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RESEARCH ARTICLE 

A Comparative Study and Improved Bearing Fault Classifier Using Raw 
Vibration Data Under Limited Training Samples     

J.S. Yap*, M.H. Lim, and M. Salman Leong   

Institute of Noise and Vibration, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia 

ABSTRACT – Artificial intelligence is gaining traction in bearing fault detection and diagnosis. 
Generally, signal processing and feature selection are carried out to facilitate the fault classification 
process; however, classification accuracy tends to degrade under limited training data.  In this paper, 
various artificial intelligence (AI) classification models are studied and compared using raw vibration 
data without signal processing and feature engineering. A Cosine k-Nearest Neighbours (CosKNN)-
based classification model is optimized by integrating a Segmentive Mechanism, resulting in an 
overall classification F1-score improvement to 90.8% compared to the original classifier's 76.9%. 
The comparative findings show that the proposed model is suitable for circumstances with limited 
availability of training data, signal processing tools, and feature engineering tuning. 
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1.0 INTRODUCTION 

Bearings are commonly used in rotating machinery such as electrical motors, pumps, engines, and fans. They function 

as crucial components, enabling rotational motion by reducing friction loss, subsequently improving energy consumption, 

preventing overheating, and minimizing wear and tear effects [1], [2]. Among the many types of bearings, Rolling 

Element Bearings (REBs) are considerably common, consisting of four major elements: outer race, inner race, cage and 

ball [3], [4].  

Bearing faults are the main reason for machinery failure, according to literature statistics, ranging from 30% to 55% 

according to various studies [3]-[5]. Bearing faults can result in machinery breakdowns, unexpected maintenance, 

inefficient operations, and extreme noise and vibrations, subsequently causing economic losses and even risking the safety 

and health of humans[5], [6]. Therefore, Fault Detection and Diagnosis (FDD) is crucial to determine the state of health 

of the REB [3], [6].  

In this paper, the performance of different Artificial Intelligence (AI)-assisted FDD models was evaluated by 

analyzing raw vibration signals, as well as under limited training data. An improved model was developed to tackle the 

challenges of classification under the scarcity of signal processing, feature engineering, and training data. 

FDD is applicable in different maintenance strategies, namely Breakdown, Preventive, Predictive, and Proactive 

Maintenance [7]. FDD in Predictive and Proactive Maintenance, including Condition-Based Monitoring (CBM), is 

potentially beneficial for detecting bearing faults in advance, allowing for in-time maintenance planning and rectification 

to minimize the mentioned machinery failure consequences [7], [8]. A simplified representation of the steps in FDD is 

presented in Figure 1.Figure 1.  

1.1 Data Acquisition 

Mainstream data acquisition of bearing information, in the form of vibration, is performed during FDD, although other 

parameters such as motor current, acoustic emission, temperature, and oil analysis can be used to evaluate the bearing 

conditions [3], [8]. In general, an accelerometer is placed in close proximity to the REB, and raw vibration data in the 

time series of the interested oscillatory motion body is recorded [1]. With the advancement of computational resources, 

Artificial Intelligence (AI) is utilized in FDD, either replacing or assisting maintenance professionals [9], [10].   

 

Figure 1. The simplified steps of Fault Detection and Diagnosis (FDD) 
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1.2 Signal Processing 

Raw vibration data typically undergoes signal processing to yield useful or visually presentable forms [1], [3] as 

illustrated in Table 1. These forms are mainly categorized into three domains: Time, Frequency, and Time-Frequency, 

where unwanted signals or noise are filtered [10]. It is worth noting that performing FDD without signal processing on 

raw vibration signals has become possible due to recent advancements in AI. This brings benefits such as more efficient 

data storage, computational resources, and reduced dependency on expert knowledge inputs, all while maintaining FDD 

classification accuracy over 90% [6], [11], [12]. 

Table 1. Signal processing method for vibration data of rolling element bearing (REB)[1], [13], [14] 

Domain Example Benefits Drawbacks 

Time Averaging 

Peak hold 

Threshold 

Trending 

Log-scale 

Requires relatively less 

computational resources. 

