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RESEARCH ARTICLE 

Evaluation and Performance Improvement of Environmentally Friendly 
Sustainable Turning of 6063 Aluminum Alloy in Dry Conditions Using Grey 
Relational Analysis    

A. Kannan* and N. M. Sivaram   

Department of Mechanical Engineering, National Institute of Technology Puducherry, Karaikal – 609 609, India 

ABSTRACT – Sustainable machining has gained importance in recent years due to its 
environmental, economic, and societal implications. Aluminium (Al) 6063 alloy involves turning 
operation to make it suitable for various applications. The work's novelty is assessing the machining 
characteristics along with sustainability indicators. This study aims to find the best-turning 
parameters for machining Al 6063 alloy. The turning parameters considered were cutting speed, 
feed rate, and depth of cut. A cutting speed of 200 m/min, feed rate of 0.05 mm/rev, and depth of 
cut of 0.25 mm were the best parameter combinations for achieving a good machining response. 
From the response value of mean grey relational grade (GRG) and analysis of variance (ANOVA), 
the depth of cut ranks one with 34.38%, which is the most dominating parameter in achieving the 
sustainable machining of Al 6063 alloy. Through grey relational analysis, optimized machining 
parameters resulted in a 72.84 percent reduction in carbon emissions, 72.82 percent reduction in 
energy consumption, 18.58 percent reduction in cutting power, and 6.83 percent reduction in surface 
roughness considering the initial parameter settings and best machining parameters. The 
enhancement in total GRG was 0.1702, indicating improvement in the desired responses. As a result 
of this study, it is clear that appropriate machining parameter selection aids sustainable machining 
of Al 6063 alloy. 
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1.0 INTRODUCTION 

Environment-friendly manufacturing is the production of goods over an energy-inexpensive and eco-friendly 

approach to safeguarding environmental and community benefits. Achieving sustainability in the turning process is 

directly connected with the cutting parameters, materials, and cutting fluid application [1]. Dry machining is the most 

suitable form of sustainable machining. Eco-friendly machining aims to improve approaches and procedures that deliver 

scientific performance to the organization in terms of cost efficiency while reducing energy consumption and resources 

available in nature, thus reducing the negative impact on the environment. Machining comprises many special machines 

like a planer, miller, shaper, driller, and turner. Here, the turning process is one of the oldest and most extensively used 

machining operations through which many cylinder-shaped components are machined under various machining 

parameters [2]. Turning is a machining process widely used to produce products like shafts, screws, threaded rods, 

bushings, and pins [3]. 

According to ISO 14000 environmental management system principles, manufacturing organizations are accountable 

for reducing their aggressive effect on the clean environment [4]. The stringent rules from the policymakers, possibly a 

government to reduce environmental pollution also without compromising the excellent quality engineering products 

expected by the customers, that is, both the government's stricter policy and customer demand together forced the 

manufacturing industries to switch over from traditional production approaches and to move on to sustainable machining 

methods [4]. The swing in the manufacturing industry results from increased awareness among the manufacturers, the 

customers, and the end users [5]. So, awareness is already realized by the manufacturing industry and is still increasing 

and widespread about sustainable machining operations in recent times for discovering ecological manufactured goods 

production through sustainable machining.  

Recently, manufacturing industries have moved towards sustainable machining to produce all components to achieve 

cost-effectiveness and improve the three pillars of sustainability (financial, ecological, and societal) [6]. Warsi et al. [7] 

studied that 90% of the environmental burden in machining is due to electrical energy consumption. The increased 

manufacturing cost and consciousness about preserving the environment and reducing electrical energy consumption 

provide good potential for economic and environmental benefits. During machining, the cutting insert removes excessive 

material as a tiny chip, and the energy expended during a turning operation is sometimes referred to as SCE and is 

expressed in J/mm3. Specific cutting energy comprises the energy spent removing the chips along the shear plane, chip 

flow against the cutting tool face rubbing, creating a new surface, and adjusting the variation in momentum energy [7]. 

For many years, researchers have studied the manufacturing of aluminum alloys, focusing on conventional machining 

characteristics, like accuracy, surface roughness, machinability, cutting force, MRR, etc. Conventional machining focuses 
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on increased component dimensional accuracy, good surface finish, and production output. However, in recent times, an 

investigation that mixes conventional machining characteristics with important ecological factors is gaining significance 

[2]. This is attributed to researching cleaner production. In a vision toward protecting operators, industrial work, and a 

clean environment, traditional cutting fluids used during wet machining are gradually being replaced by dry machining 

[2]. The negative impacts of conventional cutting fluids and machinist's health are valid reasons to seek alternatives. MQL 

can produce oil mist, aerosol, and tiny liquid droplets, which can easily contaminate the environment and produce harmful 

dust, microorganisms, and bacteria, thus harming the health of machine operators. Using cryogenic coolants may lead to 

excessive carbon emission, which is also not sustainable. The production process of cryogenic coolants is not 

environmentally friendly [1]. Cryogenic liquids must be handled and stored in an insulated storage vessel as a safety 

measure [4]. Nanoparticles added with vegetable oil can be claimed as sustainable machining conditions. However, the 

disposal of nanofluids is not biodegradable [1]. 

