

Figure 4. Route map followed for chip preparation: (a) chip mounting; (b) grinding and polishing;  

(c) optical microscopy   

Mold Closure 
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Table 5. Full factorial array for experimentation and corresponding morphological response parameters of segmented chips 

Condition 
Tool feed 

rate-f 

(mm/rev) 

Cutting 
speed-Vc 

(m/min) 

Shear angle () Compression ratio (r´) Segmentation 

degree (Gs) Model-1 Model-2 Model-3 Model-4 Model-1 Model-2 Model-3 Model-4 

dry cryo-

genic 

dry cryo-

genic 

dry cryo-

genic 

dry cryo-

genic 

dry cryo-

genic 

dry cryo-

genic 

dry cryo-

genic 

dry cryo-

genic 

dry cryo-

genic 

1 0.12 50 43 34 61 51 36.9 34.9 38.6 43.3 0.95 0.68 1.69 1.68 0.75 0.70 0.80 0.94 0.33 0.43 

2 0.12 75 48 40 58 53 36.1 29.1 35.7 40.0 1.09 0.82 1.62 1.70 0.73 0.56 0.72 0.84 0.38 0.45 

3 0.12 100 43 43 60 54 34.3 28.8 33.7 36.5 0.93 0.93 1.73 1.77 0.68 0.55 0.67 0.74 0.39 0.45 

4 0.12 125 49 34 61 46 36.2 24.2 32.1 36.7 1.14 0.68 1.83 1.88 0.73 0.45 0.63 0.74 0.42 0.47 

5 0.12 150 54 39 64 53 34.5 21.5 31.7 34.8 1.37 0.82 2.06 2.18 0.69 0.39 0.62 0.69 0.43 0.48 

6 0.16 50 50 40 58 57 34.2 42.4 39.7 42.3 1.18 0.85 1.59 1.48 0.68 0.91 0.83 0.91 0.35 0.40 

7 0.16 75 46 52 54 63 34.4 41.9 35.9 40.4 1.03 1.27 1.67 1.65 0.68 0.90 0.72 0.85 0.37 0.45 

8 0.16 100 37 45 55 63 34.8 39.8 34.9 37.7 0.75 1.02 1.70 1.85 0.70 0.83 0.70 0.77 0.40 0.47 

9 0.16 125 44 39 58 66 34.5 37.4 32.6 38.3 0.96 0.81 1.80 1.94 0.69 0.76 0.64 0.79 0.45 0.50 

10 0.16 150 40 41 59 66 25.7 47.4 32.1 36.4 0.84 0.86 1.98 2.13 0.48 1.09 0.63 0.74 0.48 0.52 

11 0.2 50 49 39 52 56 32.8 35.2 41.4 40.1 1.15 0.80 1.51 1.39 0.64 0.71 0.88 0.84 0.40 0.46 

12 0.2 75 43 37 52 55 33.4 39.8 38.1 39.1 0.94 0.74 1.47 1.55 0.66 0.83 0.78 0.81 0.42 0.49 

13 0.2 100 43 46 58 63 33.2 39.3 36.3 41.8 0.92 1.04 1.63 1.68 0.65 0.82 0.73 0.89 0.46 0.48 

14 0.2 125 30 43 52 57 31.0 36.5 33.0 40.4 0.58 0.94 1.70 1.74 0.60 0.74 0.65 0.85 0.48 0.53 

15 0.2 150 50 51 61 66 31.0 38.2 32.8 38.7 1.19 1.25 1.83 2.01 0.60 0.79 0.64 0.80 0.49 0.55 

16 0.24 50 47 35 55 51 31.5 36.9 42.0 44.6 1.06 0.71 1.43 1.28 0.61 0.75 0.90 0.98 0.44 0.48 

17 0.24 75 49 32 56 56 46.5 31.5 41.0 43.6 1.15 0.61 1.42 1.40 1.05 0.61 0.87 0.95 0.45 0.51 

18 0.24 100 40 41 52 52 37.9 36.8 37.2 43.8 0.84 0.87 1.40 1.46 0.78 0.75 0.76 0.96 0.48 0.51 

19 0.24 125 44 38 60 55 35.6 34.0 37.1 42.5 0.95 0.78 1.61 1.70 0.72 0.68 0.76 0.92 0.50 0.54 

20 0.24 150 48 40 63 58 34.4 32.3 35.1 39.6 0.93 0.85 1.75 1.82 0.68 0.63 0.70 0.83 0.51 0.57 
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3.0 CHIP MORPHOLOGY PARAMETERS 

The geometric parameters of each sample include the height of the peak (hp), the height of the valley (hv), 

complimentary angle (θ´), tooth pitch (Pc), crack pitch (P) shear angle (φ) and equivalent deformed chip thickness or 

segment length (dch) etc. All these parameters (shown in Figure 5) are measured three times from different portions of 

the chip. Shear angle was calculated using all four methods mentioned, whereas chip compression ratio or chip shrinkage 

factor (r) practically and theoretically and chip segmentation degree (Gs) were calculated using the following equations 

1 to 5. 