Unable to detect REB element passing 

frequency. 

Limitation for detecting early fault generation. 

Frequency Fast Fourier Transform 

(FFT) 

Envelope Spectrum 

Power Spectrum 

Cepstrum 

Suitable to detect REB 

element passing frequency. 

Less sensitive to non-stationary faults. 

Requires stable & continuous data (for FFT). 

Requires proper knowledge in windowing 

selection. 

Time-

Frequency 

Short-time Fourier 

Transform (STFT) 

Empirical Model 

Decomposition (EMD) 

Continuous Wavelet 

Transform (CWT) 

More sensitive to non-

stationary faults 

Requires relatively more computational 

resources. 

Requires proper knowledge in windowing 

selection (STFT). 

1.3 Feature Engineering 

Traditionally, raw data and processed signals are considered high-dimensional and require feature engineering to 

obtain discriminative attributes for FDD [3], [8]. Feature engineering, including the extraction and selection of useful 

features, presents a challenge due to the necessity of prior knowledge, and traditional AI is incapable of processing large 

and high-dimensional features in fault classification [5], [10]. Statistical feature extraction, such as Root-Mean-Square 

(RMS), Kurtosis, Crest Factor, and Entropy, is conventionally applied in FDD [1], [6], however, a high level of expertise 

input is not exempted in this method [5]. AI is used as a Supervised Learning Algorithm for Feature Selection, namely 

Filter-based, Embedded-based, and Wrapper-based methods [15]. Wrapper-based and Embedded-based methods are 

found to be computationally inefficient, while Filter-based methods require additional redundancy analysis mechanisms  

[15]. 

1.4 FDD Classification 

Traditionally, the extracted or selected features are reviewed using a manual approach (human-machine interaction), 

including association, reasoning, and decision-making techniques[4], [8]. A subset of AI known as Machine Learning 

(ML), such as Artificial Neural Networks (ANN), Support Vector Machine (SVM), and Decision Trees, provides an 

alternative to manual approaches [1], [4], [8], [10]. Generally, a model-based classifier is developed using an ML 

technique by training with labeled features [1], [8]. Provided with proper signal processing and feature engineering, the 

majority of ML approaches are capable of achieving satisfactory classification accuracy above 90% [4]. 

2.0 DEEP LEARNING IN FDD 

Deep Learning (DL) is a subset of AI with automated feature learning capability, in contrast to classical ML, further 

reducing human or machine-assisted tuning as illustrated in Figure 2 [3], [8], [10]. The DL's advantage over ML is due 

to the rise of Big Data, Internet of Things (IoT), Wireless Sensor Networks (WSN), and Computer Processors [1], [6], 

[16]. Conversely, DL, in general, struggles in situations with limited training data (especially faulty data) and 

computational hardware due to financial and energy efficiency limitations [3], [4], [6].  
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Figure 2. Relationship between AI, ML and DL 

 

2.1 Limited Training Data in DL 

Limited data, especially for REB faulty conditions, is due to the fact that faulty data generally takes a lengthy time to 

develop. Additionally, industrial systems are usually forced to stop for repair to avoid amplified damage [4], [17]. Real-

world data is also imbalanced, with healthy data being much more substantial than faulty data. This imbalance causes the 

trained AI model to be sensitive to healthy data but less sensitive to faulty data [3], [18]. To tackle these shortcomings, 

various approaches were studied, including few-shot learning and extreme learning [1], [3], [6]. Numerous publications 

by researchers have used Case Western Reserve University (CWRU) datasets in FDD [3], [6], and recent studies 

addressing limited data are listed in Table 2. Based on the recent studies in Table 2, classification accuracies were found 

to be adequately high; however, most approaches still require signal processing efforts [3], [4], [6]. 

2.2 Computational Resources in DL 

Signal processing and A.I. model training are associated with expensive data acquisition boards and complex software, 

increasing the cost of the condition monitoring system [19], [20]. Erica et al. explored a low-cost and small-size alternative 

by measuring acoustic noise and sampling it with a microcontroller. However, signal processing, such as Fast Fourier 

Transform, and top-flat windowing, were inevitable in the system [19]. Thani et al. proposed an A.I. model that analyzes 

raw vibration data using Auto-Encoder as a feature extractor. A classification of 90.3% (F1-score) was achieved; however, 

the model training time was longer [21]. 