Rusdi Nur et al. [6] conducted a study on machining modified Al-11% Si alloy using carbide-coated inserts at different 

machining parameters for less power consumption and good surface finish through optimization. Warsi et al. [7] carried 

out a study to optimize the machining parameters of the turning process in high-speed machining conditions. The 

workpiece material used was T6 heat-treated aluminum 6061 alloys. The maximum cutting speed was 1500 m/min. The 

experiment was carried out to optimize the cutting factors while machining AISI 1040 carbon steel with CNMG 12012 

TF aluminum tungsten nitride coated insert and CNMG 120412 MP tungsten nitride coated insert for different machining 

parameters. The results obtained from this study suggested that the machining condition and cutting insert type influenced 

the power consumption while machining AISI 1040 [5].  

Bhattacharya et al. [8] conducted a comparative analysis to predict responses in a sustainable dry-turning operation. 

In this study, they executed 27 trials based on the L27 experiment design. Also, the machining in dry conditions resulted 

in less energy consumption and production cost, thus ultimately leading to sustainable machining. Dry machining is 

efficient and environmentally friendly due to its characteristics, such as no air or water pollution. 

 Statistical Method for Research Workers was the reference book for Design of Experiments (DOE) written by Ronald 

A. Fisher [9]. The DOE was adopted in only 20% of manufacturing sectors, with 3% of the manufacturing industries 

using DOE frequently. It was also discovered that DOE's theoretical inexperience with actual uses and unwillingness to 

find a methodology to simplify its application were the main reasons for its lack of usage in manufacturing industries [9].  

Multi-objective optimization (MOO) is an extensively used investigation technique that can be used for complex 

engineering problems like manufacturing processes. Multi-objective optimization looks compromised amid several 

manufacturing norms such as machining force, surface finish, cutting time, material removal rate, energy consumption, 

cutting power, and carbon emission [7]. Warsi et al. [7] carried out the work to reduce power consumption and surface 

roughness reduction simultaneously, using GRA with equal weightage procedure in multiple objective function 

optimizations of production factors in machining operation.  

Panda et al. [10] conducted the turning experiment on AISI52100 bearing steel using a multilayered carbide insert 

under dry machining conditions. Machining characteristics such as flank wear, surface roughness, and chip morphology 

were investigated. Taguchi-based GRA was employed to perform the parametric optimization of multi-objective 

problems. Najiha et al. [11] studied the machinability of Al 6061-T6 alloy using two different cutting tools, namely a 

TiAlN-coated insert and a TiAlN/TiN-coated insert, to investigate the surface finish. The cooling/lubrication action was 

performed using the MQL method. Experimental results reveal that the TiAlN+TiN coated insert outperformed the TiAlN 

coated insert in terms of producing products with a good surface finish. 

Al 6063 alloy has the ultimate tensile strength of 241 MPa and yield strength of 214 MPa. The turning process of the 

Al 6063 alloy has found special consideration in recent times due to its excellent strength-to-weight fraction robustness, 

corrosion-resistant property, and good surface finish, which are appropriate for the production of aluminum-based 

engineering products in several applications like automotive, storage tanks, heat sinks, tubing in the irrigation field, 

piping, and building products that are being made mainly by turning process [12]. As an observation from the literature, 

minimal studies were reported in terms of assessment of the machining characteristics (MRR, cutting force, and surface 

roughness) along with sustainability indicators (carbon emission, energy consumption, and cutting power) in the turning 

of Al 6063 alloy in dry condition. Based on this gap in the literature, the present work emphasizes the impact of all turning 

parameters on sustainability indicators and machining characteristics in the turning of Al 6063 alloy.  

In a nutshell, in the present study, dry machining condition was considered, and an effort was put forth to find the best 

turning parameters for finding the optimum input parameter that will produce the components with the reduction in energy 

consumption, reduction in carbon emission, less power consumption with good surface finish without compromising the 

material removal rate. 

2.0 MACHINE TOOL AND PARAMETERS  

The following section presents input cutting parameters, machine tools and measuring instruments, dry machining 

conditions, cutting tool materials, and output responses to be measured during the machining process.  
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2.1 Machining Process - Turning Operation 

In metal cutting, turning is the oldest and most effective production method. Turning helps manufacture many 

products, such as cams, bearings, gears, and other engineering components [2, 9]. Many factors are present in the 

machining operations, which disturb the technical specification of the end products. Turning parameters, hardness of the 

workpiece material, tool material, and tool shape are the most essential and well-known influencing factors [13]. The 

workpiece was made of commercially available Al 6063 alloy in the current study. The standard diameter of the workpiece 

readily available was 60 mm. The length of 320 mm was decided based on the capacity of the lathe. For all experiments, 

the machining length of the Al 6063 alloy bar was 30 mm.  

