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ABSTRACT - This research article aims to explore the relationship between the machining 
parameters of a Slant Bed Turning Centre Computer Numerical Control (SB/C/CNC) precision lathe 
and surface microhardness, dimensional error and surface roughness of AL6061. A technique called 
the central composite design (CCD) method with 13 experiments was used to evaluate the surface 
microhardness, dimensional error, and surface roughness after a turning operation using a micro-
grooved texture tool. Separate prediction models were developed for each of these characteristics 
using the response surface method (RSM) in order to find the optimal process parameters for each 
characteristic. The analysis of variance revealed that the prediction models for surface 
microhardness, dimensional error, and surface roughness were highly significant, with p-values less 
than 0.0001. The process parameters that resulted in the highest surface microhardness were a 
cutting speed (Vc) of 154.363 m/min and a feed rate (fz) of 0.231 mm/rev. On the other hand, the 
process parameters that led to the lowest dimensional error and surface roughness were Vc = 
154.363 m/min, fz = 0.1389 mm/rev, and Vc = 152.081 m/min, fz = 0.1025 mm/rev, respectively. The 
multi-objective prediction model based on gray relational analysis showed an error range of 1.5% 
to 3.1% and a minimum gray relational degree value of 0.3503 within the feasible process parameter 
range. The accuracy of this multi-objective prediction model was higher, with a stronger response 
to the cutting speed Vc compared to the feed rate fz. The determined feasible process parameter 
range serves as a useful reference for engineers working with AL6061 materials in turning 
operations.   
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1.0 INTRODUCTION 

An aluminum alloy is a composition consisting mainly of aluminum to which other metals like copper, manganese, 

silicon, magnesium, and zinc have been added [1]. In the aerospace [2] automotive components construction [3], and 

engineering industries [4]. aluminum alloy is frequently employed for commercial applications. Other fields where 

aluminum alloys are used include construction [5, 6], as well as the electrical [7], electromechanical, electronic, and 

railcar packaging industries. In order to create nanostructures, which require materials with excellent mechanical strength 

and thermal stability, aluminum alloys are also employed quite successfully. The lightweight and advantageous 

mechanical and thermal properties of aluminum alloys make them highly significant in the future generation of cars, 

opening up new possibilities for various applications in the automotive industry [8-10]. There is a wide range of 

opportunities to utilize aluminum alloys in automotive powertrains, chassis, and body structures [11, 12]. Compared to 

other metals, aluminum alloy is relatively easy to machine. The minimal energy consumption during the machining of 

aluminum alloys provides evidence to support this claim [13].  

Machinability is a measure of the ease or difficulty with which a material can be machined under a given set of 

conditions [14]. The machining performance can be determined by multiple factors, including tool life, surface finish, 

chip evacuation, material removal rate, and power consumption of the machine tools, among others. Therefore, it is crucial 

to have knowledge of the machinability characteristics of these materials when providing data for researchers and the 

industry to use [15]. The quest for high efficiency and quality mechanical components drives up competition in the 

industrial sectors. Optimization methods are applied in this situation to enhance the manufacturing process [16, 17].  

Gutema et al. [18] studied the surface roughness and temperature of aluminum 6061 alloy through central composite 

experimental design for turning and analyzed the influence of different machining parameters on the machined surface 

quality and temperature. According to the results, the ideal cutting parameters for surface roughness and temperature are 

116.37 m/min for the cutting speed, 0.408 mm/rev for the feed rate, 0.538 mm for the cutting depth, and 0.20 mm for the 

tool nose radius. The corresponding ideal surface roughness and temperature values are 0.374 m and 27.439 oC 

respectively. Shaik et al. [19] established regression models based on a genetic algorithm, optimized the cutting 

parameters (axial cutting depth, feed rate and cutting speed) of end-milling, and minimized the tool vibration amplitudes 

and surface roughness of AL6061 alloy. Using the Taguchi approach and Analysis of Variance (ANOVA), Niranjan et 

al. [20] optimized the cutting parameters, such as cutting speed, feed rate, and depth of cut, in the turning operation of 
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aluminum alloy 6061 T6 cylindrical rods. The outcome shown that a better surface finish may be achieved with cutting 

speeds of 429 m/min, feed rates of 0.05 mm/min, and depths of 1 mm.  