 

Figure 5. Geometric parameters of segmented chip in the present study 

Chip compression ratio-Theoretical-M1 (r)  = 
𝑃𝑐

𝑃
 (1) 

  

Chip compression ratio-Theoretical-M2 (r) = 
ℎ1

ℎ 2
⬚

 (2) 

 
  

Chip compression ratio-Theoretical-M3 (r) = 
ℎ1

ℎ 2
⬚

 (3) 

  

Chip compression ratio-Practical-M4 (r) = 
𝑠𝑖𝑛 𝜑

𝑐𝑜𝑠(𝜑−𝛾)
 (4) 

  

Chip segmentation degree (Gs) = 
ℎ𝑃−ℎ𝑣

ℎ𝑃
 (5) 

In equations 1 to 5, Pc is the tooth’s pitch, and P is the crack pitch; ℎ1 is uncut thickness, which is equal to the feed rate 

in single point turning; ℎ2is the deformed thickness (segment length) dch (𝑡𝐶 =
h𝑃+h𝑣

2
 ); φ is the practically measured 

shear angle, and γ is the tool rack angle; hp is the height of the peak; and hv is the height of the valley. 

4.0 RESULTS AND DISCUSSION 

Under dry and cryogenic cutting conditions, serrated chips were created at all cutting speeds (50 m/min-150 m/min) 

and tool feed rates (0.12 mm/rev-0.24 mm/rev). Using the aforementioned relationships, the response parameters of 

serrated chips to a specific set of cutting settings for both cutting environments were determined and are shown in Table 

5. 

4.1 Comparison of Shear Angle Model 

The shear angle was calculated with models M1-3 (theoretical with continuous chip assumption) and model-4 

(practically by subtracting the segmented angle from 90◦). Angles obtained from model-1 and model-2 are greater than 

45◦ for both cutting environments, which is practically impossible according to Merchant’s theory. Similar results were 

also reported by others [18],[28]. However, model-3 gives a shear angle less than or equal to 45◦, which is under 

consideration, whereas model-4 is the actual measurement of the shear angle obtained experimentally from ground and 

polished chip samples. Thus, the results of both models (model-3 and model-4) for dry and cryogenic machining are 

graphically presented in Figure 6 and Figure 7, respectively. It can easily be noticed that there is a lot of deviation 

(highlighted in red circles) in the output of model-3 as compared to the output of model-4 (actual measurement), which 

appeals that continuous chip assumption can’t represent the true chip formation process. In model-4, the shear angle 

oscillated from 31.7◦ to 44.6◦, consistent with the findings of studies [50],[52],[64], which lies between the range 

highlighted in Stabler’s theory of orthogonal cutting [53]. Thus, model-4, referred to by R. Komanduri et al. [55], is the 
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most appropriate model to calculate the shear angle for titanium alloy Ti-6Al-4V machining under dry and cryogenic 

cutting environments. 

 
Figure 6. Comparison of shear angle model-3 and model-4 for dry turning: (a) 0.12 mm/rev tool feed rate;  

(b) 0.16 mm/rev tool feed rate; (c) 0.20 mm/rev tool feed rate; (d) 0.24 mm/rev tool feed rate 

 

 
Figure 7. Comparison of shear angle model-3 and model-4 for cryogenic turning: (a) 0.12 mm/rev tool feed rate;  

(b) 0.16 mm/rev tool feed rate; (c) 0.20 mm/rev tool feed rate; (d) 0.24 mm/rev tool feed rate 