Table 1. Turning parameters and details 

Turning parameters Step/Range                                                 Units 

Cutting Speed (VC) 100, 150, 200                                      meters per minute 

Feed Rate (f) 0.05, 0.075, 0.1                                    millimeter per revolution 

Depth of Cut (d) 0.25, 0.5, 1                                           millimeter 

Machining insert tool Tungsten carbide uncoated inserts of Sandvik make 

according to ISO requirement HN SNMG08 

 

Tool holder DBSNR2020K 12 for turning operation  

Workpiece material Al 6063 alloy (Length L=320mm and Diameter 

D=60mm) 

 

Machining condition Dry machining condition  

 

 

Figure 1. Schematic illustration of the experimental methodology 

Input Parameters: 

Cutting Speed, Feed 

rate, Depth of cut 

Machining Condition: 

Dry turning operation 

Experimental plan: 

Taguchi L27 plan of 

experiments 

Workpiece and tool 

material: Al 6063 alloy, 

Uncoated WC insert 

Experimental set up Uncoated WC insert 

Al 6063 alloy 

Cutting force 
Surface 

roughness 

Material 
removal rate 

(MRR)

Regression modelling, GRA, ANOVA, Optimization, Performance enhancement of turning process 

Carbon 
Emission

Energy 
Consumption

Cutting Power

Machining Characteristics Sustainable Indicators 
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Sandvik's uncoated tungsten carbide inserts made as per ISO specification HN SNMG08 were used as cutting tool 

inserts. As per the tool manufacturer's recommendations, available tool holder, cutting parameters, and machine tool 

capacity uncoated tungsten carbide insert was employed for machining the commercially available Al 6063 alloy. The 

details of turning parameters and conditions are listed in Table 1. The ranges of these turning parameters were carefully 

set following the appropriate ISO standard, tool manufacturer's specifications, machine tool capacity and information 

from the existing literature [14]. All 27 turning trails were conducted through dry machining as a sustainable machining 

approach [7]. The sequence of the events involved in the present study is presented in Figure 1, and it was followed to 

complete the current study. 

2.2 Experimental Work 

Kirloskar Turnmaster-35 all-geared lathe was utilized in the present study. The distance between the two centers of 

the Turnmaster-35 was 800mm. The vertical height of the lathe center is 175mm. The power of the lathe machine used 

was 2.2 kW. “A Kistler quartz three-axis force dynamometer (Type 9215A1, standardized range: FX.0±5000 N, 

FY.0±5000 N, and FZ.0±3000 N) in combination with three charge amplifiers of Kistler make (Type5070), was utilized 

to change the dynamometer output signal into a voltage signal suitable for the data acquisition system, and a computer 

was utilized to measure, monitor and record the machining forces. The TR-100 surface roughness tester was utilized in 

the present study to measure the surface roughness. Three kinds of λ values may be specified, and the lambda denotes the 

distance to be moved all through the finished surface with the stylus probe [15]. Figure 2 shows the experimental setup. 

The material removal rate demonstrating the production was determined using Eq. (1) [9], [16–19].  

𝑀𝑅𝑅 = 𝐷𝑒𝑝𝑡ℎ 𝑜𝑓 𝑐𝑢𝑡 × 𝐹𝑒𝑒𝑑 𝑟𝑎𝑡𝑒 × 𝐶𝑢𝑡𝑡𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑 (1) 

where MRR is measured in cm3/min, the feed rate is given in mm/rev, the depth of cut is given in mm, and the cutting 

speed is given in m/min [9].  

 

Figure 2. Kirloskar Turnmaster-35 all-geared lathe for turning process 

2.3 Estimation of Energy Consumption 

The energy consumption analysis of any machine gives more information to deal with their electrical energy 

consumption. One of the key reasons to estimate energy consumption is to account for electrical energy, which is 50% of 

total production costs. The world is continually looking for new energy sources, while carbon emission from energy 

consumption affects the environment. Practically, part of the manufacturing cost is due to energy consumption. Here, 

energy consumption (EC) was estimated through Eq. (2) [1], [20].  

𝐸𝐶 =
𝐹𝐶  (𝑁) × 𝑉𝐶   (

𝑚
𝑚𝑖𝑛

) × 𝑀𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (𝑚𝑖𝑛)

1000
 (2) 

Here, FC is the cutting (turning) force (N) measured by the cutting tool dynamometer, VC denotes the machining speed 

in m/min, and EC denotes the cutting energy in kJ. According to one estimate, the various industry sectors account for 

about 31% of all energy consumption, and the manufacturing sector alone is responsible for around 60% of the energy 

the industry uses. Also, it was discussed that energy efficiency is not at the required level since the energy used in actual 

production corresponds to only 15% of the total energy consumption. So, decreasing energy consumption in machining 

activities will lead to cleaner production in machining processes [1]. 

2.4 Estimation of Carbon Emission Values 

Negative environmental impact was considered the most critical problem among the industries. Manufacturing 

industries have started to pay much attention to reducing this negative impact on the environment only in recent decades 
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[1]. Using fossil fuels as an energy input for manufacturing many engineering products will contribute to CO2 emissions, 

adding density to the formation of greenhouse gases. Also, the main reason for heat waves and climate change is the 

presence of CO2 in the greenhouse gases in the atmosphere. So, the CO2 emission to the atmosphere should be reduced 

to the maximum possible extent [1]. To decrease this, we need to look for the production of alternative energy sources 

and their uses in actual practice. The carbon emission can be predicted with the help of Eq. (3).  

𝐶𝑒𝑒 = 𝐸𝐶 × 𝐹𝑒 (3) 

where, Cee is carbon releases formed in kg-CO2, EC is electrical energy consumption, and Fe is the carbon release factor 

used in the case of electrical energy consumption [1],[20]. 

2.5 Estimation of Cutting Power 

The cutting power required for turning operation was estimated by Eq. (4) [18], [21].  