The authors of this manuscript made an initial and unique contribution by presenting comparative graphs that highlight 

the global position of aluminum alloys. These graphs serve as the fundamental basis for the research conducted in this 

article. The first graph has been created and shows the percentage of the main aluminum alloys utilized in the automotive 

sector from 2005 to 2023 (Figure 1). Following the study of the graph, we can observe that the majority (32.5%) of Al 

6061 alloy is utilized in the automotive sector, followed by Al 2024 at 19.1%, which is our conclusion. These alloys were 

created by a number of committed businesses with the assistance of major automotive producers to enhance the 

manufacturing process of diverse aluminum applications. Al 6061 alloy, designed and produced by Universal Alloy 

Corporation, will be the subject of this investigation. The automotive industry opts for this relatively new aluminum alloy 

due to its superior characteristics compared to existing aluminum alloys. These advantages include exceptional 

machinability, favorable formability and bake hardening properties, high strength and toughness, excellent resistance to 

corrosion, and a remarkable strength-to-weight ratio. [21]. Al 6061 is a versatile material because of all these 

characteristics.  

 

Figure 1. Graph of research work on aluminum alloys usage in the automotive industry for the period, 2005–2023  

Another comparative original graph is created by the authors on the machining operations frequency of aluminum 

alloy as indicated in Figure 2(a). Concerning machining operations, milling (42%) is followed by turning (29%), which 

is the machining process that has been studied the most on aluminum alloy. The authors have created another distinct 

comparative graph, as depicted in Figure 2(b), which examines the relationship between the cutting parameters and their 

influence on surface quality. It is clear from this scenario that the cutting speed with 55% is the most researched parameter, 

closely followed by the feed rate with 25% and cutting depth with 20%.  

 

Figure 2. Graph of research work on (a) machining operations and (b) machining parameters on aluminum alloys for the 

period, 2005–2023  

Lastly, Figure 3(a) showcases the research areas that have received the most attention in the study of aluminum alloys, 

while Figure 3(b) illustrates the mathematical methods employed to optimize the cutting process of these alloys. As per 

Figure 3(a), the highest proportion, at 18%, is dedicated to the examination of tool wear in aluminum alloy machining. 

This is closely followed by studies on roughness, deformations, and friction, each accounting for 16% of the research 
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focus. Hardness, which accounts for 14%, and cutting forces, which accounts for 12% are also very important research 

directions on aluminum alloy machining. Less research has been done on chip formation and power consumption than 

has been done on the aforementioned characteristics. Finally, Taguchi and RSM are the most researched mathematical 

techniques for optimizing the cutting operations for aluminum alloys, according to an analysis of these techniques as 

elucidated in Figure 3(b).  The authors regarded Figures 1 to 3 as highly significant since these graphs were developed 

using credible and up-to-date research publications. Furthermore, Table 1 provides a concise overview of other research 

publications that have explored the optimization of AL 6061.  

 
Figure 3. The graph (a) illustrates the research focuses related to the machining of aluminum alloys, while  

(b) showcases the mathematical techniques utilized to optimize aluminum alloy machining processes from 2005 to 2023 

 

Table 1. The research conducted on machining Al6061 identified and documented 

Machining 

Operation 

Aluminum 

Alloy 

Machining 

Parameters 
Brief Overview/Aims 

Optimization/ 

Prediction Approach 
Author 

Milling Al 6061 Rotational 

speed, cutting depth, 

feed rate 

Determination of optimum 

machining parameters 

influences on surface 

roughness 

Experimental/Taguchi 

method 

[22] 