4.2 Effect of Cutting Speed and Feed Rate on Shear Angle 

The effect of cutting speed and tool feed rate was examined for the shear angle obtained from model 4. The results 

are framed in the form of a line graph below in Figure 8. Shear angle values oscillate from 31.7° to 44.6°. The graph 
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reflects a decreasing trend of shear angle with an increase in cutting speed. Thus, a low shear angle is observed at elevated 

cutting speeds, yielding high cutting forces and energy for the defined machining conditions. This was attributed to the 

work hardening of the titanium alloy (Ti-6Al-4V) at elevated cutting speeds, which leads to a higher strain and shear 

plane area[65], [61], [66]. While it is directly proportional to the tool feed rate for both dry and cryogenic cutting mediums, 

this relationship yields a smaller shear plane, resulting in reduced cutting force and energy. This trend has been previously 

reported in the literature for the dry turning of Al-6061-T6 alloy [67]. The shear angle for cryogenic turning at all feed 

rates is greater than that for dry turning, which is advantageous for reducing cutting forces and energy consumption, and 

results were aligned with other studies [68], [69]. For dry and cryogenic turning, a maximum shear angle of 42° and 44.6° 

was observed at cutting speeds of 50 m/min speed and a feed rate of 0.24mm/rev, respectively. The fluctuation in tool 

wear and the material's adiabatic shearing may be to blame for the scatter in the shear angle [34].  

 

 
(a) 

 
(b) 

Figure 8. Effect of tool feed rate and cutting velocity on the average shear angle: (a) dry turning  

(b) cryogenic turning 

4.3 Effect of Cutting Medium on the Shear Angle 

Cutting medium plays a vital role in the chip formation mechanism, which further affects the integrity and thermo-

mechanical properties of the machined part, resulting from the distribution of residual tensile stresses. During the cutting 

process, the workpiece gets heated due to the friction created owing to the rubbing action of the tool and workpiece. 

Hence, the application of a cooling medium at that time is synonymous with the surface treatment, which may prove to 

alter the thermo-mechanical properties of the part. Thus, the shear angle of dry and cryogenics machining is compared 

under the respective sets of cutting conditions and tool feed rates, as shown in Figure 9. The shear angle was found to be 

superior for the cryogenic cutting medium as compared to dry cutting. The main reason for this occurrence is the reduced 

tool chip contact length [70], which leads to minimized work hardening effect and residual stresses due to lower 

temperature [66], [68]. It is also pertinent to highlight that chip compression ratio is also affected by tool chip contact 

length, which is another vital index for process sustainability and economy. Higher shear angle along with cryogenic 

Feed rate 
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medium is a beneficial indication of enhanced dimensional accuracy, lowered surface roughness, and improved fatigue 

life of machined parts [56],[61]. Besides this, both angles are almost equal (41°) at a speed of 50 m/min and a tool feed 

rate of 0.2 mm/rev. Thus, a cryogenic cutting medium for titanium alloy Ti-6Al-4V for a defined set of feed rates and 

cutting speed is the most suitable; anyhow, a cutting speed of 50 m/min and a feed rate of 0.2 mm/rev can be applicable 

for both dry and cryogenic cutting medium.  

 
(a) (b) 

  

 
(c) (d) 

Figure 9. Effect of cutting medium on average shear angle: (a) 0.12 mm/rev tool feed rate;  

(b) 0.16 mm/rev tool feed rate; (c) 0.20 mm/rev tool feed rate; (d) 0.24 mm/rev tool feed rate 

4.4 Chip Compression Ratio (r´) 

Chip compression ratio is also called the chip shrinkage factor, and it is used to estimate chip formation efficiency, 

forces, and energy consumption in the cutting process because it is interlinked with deformation in the machining process. 

It is the ratio of undeformed chip thickness to deformed chip thickness, and this ratio is always less than one in the metal-

cutting process. As the deformed thickness (after the cut) becomes greater than before due to plastic deformation, the 

compression ratio for both mediums was calculated using theoretical approaches (Equations 1, 2, and 3) and practically 

using the actual calculated shear angle through Equation 4. The results are contrasted in Table 5. The compression ratio 

calculated theoretically through Equations 1 and 2 (model-1 and model-2) is greater than one which is practically not 

possible, whereas results acquired theoretically through Equation 3 (using mean peak and valley approach-M3 as 

undeformed thickness) are less than one which could be practically possible. Thus, the first two theoretical approaches 

were eliminated in the first attempt. The results of theoretical approach M3 and practical approach M4 are illustrated 

graphically below in Figure 10. Overall, the practically acquired compression ratio is directly proportional to the tool feed 

rate; the higher the feed rate, the lower the compression ratio. However, it has an inverse relation with cutting velocity 

for both cutting environments. The decrease in chip compression ratio with an increase in cutting speed was attributed to 

the decline in chip thickness. This decrease occurs as a result of the widening of the shear band, which tends to increase 

thermal conductivity. Thermal conductivity increases with the temperature of the cutting zone [71], and hence, the 

widening of the shear band with an increase in cutting speed results in a reduced chip compression ratio [56], [61]. 