𝑃𝐶 =
𝐹𝑍 ×   𝑉𝐶

60
 (4) 

where, FZ denotes the primary cutting (turning) force (N), and VC denotes the (machining) speed (m/min). 

2.6 Design of Experiments 

The turning experiments were planned according to the L27 Taguchi orthogonal array plan of experiments [22]–[26]. 

Twenty-seven tests were conducted using three process parameters at three levels [15], [24]–[26]. In the current study, 

each combination of input parameters was analyzed thrice, and the average value of the associated response data was 

recorded. For each trial, a new insert was used to eliminate the effect of tool wear [27], [28]. Table 2 demonstrates the 

experimental design and responses using the L27 orthogonal array. 

Table 2. Experiments with the L27 orthogonal array and the results 

Runs 

Cutting 

Speed 

(m/min) 

Feed rate 

(mm/rev) 

Depth of 

cut (mm) 

Surface 

Roughness 

(µm) 

Cutting 

Force (N) 

MRR 

(cm3/min) 

Carbon 

Emission 

(kg-CO2) 

Energy 

Consumption 

(kJ) 

Cutting 

Power (W) 

1 100 0.050 0.25 1.024 51.59 1.25 2.43 5.74 85.98 

2 100 0.050 0.50 1.064 134.74 2.50 6.23 14.73 224.57 

3 100 0.050 1.00 1.035 184.69 5.00 8.24 19.50 307.82 

4 100 0.075 0.25 1.194 88.27 1.88 2.67 6.32 147.12 

5 100 0.075 0.50 1.234 163.99 3.75 4.84 11.44 273.32 

6 100 0.075 1.00 1.205 217.86 7.50 6.08 14.37 363.10 

7 100 0.100 0.25 1.314 161.87 2.50 3.45 8.16 269.78 

8 100 0.100 0.50 1.354 243.06 5.00 5.04 11.91 405.10 

9 100 0.100 1.00 1.325 291.45 10.00 5.69 13.46 485.75 

10 150 0.050 0.25 1.137 56.15 1.88 2.24 5.29 140.38 

11 150 0.050 0.50 1.770 146.74 3.75 5.67 13.42 366.85 

12 150 0.050 1.00 1.147 186.74 7.50 6.77 16.02 466.85 

13 150 0.075 0.25 1.307 98.72 2.81 2.44 5.77 246.80 

14 150 0.075 0.50 1.347 179.91 5.63 4.30 10.17 449.78 

15 150 0.075 1.00 1.317 220.87 11.25 4.93 11.66 552.18 

16 150 0.100 0.25 1.427 172.32 3.75 2.95 6.98 430.80 

17 150 0.100 0.50 1.467 253.51 7.50 4.19 9.92 633.78 

18 150 0.100 1.00 1.437 295.47 15.00 4.53 10.72 738.68 

19 200 0.050 0.25 0.954 21.00 2.50 0.66 1.56 70.00 

20 200 0.050 0.50 0.994 102.19 5.00 3.09 7.32 340.63 

21 200 0.050 1.00 0.965 150.59 10.00 4.20 9.93 501.97 

22 200 0.075 0.25 1.124 41.56 3.75 0.79 1.88 138.53 

23 200 0.075 0.50 1.164 135.36 7.50 2.48 5.87 451.20 

24 200 0.075 1.00 1.135 183.76 15.00 3.08 7.27 612.53 

25 200 0.100 0.25 1.244 127.77 5.00 1.65 3.91 425.90 

26 200 0.100 0.50 1.284 208.96 10.00 2.58 6.11 696.53 

27 200 0.100 1.00 1.355 241.78 20.00 2.70 6.38 805.93 

3.0 TURNING FACTORS OPTIMIZATION USING GREY RELATIONAL ANALYSIS (GRA) 

Warsi et al. [7] already indicated the values of responses at best and worst settings of turning parameters. So, the 

response variables such as surface roughness, material removal rate, cutting force, energy consumption, and cutting power 
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have been optimized using the grey relational analysis (GRA) method. Table 3 details the output values at turning 

parameters' best and worst conditions. 

Table 3. Response values at their best and worst settings of turning parameters 

Various output responses 

Response values at 

their best and worst 

conditions 

Turning parameters and their levels 

Cutting Speed 

(m/min) 

Feed rate 

(mm/rev) 

Depth of 

cut (mm) 

Surface roughness (μm) Best 0.954 200 0.050 0.25 

Worst 1.770 150 0.050 0.50 

Cutting force (N) Best 21.00 200 0.050 0.25 

Worst 295.47 150 0.100 1.00 

Material removal rate (cm3/min) Best 20.00 200 0.100 1.00 

Worst 1.25 100 0.050 0.25 

Energy consumption (kJ) Best 1.56 200 0.050 0.25 

Worst 19.50 100 0.050 1.00 

Cutting power (W) Best 70.00 200 0.050 0.25 

Worst 805.93 200 0.100 1.00 

Carbon Emission kg-CO2 Best 0.66 200 0.050 0.25 

Worst 8.24 100 0.050 1.00 

The output response values were analyzed to evaluate the behavior of the chosen machining characteristics and 

sustainability indicators. However, Table 3 shows that turning parameters need various cutting conditions to attain 

reasonable measures of surface roughness, cutting force, material removal rate, energy consumption, and cutting power, 

thus requiring multi-objective optimization [7]. 