Table 2. Recent study of limited training data deep learning in FDD 

Reference [18] [22] [23] [24] [25] [26] 

Training Data 

Sample 
      

Normal 2828 400 30 10 10 60 

Outer Race Fault 243 12 30 10 10 60 

Inner Race Fault 323 12 30 10 10 60 

Ball Fault 323 12 30 10 10 60 

Signal Processing 

Method 
      

Domain 
Time-

Frequency 
Frequency Time Time Frequency Frequency 

Signal Processing  
Wavelet Time-

Frequency 
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Spectrum 
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2D Imaging 
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Table 2. (cont.) 

Reference [18] [22] [23] [24] [25] [26] 

Deep Learning 

Method 

      

Integrated Feature 

Learning 

Wide First-layer 

Kernels 

Convolutional 

Neural Networks 

(WDCNN) 

Stacked 

Capsule 

Auto-

encoder 

(CaAE) 

Conditional 

Generative 

Adversarial 

Network 

(CGAN) 

Generative 

Adversarial 

Network 

(GAN) & 

Attention-

Weighted 

Multidepth 

Feature Fusion 

Statistical 

Similarity 

Measurement 

(SSM) 

Varying 

Coefficient 

Transfer 

Learning 

(VCTL) & 

Bayesian 

Network 

(BN) 

Integrated Classifier 2D 

Convolutional 

Neural 

Networks (2D-

CNN) 

Softmax 

Classifier 

Classification 

Accuracy (%) 

94.72 98.28 97.14 99.14 100 90.30 

3.0 RESEARCH METHODOLOGY 

This research is partitioned into 2 core parts: (A) Investigate and compare the classification performance of various 

AI methods without signal processing, feature engineering, and knowledge-based tuning, as illustrated in Figure 3; (B) 

Develop and compare an optimized AI model with improved classification performance.  

 

Figure 3. Proposed comparative study of AI methods without Signal Processing and Feature Engineering 

3.1 Datasets Description 

Case Western Reserve University Bearing Data Center (CWRU)[27] and a purchased Spectaquest Machinery Fault 

Simulator (MFS) are used in this study. The description of the datasets is shown in Figure 4 and Table 3. The Rolling 

Element Bearing (REB) faults were artificially seeded with electro-discharge machining (EDM), and the vibration signals 

were collected by a 16-channel DAT recorder with accelerometers at 12,000 samples per second for CWRU, while the 

MFS signals were acquired with a 16-channel OROS recorder with a Wilcoxon 100mV/g accelerometer at 8,000 samples 

per second.   

Table 3. REB Datasets descriptions  

Dataset CWRU MFS 

Bearing Model 6205-2RS JEM SKF, deep groove 

ball bearing @ Drive End 

Spectraquest custom bearing 

No. of Balls 9 8 

Motor Load (HP) 0 n.a. 

Shaft Speed (RPM) 1,797 1,800 

Data Acquisition Vibration  

Sampling Rate (kHz) 12 8 

Data Points per Sample 1,024  

Condition Fault Size (inch) No. of Samples Fault Size (inch) No. of Samples 

Normal n.a. 300 n.a. 300 

Outer Race Fault 0.007 100 0.03 100 

 0.014 100 0.06 100 

 0.021 100 0.09 100 
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Table 3. (cont.)  