Nevertheless, the theoretically calculated compression ratio using approach model-3 shows some irregular trends, and 

its value is also greater than one (encircled in Figure 10) at 75 mm/min, 0.24 mm/rev in the dry medium, and at 150 

mm/min, 0.16 mm/rev in the cryogenic medium. This suggests that the theoretical model may be unreliable. Therefore, 

the most appropriate approach to estimating the segmented chip compression ratio is the practical approach (Equation 4) 

using the practically calculated shear angle. 
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(a) (a) 

 
(b) (b) 

Figure 10. Effect of cutting velocity and tool feed rate on chip compression ratio: (a, a) theoretical dry-cryogenic;  

(b, b) practical dry-cryogenic 

4.5 Chip Segmentation Degree (Gs) 

The degree of chip deformation, also known as height ratio, is calculated by Equation 5 using the chip peak and valley 

heights. It should always be less than one for the segmented chip, and once it reaches the value of one, the segmented 

chip transforms into a continuous chip. Figure 11 depicts the effect of cutting speed vs tool feed rate on the degree of chip 

segmentation for dry and cryogenic machining, respectively. Initially, at feed rates of 0.12 and 0.16, the segmentation 

degree dramatically increases, whereas, at feed rates of 0.2 and 0.24, it increases slowly. Overall, it can be noticed that 

the segmentation degree increases linearly with an increase in both feed rate and cutting speed, which agrees with the 

trends reported by other researchers [18],[27],[34],[50],[69]. Overall, the chip segmentation degree in cryogenic 

machining was higher than in dry machining, indicating a shorter contact length between the tool and chip. This 

characteristic is advantageous for improving tool life and reducing energy consumption. This shows that contact length 

between the segments gradually decreases, leading to the more prominent and regular deformation of the adiabatic shear 

zone [69]. This is due to the fact that the cracking of the adiabatic shear band reduces the connecting area between the 

chips. Microscopic illustrations of segments at constant feed rate (0.2 mm/rev) and varying cutting speed (50 m/min-150 

m/min) for both dry and cryogenic machining are summarized in Figure 12.  
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(a) (b) 

Figure 11. Effect of cutting velocity and tool feed rate on chip segmentation degree: (a) dry turning;  

(b) cryogenic turning 

 

  
(a) (a) 

  

  
(b) (b) 

  

  
(c) (c) 

Figure 12. Microscopic illustration of segments at constant tool feed rate (0.20 mm/rev) and varying cutting speed:  

(a-a) dry-cryogenic at 50 m/min; (b-b) dry-cryogenic at 75 m/min; (c-c) dry-cryogenic at 100 m/min 



Adeel Hassan │ International Journal of Automotive and Mechanical Engineering │ Vol. 21, Issue 2 (2024) 

journal.ump.edu.my/ijame  11328 

  
(d) (d) 

  

  
(e) (e) 

Figure 12. (cont.) (d-d) dry-cryogenic at 125 m/min; (e-e) dry-cryogenic at 150 m/min 

5.0 CONCLUSIONS 

In this research, the chips (obtained in single point turning of Ti-6Al-4V under dry and cryogenic medium) were 

experimentally analyzed for a selected set of cutting speeds (50 m/min-150 m/min) and feed rate (0.12 mm/rev-0.24 

mm/rev). Based on results and discussions, the following conclusions may possibly be inferred: 

• Theoretical or chip thickness models can’t show the true chip formation process. Thus, method 4 (experimentally 

measured) is the most suitable method to calculate the shear angle for titanium alloy Ti-6Al-4V. 

• Experimentally measured shear angle has a decreasing trend with an increase in cutting speed, and it has a linearly 

increased trend with an increase in feed rate.  

• The shear angle in dry turning lies between 31.7° to 42° and cryogenic turning lies between 34.8° to 44.6°.  

• The shear angle was observed to be higher for defined tool feed rates and cutting speeds in cryogenic turning compared 

to dry turning. This higher shear angle in cryogenic medium contributes to minimizing the work hardening effect and 

residual stresses due to the lower temperatures involved, which is advantageous for enhancing tool life and reducing 

energy consumption. It can be said that a larger shear angle is better because of the lower shear plane area and reduced 

cutting forces.  

• The compression ratio is directly proportional to the tool feed rate but inversely proportional to the cutting speed. 

Segmented chips can be calculated using a practically obtained shear angle rather than the theoretically calculated 

thickness approach. 

• The chip segmentation degree in both environments was less than one, which shows a segmented chip formation 

agreement. It showed a linearly direct relation between cutting speed and feed rate.  
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