3.1 Application of GRA for Multi-objective Complex Turning Process 

Optimization of a multi-objective complex engineering problem shall be carried out effectively through grey relational 

analysis (GRA) [7], [29]. The succeeding steps must be followed to perform GRA to find the optimal value [7], [29]. The 

measured readings of all responses are standardized from 0 to 1. The process of standardization is termed grey relational 

standardization. Standardization is vital, as the collection and measurement of the physical SI unit of one response value 

will vary with the physical unit of another [29]. If the requirement of an objective function is to be maximized, then the 

"larger-the-better" condition is to be considered, and the calculation for standardization is Eq. (5).  

𝑥𝑖 ∗ (𝑘) =
𝑥𝑖(𝑘) − 𝑚𝑖𝑛 𝑥𝑖(𝑘)

max 𝑥𝑖(𝑘) − min 𝑥𝑖(𝑘)
 (5) 

If the requirement of an objective function is to be minimized, then the "lower-the-better" condition is to be considered, 

and the calculation for standardization is Eq. (6).  

𝑥𝑖 ∗ (𝑘) =
𝑚𝑎𝑥 𝑥𝑖(𝑘) − 𝑥𝑖(𝑘)

max 𝑥𝑖(𝑘) − min 𝑥𝑖(𝑘)
 (6) 

Here, xi*(k) and xi (k) are the standardized and experimental data, respectively, for ith number of experiments by using 

the kth response [29]. Afterward, the grey relational coefficient (GRC) can be calculated using Eq. (7).  

𝜉𝑖(𝑘) =
∆𝑚𝑖𝑛 + 𝜁∆𝑚𝑎𝑥

∆𝑖(𝑘) + 𝜁∆𝑚𝑎𝑥
 (7) 

Here, Δi (k) is the absolute value of contrast between xi0 (k) and xi*(k) and Δi (k) =| xi0(k) - xi*(k) |. The value of xi0 is 

1. Δmax and Δmin are the universal supreme and universal least values in different data series [29]. The unique, distinctive 

co-efficient value (ζ) lies among 0 and 1, which is for extending or for contracting the range of grey relational coefficient 

(GRC), commonly kept, (ζ) = 0.5, if all the process parameters have equal weightage [29]. As the final step, the averaging 

of the grey relational coefficient (GRC) corresponds to every performance appearance to find the grey relational grade 

(GRG) using Eq. (8).  

𝛾𝑖 =
1

𝑛
∑ 𝜉𝑖(𝑘)

𝑛

𝑘=1

 (8) 

where ‘n’ is the number of process yield responses. 

3.2 Computing the GRC and GRG Values 

  The value of already standardized data of the complete investigational outcomes, GRC, and GRG for each experiment 

combination are listed in Tables 4 and 5. A higher material removal rate that straightaway represents the machining 



A. Kannan et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 21, Issue 1 (2024) 

journal.ump.edu.my/ijame  11091 

efficiency or yield is desirable. Hence, the “higher-the-better” condition is considered the objective function. The ‘‘lower-

the-better’’ condition is selected as the objective function for all remaining responses. The highest value of the GRG is 

expected to be the best value nearer to the optimal result. The maximum grey relational grade value for trial 19 is 0.8914, 

as shown in Table 5. This method allows anyone to select the parameters at the levels that deliver the maximum average 

output value [29]. It was understood from Table 6 that the highest value GRG was found at level 3 in cutting speed, level 

1 in feed rate, and level 1 in the depth of cut. Thus, the turning parameters (v3, f1, d1) are the optimal combination that 

finds better values in attaining sustainability while machining the Al 6063 alloy. 

Table 4. Normalized data of the experimental results 

Run 
Surface 

roughness 

Cutting 

force 

Material 

removal rate 

Carbon 

emission 

Energy 

consumption 

Cutting 

power 

1 0.914 0.889 0.000 0.767 0.767 0.978 

2 0.865 0.586 0.067 0.265 0.266 0.790 

3 0.901 0.404 0.200 0.000 0.000 0.677 

4 0.706 0.755 0.033 0.734 0.735 0.895 

5 0.657 0.479 0.133 0.449 0.449 0.724 

6 0.692 0.283 0.333 0.285 0.286 0.602 

7 0.559 0.487 0.067 0.632 0.632 0.729 

8 0.510 0.191 0.200 0.423 0.423 0.545 

9 0.545 0.015 0.467 0.336 0.337 0.435 

10 0.776 0.872 0.033 0.792 0.792 0.904 

11 0.000 0.542 0.133 0.339 0.339 0.597 

12 0.763 0.396 0.333 0.194 0.194 0.461 

13 0.567 0.717 0.083 0.765 0.765 0.760 

14 0.518 0.421 0.233 0.520 0.520 0.484 

15 0.555 0.272 0.533 0.437 0.437 0.345 

16 0.420 0.449 0.133 0.698 0.698 0.510 

17 0.371 0.153 0.333 0.534 0.534 0.234 

18 0.408 0.000 0.733 0.489 0.489 0.091 

19 1.000 1.000 0.067 1.000 1.000 1.000 

20 0.951 0.704 0.200 0.679 0.679 0.632 

21 0.987 0.528 0.467 0.533 0.533 0.413 

22 0.792 0.925 0.133 0.982 0.982 0.907 

23 0.743 0.583 0.333 0.760 0.760 0.482 

24 0.778 0.407 0.733 0.681 0.681 0.263 

25 0.645 0.611 0.200 0.869 0.869 0.516 

26 0.596 0.315 0.467 0.747 0.747 0.149 

27 0.509 0.196 1.000 0.731 0.731 0.000 

 