Dataset CWRU MFS 

Inner Race Fault 0.007 100 0.03 100 

 0.014 100 0.06 100 

 0.021 100 0.09 100 

Ball Fault 0.007 100 0.03 100 

 0.014 100 0.06 100 

 0.021 100 0.09 100 

 

  

Figure 4. REB datasets: CWRU (left); MFS (right) 

The datasets are split into training and testing samples, with each sample consisting of 1,024 data points of raw 

vibration signals. Different scenarios of AI model training were carried out, identified as T600, T480, T360, and T240, 

corresponding to total samples of 600, 480, 360, and 240 used as training input. These samples were labeled into 4 classes: 

Normal, Outer Race Fault, Inner Race Fault, and Ball Fault. The fault sizes are artificially seeded using electro-discharge 

machining (EDM) and distributed evenly in the mentioned scenarios. For example, in T360 of CWRU, the Inner Race 

Fault consists of 30 samples for 0.007, 0.014, and 0.021 inches, respectively, totaling 90 samples. For a consistent 

comparison result, the testing samples are identical and consist of 150 samples for each class. The details are described 

in Table 4. 

  Table 4. Description of training and testing samples for CWRU and MFS datasets 

Scenario T600 T480 T360 T240 

Training Samples     

Normal 150 120 90 60 

Outer Race Fault 150 120 90 60 

Inner Race Fault 150 120 90 60 

Ball Fault 150 120 90 60 

Total 600 480 360 240 

Testing Samples     

Normal 150 150 150 150 

Outer Race Fault 150 150 150 150 

Inner Race Fault 150 150 150 150 

Ball Fault 150 150 150 150 

Total 600 600 600 600 

4.0 PROPOSED COMPARISON OF AI METHODS 

MATLAB’s Classification Learner App offers multiple and simplified classification functions, including Support 

Vector Machine (SVM), k-Nearest Neighbors (KNN), and Artificial Neural Networks (ANN). Training data can be fed 

into the program to train different models for evaluation and can be exported to real-world applications (reference: 

matworks.com/help/stats/classification-learner-app.html). In this study, a total of 31 models were built with default 

presets and hyperparameters to compare and evaluate the models’ performance. The type of classifier/model and its 

default hyperparameters are tabulated in Table 5. 

 

 

 



J.S. Yap et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 21, Issue 1 (2024) 

journal.ump.edu.my/ijame  11079 

Table 5. Type of classifier and corresponding default hyperparameter of MATLAB’s Classification Learner App 

Type of Classifier Hyperparameters  Type of Classifier Hyperparameters 

Fine Tree (FT) Maximum split no.: 100 

Split criterion: Gini’s diversity index 

Surrogate decision splits: Off 

 Cosine KNN 

(CosKNN) 

Number of neighbors: 10 

Distance metric: Cosine 

Distance weight: Equal 

Medium Tree (MT) Maximum split no.: 20 

Split criterion: Gini’s diversity index 

Surrogate decision splits: Off 

 Cubic KNN 

(CubKNN) 

Number of neighbors: 10 

Distance metric: Minkowski 

Distance weight: Equal 

Coarse Tree (CT) Maximum split so.: 4 

Split criterion: Gini’s diversity index 

Surrogate decision splits: Off 

 Weighted KNN 

(WKNN) 

Number of neighbors: 10 

Distance metric: Euclidean 

Distance weight: Squared inverse 

Linear Discriminant 

(LD) 

Covariance structure: Full  Ensemble Boosted 

Trees (EBooT) 

Ensemble method: AdaBoost 

Learner type: Decision tree 

Maximum split no.: 20 

Learners no.: 30 

Quadratic 

Discriminant (QD) 

Covariance structure: Diagonal  Ensemble Bagged 

Trees (EBagT) 

Ensemble method: Bag 

Learner type: Decision tree 

Maximum split no.: 599 

Learners no.: 30 

Gaussian Naïve 

Bayes (GNB) 

Distribution name for numerical 

Predictor: Gaussian 

 Ensemble Subspace 

Discriminant (ESubD) 

Ensemble method: Subspace 

Learner type: Discriminant  

Learners no.: 30 

Subspace dimension:512 

Kernel Naïve Bayes 

(KNB) 

Distribution name for numerical 

Predictor: Kernel 

Kernel type: Gaussian 

Support: Unbounded 

 Ensemble Subspace 

KNN (ESubKNN) 

Ensemble method: Subspace 

Learner type: Nearest Neighbours 

Learners no.: 30 

Subspace dimension:512 

Linear SVM 

(LSVM) 