Micro 

Milling 

Al 6061 depth of cut, cutting 

speed, feed per tooth, 

number of inserts 

In order to decrease the 

energy consumption per unit 

and enhance the surface 

quality 

Taguchi method [23] 

Turning Al 6061 cutting speed, rate of 

feed, cutting depth, 

tool nose radius 

Identifying the appropriate 

combination of optimal 

machining parameters and 

their interactions to achieve 

reduced surface roughness 

and temperature 

Response Surface 

Methodology (RSM) 

and Analysis of 

Variance (ANOVA) 

[18] 

Turning Al 6061 spindle speed,  

feed rate,  

depth of cut  

To reduce surface roughness 

and tool flank wear 

Regression analysis, 

ANOVA 

[24] 

Turning Al 6061 cutting speed, rate of 

feed, cutting depth 

optimization of the process 

parameter on surface 

roughness produced  

Taguchi method [25] 

Turning Al 6061 cutting speed, rate of 

feed, cutting depth 

To improve on the surface 

quality of machined 

components 

Response Surface 

Methodology (RSM) 

and ANOVA 

[26] 

End 

Milling 

Al 6061 cutting speed, feed 

per tooth, cutting 

depth 

Refining the regression 

equation for surface 

roughness through 

optimization 

Taguchi and ANOVA [27] 

Numerous studies have been published using aluminum 6061 as the workpiece material using Analysis of Variance 

(ANOVA) and RSM as indicated by previous scholars in the literature section of this article. However, there is a limited 

amount of literature available on the utilization of ANOVA, RSM, and GRA for optimizing the input and output 

parameters in the context of turning aluminum 6061. The GRA application, in particular, offers substantial advantages 
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for simultaneously optimizing and reducing the number of criteria as well as for bringing about process modifications 

that improve product quality and productivity. According to engineering practice, the evaluation indexes of surface quality 

of Al 6061 processing mainly include surface microhardness, dimensional error and surface roughness. These crucial 

parameters influence surface integrity and are therefore selected as response variables. 

In this present study, given the complexity of the experiment and the need for efficient optimization, the researchers 

opted for the central composite design approach based on the response surface method. This choice aimed to analyze the 

impact of process parameters on the surface roughness, dimensional error, and surface microhardness during the turning 

process of Al 6061. Additionally, based on the theory of gray relational analysis, the surface microhardness, dimensional 

error and surface roughness response characteristics were reduced into a single response index of surface integrity and 

the optimal machining parameter group and the feasible process parameter domain were determined for turning process 

of Al 6061 used in the automotive field. The findings presented in this research paper will prove advantageous to various 

manufacturing industries when making decisions regarding the choice of machine tools, advanced materials, cutting 

conditions, and cutting tools in real-world engineering applications. 

2.0 MATERIALS AND METHODS  

The research's materials, laser setup information, surface texture dimensions, the methods utilized to create the 

textured tool, and the specifics of the semiautomatic lathe machine are all covered in this section. 

2.1 Materials 

An aluminum alloy AL6061 bar with a diameter of 75 mm and length of 120 mm was selected as the workpiece 

material. Aluminum alloy AL6061 was selected due to the fact that it has a wide range of applications in the automotive 

and aerospace industries and the size was based on the commercial availability of the material. Aluminum alloy 6061 is 

a typical AL-Mg-Si series variable heat-treated strengthening alloy with chemical composition and mechanical properties 

as mentioned in Table 2 and Table 3 respectively. The YG3X Cemented carbide was selected as the test tool. Carbide-

cutting tools have the characteristics of high hardness, high bending strength and high toughness. The YG3X cemented 

carbide cutting tools have obvious advantages when cutting 6061 aluminum alloy, and can achieve high-efficiency and 

high-quality processing. The main properties are shown in Table 4. 