Table 5. GRC and GRG of the Experimental Data 

 Grey relational co-efficient (GRC) 

GRG RANK 
Run 

Surface 

roughness 

Cutting 

force 

Material 

removal rate 

Carbon 

emission 

Energy 

consumption 

Cutting 

power 

1 0.854 0.818 0.333 0.682 0.682 0.958 0.7212 3 

2 0.788 0.547 0.349 0.405 0.405 0.704 0.5329 13 

3 0.834 0.456 0.385 0.333 0.333 0.607 0.4915 18 

4 0.630 0.671 0.341 0.653 0.653 0.827 0.6291 5 

5 0.593 0.490 0.366 0.476 0.476 0.644 0.5074 17 

6 0.619 0.411 0.429 0.412 0.412 0.557 0.4731 20 

7 0.531 0.493 0.349 0.576 0.576 0.648 0.5289 14 

8 0.505 0.382 0.385 0.464 0.464 0.523 0.4539 24 

9 0.524 0.337 0.484 0.430 0.430 0.470 0.4455 25 



A. Kannan et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 21, Issue 1 (2024) 

journal.ump.edu.my/ijame  11092 

Table 5. (cont.) 

 Grey relational co-efficient (GRC) 

GRG RANK 
Run 

Surface 

roughness 

Cutting 

force 

Material 

removal rate 

Carbon 

emission 

Energy 

consumption 

Cutting 

power 

10 0.690 0.796 0.341 0.706 0.706 0.839 0.6799 4 

11 0.333 0.522 0.366 0.431 0.431 0.553 0.4393 27 

12 0.679 0.453 0.429 0.383 0.383 0.481 0.4679 22 

13 0.536 0.638 0.353 0.681 0.681 0.675 0.5940 8 

14 0.509 0.463 0.395 0.510 0.510 0.492 0.4800 19 

15 0.529 0.407 0.517 0.470 0.470 0.433 0.4712 21 

16 0.463 0.476 0.366 0.623 0.623 0.505 0.5093 16 

17 0.443 0.371 0.429 0.518 0.518 0.395 0.4455 26 

18 0.458 0.333 0.652 0.495 0.495 0.355 0.4646 23 

19 1.000 1.000 0.349 1.000 1.000 1.000 0.8914 1 

20 0.911 0.628 0.385 0.609 0.609 0.576 0.6196 6 

21 0.974 0.514 0.484 0.517 0.517 0.460 0.5777 11 

22 0.706 0.870 0.366 0.966 0.966 0.843 0.7859 2 

23 0.660 0.545 0.429 0.675 0.676 0.491 0.5794 10 

24 0.693 0.457 0.652 0.611 0.611 0.404 0.5713 12 

25 0.585 0.562 0.385 0.792 0.792 0.508 0.6040 7 

26 0.553 0.422 0.484 0.664 0.664 0.370 0.5260 15 

27 0.504 0.383 1.000 0.650 0.650 0.333 0.5870 9 

 

Table 6. Mean value of GRG 

Turning 

parameters 

GRG values 

(Low) 

Level 1 

(Medium) 

Level 2 

(High) 

Level 3 
(max-min) Rank 

Cutting Speed 0.532 0.506 0.638* 0.1323 2 

Feed Rate 0.602* 0.566 0.507 0.0952 3 

Depth of Cut 0.660* 0.509 0.506 0.1549 1 

Total Mean GRG (γm) = 0.558 

Table 6 shows that depth of cut (d) is the critical turning parameter (Rank 1) that affects multi-objective optimization, 

followed by cutting speed (VC, Rank 2) and feed rate (f, Rank 3). Table 6 revealed the best-turning parameters through 

*optimal GRG concentrations (v3, f1, d1). 

3.3 Confirmation Test 

Following the optimum parameter combination evaluation, the next step is to predict and check the improvement of 

quality characteristics using the optimum parametric condition. As per the existing literature [30, 31], run 1 (v1f1d1) was 

considered as the reference or initial parameter settings among the selected experimental design plan. Also, run 1 consists 

of the lowest range of all the three input parameters. Hence, run 1 can be considered as the initial parameter setting to 

evaluate the improvement in the quality characteristics of the turning process. The estimated GRG can be calculated with 

the help of optimum parameter combination by using Eq. (9).  