Kernel function: Linear 

Kernel scale: Automatic 

Box constraint: 1 

Multiclass method: One-vs-One 

 Ensemble 

RUSBoosted Trees 

(ERUST) 

Ensemble method: RUSBoost 

Learner type: Decision tree 

Maximum split no.: 20 

Learners no.: 30 

Quadratic SVM 

(QSVM) 

Kernel function: Quadratic 

Kernel scale: Automatic 

Box constraint: 1 

Multiclass method: One-vs-One 

 Narrow Neural 

Network (NNN) 

Fully connected layers no.: 1 

First layer size: 10 

Activation: ReLU 

Cubic SVM 

(CUBSVM) 

Kernel function: Cubic 

Kernel scale: Automatic 

Box constraint: 1 

Multiclass method: One-vs-One 

 Medium Neural 

Network (MNN) 

Fully connected layers no.: 1 

First layer size: 25 

Activation: ReLU 

Fine Gaussian SVM 

(FGSVM) 

Kernel function: Gaussian 

Kernel scale: 8 

Box constraint: 1 

Multiclass method: One-vs-One 

 Wide Neural Network 

(WNN) 

Fully connected layers no.: 1 

First layer size: 100 

Activation: ReLU 

Medium Gaussian 

SVM (MGSVM) 

Kernel function: Gaussian 

Kernel scale: 32 

Box constraint: 1 

Multiclass method: One-vs-One 

 Bilayered Neural 

Network (BNN) 

Fully connected layers no.: 2 

First layer size: 10 

Second layer size: 10 

Activation: ReLU 

Coarse Gaussian 

SVM (CGSVM) 

Kernel function: Gaussian 

Kernel scale: 130 

Box constraint: 1 

Multiclass method: One-vs-One 

 Trilayered Neural 

Network (TNN) 

Fully connected layers no.: 3 

First layer size: 10 

Second layer size: 10 

Second layer size: 10 

Activation: ReLU 

Fine KNN (FKNN) Number of neighbors: 1 

Distance metric: Euclidean 

Distance weight: Equal 

 SVM Kernel (SVMK) Learner: SVM 

Expansion dimensions no.: Auto 

Kernel scale: Auto 

Multiclass method: One-vs-One 

MEDIUM KNN 

(MKNN) 

Number of neighbors: 10 

Distance metric: Euclidean 

Distance weight: Equal 

 Logistic Regression 

Kernel (LRK) 

Learner: Logistic Regression 

Expansion dimensions no.: Auto 

Kernel scale: Auto 

Multiclass method: One-vs-One 

COARSE KNN 

(CKNN) 

Number of neighbours: 100 

Distance metric: Euclidean 

Distance weight: Equal 
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4.1 Quantifications of AI Methods’ Performance 

The key measurements of AI Methods are classification accuracy as follows[28]:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (%) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 𝑋 100  

  

𝑅𝑒𝑐𝑎𝑙𝑙 (%) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 𝑋 100  

  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 (%) = 2
[𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙]

[𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙]
 (1) 

where  

TP = number of true positive classifications 

TN = number of true negative classifications 

FP = number of false positive classifications 

FN = number of false negative classifications 

F1- is selected as the metric for classification performance because it balances precision and recall compared to 

accuracy. his metric is particularly useful when the testing data are imbalanced [29]. Since there are 2 datasets in the 

comparative analysis, the averaging of metrics for both CWRU and MFS is carried out. Additionally, to evaluate the 

performance of different scenarios of limited training data, an overall indicator is calculated by averaging the accuracy of 

scenarios T600, T480, T360, and T240. 

4.2 Results and Discussion of AI Methods 

Table 6 tabulates the comparative result of classification accuracy using different AI methods. In general, the majority 

of the overall F1-score is below 75%, demonstrating the challenges of classifiers without the setting of signal processing 

and feature engineering. CosKNN and MGSVM established slightly higher overall accuracy of 76.9% and 75.5%, 

respectively. The F1-scores were observed to be trending down with lesser training data, MGSVM saw a reduction of 6% 

from 78.6% (T600) to 72.6% (T240), while CosKNN reduced by 4.4% from 81.4% (T600) to 77.0% (T240). The reason 

for the greater degradation of accuracy in CosKNN is believed to be the default setting of the nearest neighbors’ number 

(k) of 10, which is in a higher ratio compared to the sample number, resulting in the k-number being filled by true negative 

(TN) samples when insufficient true positive (TP) samples are available. Although the setting can be adjusted to lower 

the k-number, this would require prior knowledge before developing the classification model. 