γ =  γm + ∑ (γi − γm)
0

𝑖=1
 (9) 

where γm = overall mean GRG, γi = average GRG at the best level, and 0 is the number of the main input parameters that 

affect the quality characteristics. The sample calculation is as follows,  

𝛾 = 0.558 + [0.638 − 0.558] + [0.602 − 0.558] + [0.660 − 0.558] , 𝛾 = 0.7848. The outcomes of the confirmation 

test are shown in Table 7.  
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Table 7. Confirmation test 

Parameters and their levels 
Initial parameter 

settings [30, 31] 

Best (optimal) 

turning settings 

Prediction Experiment 

 v1f1d1 

v3f1d1 

v3f1d1 

Surface roughness, Ra (μm) 1.024 0.954 

Cutting force, F (N) 51.59 21 

Material removal rate, MRR (cm3/min) 1.25 2.50 

Carbon emission, CE (kg-CO2) 2.43 0.66 

Energy consumption, EC (kJ) 5.74 1.56 

Cutting power, CP (W) 85.98  70 

Overall GRG 0.7212 0.7848 0.8914 

Overall, the grey relationship grade has improved = 0.1702 

The improvement in overall grey relational grade was obtained through the difference between the GRG values at the 

optimum experimental settings and the GRG value of initial parameter settings. From Table 6, the optimal input parameter 

combination found through the mean value of GRG is v3f1d1. The experiment was already conducted for this input 

parameter (Run 19), and the corresponding output responses were recorded. Hence, in the confirmation test, an 

experimental run considered was v3f1d1. Run 1 combination consists of the lowest range of input parameters considered 

in the present study. Hence, the time taken for the initial parameter settings (Run 1, v1f1d1) was 1.11 min. Also, the time 

taken for the optimal parameter settings (Run 19, v3f1d1) was 0.37 min which is three times less than run 1. Since the 

cutting speed (v3) was kept at the maximum range, the MRR value is almost two times higher than the initial run. The 

cutting tool and workpiece contact time is less in (Run 19, v3f1d1) due to higher cutting speed and less machining time 

than (Run 1, v1f1d1). Higher cutting speed will result in a good surface finish. Less contact time between the tool and 

workpiece will result in less cutting force. Here, the cutting force is directly related to energy consumption and cutting 

power. Carbon emission is directly related to energy consumption. So, the other responses, such as surface roughness, 

cutting force, carbon emission, and cutting power recorded, were lesser at the optimal parameter settings. 

3.4 Error Analysis 

The difference between the predicted and experimental values of GRG at the optimum parameter was 0.1066. The 

error percentage is 11.95, which is very small for the response GRG representing the multiobjective function in the present 

study. The results of a similar trend were observed in the existing literature [32]. 

3.5 GRG at Different Machining Parameters and Optimal Conditions  

The GRG value at different turning parameters and the optimum parameter conditions are given below. Figures 3, 4, 

5, and 6 show GRG's contour and surface plots at various turning parameters. A higher GRG value is required in the grey 

relational analysis. From Figure 3 to 6, we can understand the variation of GRG value for different tuning parameters. 

The combination of lower cutting speed, feed rate, and depth of cut resulted in a GRG value around 0.7, and the same 

trend was observed for cutting speed in the medium range along with feed rate up to 0.08 mm/rev and depth of cut 0.25 

mm. The lowest value of GRG occurred in the cutting speed ranging from 100 m/min to 175 m/min and a depth of cut of 

0.5mm along with a feed rate of 0.05 mm/rev. As demonstrated in the graphs, the value of GRG is highest at the maximum 

cutting speed, low feed rate, and low level of depth of cut. The highest GRG value at the optimum cutting condition was 

0.8914.  

 

Figure 3. Contour graph of GRG vs cutting speed and feed rate 
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Figure 4. Contour graph of GRG vs cutting speed and depth of cut  

 

 

Figure 5. Contour graph of GRG vs feed rate and depth of cut  

 

 

Figure 6. Response surface graph of GRG vs cutting speed and feed rate 

The predicted versus the actual value of GRG is shown in Figures 7 and 8. From Figure 7, the curve nearly follows a 

straight line, indicating that the inaccuracy detected can be neglected. Also, from Figure 8, it is understood from the radar 

graph that good agreement is developed among the values of predicted and experimental results of GRG. This small error 

implies that the predicted and actual values are not significantly different; therefore, the generated regression model given 

in Equation 10 is acceptable. 
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Figure 7. Predicted versus actual value of GRG 

 

Figure 8. Radar graph of predicted versus experimental value of GRG 

3.6 Regression Modelling of GRG 

Response surface methodology's second-order polynomial model is quite versatile and can produce a well-fitting 

regression model for a turning process [7]. A mathematical model is established using the quadratic equation to correlate 

the independent input parameters with the dependent output responses. The efficiency of the established mathematical 

model is justified through adjusted R-squared, R-squared, and predicted R-squared and good precision values [33]. The 

confidence level fixed to investigate the predicted model is a 95% level of significance [34]. Regarding actual parameters, 

the equation [35] for GRG based on response surface methodology is given as Eq. (10). 

GRG =  1.61728 − 0.00803172 𝑉𝐶 − 1.58965 f − 1.53793 d − 0.00362136 𝑉𝐶 × f − 0.000199701 𝑉𝐶 × d
+ 4.89051 f × d + 0.0000316168 Vc2  − 17.49027 f 2 + 0.79567 d2 

(10) 

The above-established model is only relevant for the circumstances used in this study, explicitly, for turning parameters 

given in Eqs. 11, 12, 13, cutting, workpiece, and machine tool.  

100 m/min ≤ 𝑉𝐶 ≤ 200 m/min (11) 

  

0.050 mm/rev ≤ f ≤ 0.100 mm/rev (12) 

  

0.25 mm ≤ d ≤ 1.00 mm (13) 

Summary: Adj R-Squared=89.74%; Pred R-Squared=81.92%; Adeq Precision=20.272. R-Squared = 93.29%; The 

"Pred R-Squared" of 0.8192 reasonably agrees with the "Adj R-Squared" of 0.8974. The Adequate Precision value 

considers the signal-to-noise ratio. It is desirable to have a ratio of more than four. The signal-to-noise ratio of 20.272 

indicates a good signal. This model can assist practitioners in fixing the experiments.            

3.7 Analysis of Variance 

The correctness of the established regression equation and the impact of the turning parameters were determined using 

ANOVA. Table 8 demonstrates that depth of cut is the critical and most dominating parameter, contributing 34.38 %, 
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followed by cutting speed, 15.31 %, and feed rate, 10%. Also, from the ANOVA results, it was understood that all three 

input parameters significantly influenced the turning process. The square terms of cutting speed and depth of cut were 

found to be significant, with percentage contributions of 11.56 % and 17.81 %, respectively. Furthermore, with a 

percentage contribution of 8.13 %, the interaction of feed rate and depth of cut has a notable influence on the turning 

process. Based on the above findings, all three input parameters are equally significant and should be considered necessary 

during the turning process to comprehend the turning characteristics and sustainability indicators fully. 

Table 8. ANOVA for GRG 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F-Value 

p-value 
% 

Contribution 

Prob > F  

Model 0.300 9 0.033 26.27 < 0.0001 significant 

A-Cutting speed 

(m/min) 
0.049 1 0.049 39.30 < 0.0001 15.31 

B-Feed rate 

(mm/rev) 
0.032 1 0.032 25.41 0.0001 10.00 

C-Depth of cut 

(mm) 
0.110 1 0.110 85.90 < 0.0001 34.38 

AB 2.46E-04 1 2.46E-04 0.20 0.6638 0.08 

AC 1.75E-04 1 1.75E-04 0.14 0.7141 0.05 

BC 0.026 1 0.026 20.81 0.0003 8.13 

A2 0.037 1 0.037 29.83 < 0.0001 11.56 

B2 7.17E-04 1 7.17E-04 0.57 0.4604 0.22 

C2 0.057 1 0.057 45.54 < 0.0001 17.81 

Residual 0.021 17 1.26E-03   6.56 

Cor Total 0.320 26    100.00 

3.8 Optimum Machining Condition 

The performance improvement in percentage was estimated by comparing the reference values and the corresponding 

optimal values, as seen in Table 9.   

Table 9. Optimum parameters and their response values 

Responses at 

optimum 

conditions 

Response Values Optimum parameters of turning process 

Reference 

(Initial factor settings) 

Optimum 

values 

Performance 

Improvement 

Cutting Speed 

(m/min) 

Feed rate 

(mm/rev) 

Depth of cut 

(mm) 

Surface roughness 

(μm) 
1.024 0.954 6.83% 

200 0.050 0.25 

Cutting force (N) 51.590 21.00 59.29% 

Material removal 

rate (cm3/min) 
1.250 2.50 100% 

Carbon Emission  

(kg-CO2) 
2.430 0.66 72.84% 

Energy 

consumption (kJ) 
5.740 1.56 72.82% 

Cutting power 

(W) 
85.980 70.00 18.58% 

The sustainability of a turning process can be quantified in terms of three sustainability pillars. They are 

environmental, economic, and social aspects of sustainability. Reduction in carbon emission and energy consumption 

leads to a positive environmental impact. Improvement in surface finish and material removal rate leads to quality 

products and reduced rework, thereby improving economic efficiency. Reducing machining costs and improving 

operators' health has a positive social impact. 

4.0 CONCLUSIONS 

In the present work, an attempt was carried out to understand the turning of Al 6063 alloy with sustainability aspects 

of machining under dry conditions. The machining characteristics analyzed were MRR, surface roughness, and cutting 

force. The sustainability indicators evaluated were carbon emission, energy consumption, and cutting power. The 

conclusions obtained from the findings of the above study are listed below. 
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a) GRA efficiently predicted the optimum level of parameter combinations for getting the desired output per the objective 

function. The parameter combinations are: v3 = 200 m/min, f1 = 0.05 mm/rev, d1 = 0.25 mm. 

b) Considering the initial parameter sets and best-turning parameters, optimized values resulted in a 72.84 % reduction 

in carbon emission, a 72.82 % reduction in energy consumption, an 18.58 % reduction in cutting power, and a 6.83 % 

reduction in the surface roughness, was determined through grey relational analysis. 

c) From the response Table 6 of mean GRG, ranking for the selected independent cutting parameter was identified. The 

most significant turning parameter influencing multi-objective function was found to be the depth of cut (Rank 1), 

followed by cutting speed (Rank 2) and feed rate (Rank 3). 

d) Through ANOVA results, it can be identified that the depth of cut is the most dominant factor (34.38 % contribution), 

trailed by cutting speed (15.31 % contribution) and feed rate (10 % contribution). So, it is evident that all three input 

parameters significantly affect the sustainable turning process. 

e) The established regression model has significantly predicted the output response values where R-squared values drawn 

are near unity. 

Overall, it was identified that the machining performance of Al 6063 alloy is favorable under a dry-cutting 

environment, which is a sustainable way of machining. In addition, the study can be further extended to use sustainable 

machining environments such as MQL and NMQL to contribute more towards sustainability. 
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