Table 6. Comparative result (F1-score) in relation to the scenario of limited training data 

Data-Sets AI Method T600 T480 T360 T240 Overall AI Method T600 T480 T360 T240 Overall 

CWRU FT 40.7% 37.2% 38.6% 35.4% 38.0% CosKNN 83.7% 79.7% 76.1% 73.0% 78.1% 

MFS 37.6% 37.8% 37.8% 38.2% 37.8% 79.1% 74.1% 68.7% 80.9% 75.7% 

Average 39.1% 37.5% 38.2% 36.8% 37.9% 81.4% 76.9% 72.4% 77.0% 76.9% 

CWRU MT 34.1% 34.0% 38.0% 33.4% 34.9% CubKNN 17.0% 16.4% 15.6% 15.3% 16.1% 

MFS 31.2% 30.1% 27.8% 32.9% 30.5% 19.5% 16.9% 17.1% 13.2% 16.7% 

Average 32.6% 32.0% 32.9% 33.1% 32.7% 18.3% 16.6% 16.3% 14.2% 16.4% 

CWRU CT 29.9% 23.7% 28.1% 33.1% 28.7% WKNN 17.0% 20.5% 22.5% 19.5% 19.9% 

MFS 23.2% 20.3% 27.8% 20.6% 23.0% 23.9% 21.7% 20.1% 15.9% 20.4% 

Average 26.6% 22.0% 27.9% 26.8% 25.8% 20.5% 21.1% 21.3% 17.7% 20.1% 

CWRU LD 28.9% 29.5% 29.8% 29.5% 29.4% EBooT 47.4% 42.8% 47.6% 43.1% 45.2% 

MFS 32.3% 35.0% 32.5% 31.8% 32.9% 43.0% 45.1% 40.9% 44.3% 43.3% 

Average 30.6% 32.3% 31.1% 30.6% 31.2% 45.2% 44.0% 44.2% 43.7% 44.3% 

CWRU QD 70.2% 69.9% 70.4% 71.3% 70.4% EBagT 53.5% 53.2% 49.7% 42.2% 49.7% 

MFS 52.8% 50.9% 49.8% 49.8% 50.8% 61.2% 61.2% 56.2% 46.7% 56.3% 

Average 61.5% 60.4% 60.1% 60.5% 60.6% 57.4% 57.2% 52.9% 44.4% 53.0% 

CWRU GNB 70.2% 69.9% 70.4% 71.3% 70.4% ESubD 29.4% 31.5% 33.4% 30.1% 31.1% 

MFS 52.8% 50.9% 49.8% 49.8% 50.8% 36.6% 51.8% 37.2% 37.7% 40.8% 

Average 61.5% 60.4% 60.1% 60.5% 60.6% 33.0% 41.7% 35.3% 33.9% 36.0% 

CWRU KNB 63.7% 64.9% 65.5% 67.2% 65.3% ESubKNN 31.8% 31.4% 25.6% 23.7% 28.2% 

MFS 52.1% 52.5% 50.7% 50.3% 51.4% 50.2% 46.0% 41.5% 37.0% 43.7% 

Average 57.9% 58.7% 58.1% 58.7% 58.3% 41.0% 38.7% 33.6% 30.4% 35.9% 

 

 



J.S. Yap et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 21, Issue 1 (2024) 

journal.ump.edu.my/ijame  11081 

Table 6. (cont.) 

Data-Sets AI Method T600 T480 T360 T240 Overall AI Method T600 T480 T360 T240 Overall 

CWRU LSVM 28.7% 25.8% 22.5% 22.6% 24.9% ERUST 34.1% 26.4% 36.5% 36.1% 33.2% 

MFS 30.6% 29.1% 27.0% 27.0% 28.4% 30.0% 28.6% 26.8% 28.3% 28.5% 

Average 29.6% 27.4% 24.8% 24.8% 26.7% 32.0% 27.5% 31.7% 32.2% 30.8% 

CWRU QSVM 43.3% 37.1% 36.3% 32.7% 37.3% NNN 51.3% 38.9% 42.2% 31.5% 41.0% 

MFS 58.2% 52.4% 46.8% 41.2% 49.7% 57.0% 56.0% 26.8% 41.0% 45.2% 

Average 50.8% 44.8% 41.5% 36.9% 43.5% 54.2% 47.5% 34.5% 36.3% 43.1% 

CWRU CubSVM 40.4% 33.9% 32.6% 30.5% 34.3% MNN 54.7% 45.4% 42.1% 33.2% 43.8% 

MFS 59.7% 52.4% 45.1% 39.3% 49.1% 59.3% 62.7% 52.8% 45.4% 55.0% 

Average 50.0% 43.1% 38.9% 34.9% 41.7% 57.0% 54.1% 47.5% 39.3% 49.4% 

CWRU FGSVM 25.9% 25.4% 25.8% 24.2% 25.3% WNN 54.2% 47.6% 45.4% 34.7% 45.5% 

MFS 50.1% 53.8% 52.4% 52.1% 52.1% 64.1% 54.9% 51.8% 45.2% 54.0% 

Average 38.0% 39.6% 39.1% 38.2% 38.7% 59.1% 51.3% 48.6% 40.0% 49.7% 

CWRU MGSVM 80.6% 80.1% 76.7% 76.9% 78.6% BNN 57.6% 46.2% 48.1% 35.3% 46.8% 

MFS 76.7% 74.4% 70.1% 68.2% 72.3% 58.1% 51.3% 49.3% 45.5% 51.0% 

Average 78.6% 77.2% 73.4% 72.6% 75.5% 57.9% 48.7% 48.7% 40.4% 48.9% 

CWRU CGSVM 34.7% 30.4% 25.6% 20.5% 27.8% TNN 52.1% 57.6% 50.7% 41.2% 50.4% 

MFS 41.5% 41.4% 38.7% 36.4% 39.5% 58.9% 57.1% 45.3% 48.9% 52.6% 

Average 38.1% 35.9% 32.1% 28.5% 33.7% 55.5% 57.4% 48.0% 45.0% 51.5% 

CWRU FKNN 36.8% 35.3% 27.5% 25.8% 31.3% SVMK 64.2% 64.7% 64.6% 58.0% 62.9% 

MFS 50.3% 45.9% 40.2% 36.5% 43.2% 76.9% 73.2% 70.4% 67.1% 71.9% 

Average 43.5% 40.6% 33.8% 31.1% 37.3% 70.6% 69.0% 67.5% 62.6% 67.4% 

CWRU MKNN 20.3% 20.0% 21.8% 17.1% 19.8% LRK 59.0% 57.1% 55.1% 53.6% 56.2% 

MFS 17.9% 16.9% 16.9% 13.5% 16.3% 73.9% 70.5% 63.6% 62.0% 67.5% 

Average 19.1% 18.4% 19.4% 15.3% 18.0% 66.5% 63.8% 59.3% 57.8% 61.9% 

CWRU CKNN 10.0% 10.0% 10.0% 10.0% 10.0%       

MFS 20.1% 29.5% 10.5% 10.0% 17.5%       

Average 15.0% 19.7% 10.3% 10.0% 13.8%       

5.0 IMPROVEMENT OF CosKNN CLASSIFIER 

The comparison showed CosKNN achieves the highest overall accuracy with limited training data, the AI method is 

established on cosine distance (Dc) between 2 vectors as follows 

𝐷𝑐 (𝐴, 𝐵) = 1 − 𝑆𝑐(𝐴, 𝐵) (2) 
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where, 

Dc = Cosine Distance 

Sc = Cosine Similarity  

A = Tested Sample in Vector form 

B = Trained Sample in Vector form 

i = i-th components of Vectors 

The vectors are raw signal samples, each with i-th numbers consisting of 1024 data points. Two vectors are categorized 

as the same class when the computed Dc value is closest to 0, and vice versa (Dc ≈ -1 or 1). The predicted output is based 

on the preset k-number without weighting of data points. The main benefit of KNN is the absence of assumptions about 

attributes, making it trainable using elemental procedures and local approximation [3].   

A Segmentive CosKNN (SCosKNN) classification model is proposed to improve classification accuracy. A 

Segmentive Mechanism is integrated with a CosKNN classifier, and the data samples are segmented and arranged as 

shown in Figure 5. This segmentation mechanism virtually increases the number of training inputs, allowing a greater 

opportunity for Dc coordination. The trained model is packaged for testing, and a consolidated prediction is generated 

from segmented 5 outputs, as shown in Figure 6. 
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Figure 5. Segmentive mechanism of the proposed SCosKNN model 

 

Figure 6. Framework of proposed SCosKNN model 

5.1 Results and Discussion of CosKNN Classifier 

The F1-score of SCosKNN is presented and compared with CosKNN in Table 7 and Figure 7. The overall 

accuracy of SCosKNN is 90.8%, an increase of 13.9% compared to CosKNN (76.9%).  

Table 7. Classification performance of CosKNN and SCosKNN 

Data-Sets AI Method T600 T480 T360 T240 Overall AI Method T600 T480 T360 T240 Overall 

CWRU CosKNN 83.7% 79.7% 76.1% 73.0% 78.1% SCosKNN 97.5% 96.8% 96.3% 92.4% 95.8% 

MFS 79.1% 74.1% 68.7% 80.9% 75.7% 89.7% 88.8% 83.7% 80.9% 85.8% 

Average 81.4% 76.9% 72.4% 77.0% 76.9% 93.6% 92.8% 90.0% 86.7% 90.8% 

 

 

 

In 1 In 2 In 3 In 4 In 5 In 1 In 2 In 3 In 4 In 5
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Segmenting Input Segmenting Input
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128 data points per segment 

 

5 segmentive inputs 

512 data points per input 
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T600 T480 T360 T240 Overall

CosKNN 81.4% 76.9% 72.4% 77.0% 76.9%

SCosKNN 93.6% 92.8% 90.0% 86.7% 90.8%
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Figure 7. Classification performance of CosKNN and SCosKNN in limited training data scenarios 

The Segmentive Mechanism integrated into the proposed model is capable of enhancing the classification performance 

as follows: 

a) Virtually increases training data 

For the T240 scenario, the virtual data samples are five times higher after segmentation, providing more opportunities 

for Dc coordination within the same class without adjusting the k-number. 

b) Reduces input dimensionality  

The data points per input are reduced by half, thereby reducing dimensionality. Referring to equation (2), higher 

dimensions (i-th) potentially increase combinatorial effects. 

c) Support collective multi-output 

Multiple outputs from segmented input computations are produced, subsequently consolidated to establish a collective 

predicted output.  

Despite the benefits of the proposed model, several aspects should be considered when implementing it in FDD. For 

example, it requires larger computational memory due to the increased virtual data size. Compared with the literature, a 

91.3% F1-score is considered a moderate performance in FDD; however, the proposed model is potentially applicable 

for fault screening, where classification can be carried out without human input, signal processing, and feature 

engineering. 

6.0 CONCLUSION 

This paper presents a comparative study of Rolling Element Bearing (REB) fault classification using different AI 

methods without signal processing and feature engineering in scenarios of limited training data. CosKNN outperformed 

other AI methods with an overall F1-score of 76.9%; however, the overall accuracy is not considered adequate for Fault 

Detection and Diagnosis (FDD), especially with greater degradation in scenarios of reduced training data. An improved 

model, integrating the Segmentive Mechanism (SCosKNN), is proposed, achieving a higher overall accuracy of 90.8% 

and experiencing less degradation in scenarios of limited training data. The comparative findings suggest that the proposed 

model is suitable for circumstances with limited availability of training data, signal processing tools, and feature 

engineering tuning. 
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