Table 2. Chemical compositions of AL6061 [18] 

Element Mg Fe Si Zn Cu Mn Ti Cr 

wt% 0.8-1.2 0.7 0.4-0.8 0.25 0.15-0.4 0.15 0.15 0.04-0.35 

 

Table 3. Mechanical properties of the aluminium alloy AL6061 [28] 

Method of 

manufacture 

Hardness (HRC) Tensile strength 

(MPa) 

Yield strength 

(MPa) 

Elongation 

Extruded 9.9 308 252 11.2 

 

Table 4. Properties of YG3X cemented carbide [28] 

Composition  

(wt. %) 

Density 

(gcm-3) 

Flexural strength 

(GPa) 

Thermal conductivity 

(W/(m-k)) 

Thermal expansion coefficient 

(10-4/K) 

WC + 3%Co 13.8 1.08 87.9 5.3 

2.2 Methods 

2.2.1 Materials Preparation 

In order to ensure the accuracy of the measurement of the textured surface topography, the rake faces of the carbide 

cutting tools were grounded with 250#, 600#, 800#, 1200#, and 1500# sandpapers respectively. Finally, the W10 was 

used to polish the tool samples to a surface roughness of about 0.05μm in a metallographic machine.  

2.2.2 Surface Texturing 

The process of surface texturing involved using an acousto-optic Q-switched diode-pumped Nd:YAG laser 

micromachining system to texture the rake face of the carbide tool near the main cutting edge. The parameters used were 

reported by Hua et al. [29].  This system utilized a TEM00 fundamental mode laser beam, and a beam expander telescope 

device was installed outside the resonator to enhance collimation and focusing capabilities. By directing the laser beam 

onto the carbide material at its focal point, the material absorbed the energy of the incident laser beam, causing it to heat 

up until it reached its melting point. As a result, a localized heat-affected zone was created, leading to instantaneous 

vaporization and ablation of the metal, ultimately resulting in the formation of microgrooves. For the processed surface 

textures, the slag on the surfaces of the tool sample was treated with metallographic sandpaper. After polishing, the 

samples were placed in a KYX25-2400L ultrasonic cleaning machine for about 30 minutes. Finally, the samples were 
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stored in a drying oven before the geometric dimension measurements were performed. The micro-textured groove on 

the rake face of the tool has a rectangular cross-section. It measures 100 μm in width, with a pitch (distance between 

adjacent grooves) also measuring 100 μm, and a depth of 50 μm.  

2.3 Machining 

The turning operations were carried out by a Slant Bed Turning Centre Computer Numerical Control (SB/C/CNC) 

precision lathe for a cutting length of 80 𝑚𝑚 for the machining time of 60 s and a cutting depth of 0.5mm. This lathe has 

strong rigidity and shock resistance, and the cutting process is very smooth. During the experiment, the carbide tool was 

clamped on the lathe. The tool's cutting angle parameters are as follows: the rake angle is set at 10°, the rear angle at 8°, 

the main deflection angle at 45°, and the inclination angle at 0°. The tool has an arc radius of 0.3 mm. To ensure consistent 

conditions and eliminate the impact of tool wear, each turning experiment was conducted with a fresh cutting edge. Two 

repetitions were performed for each experiment, and the average value was recorded. Kerosene oil cutting fluid was used 

as the cutting lubricant in these wet cutting experiments.  

The experimental design matrix was created using the Central Composite Design method (CCD) with two factors, 

cutting speed (Vc) and feed rate (fz), and five levels. A total of thirteen (13) experiments were generated, consisting of 

four cube points, five center points, and four axial points. Table 5 provides details of the cutting parameters and their 

corresponding levels used in this research study. Based on experience, some preliminary experiments were conducted to 

select the cutting parameters and their levels. The MINITAB software was employed for variance analysis.  

Table 5. Machining parameters and their levels used in the turning experiment 

S/N Parameters 
Level 

-1.414 -1 0 1 1.414 

1 Feed rate (mm/rev) 103 120 160 200 216 

2 Depth of cut (mm) 0.019 0.05 0.125 0.200 0.200 

2.3.1 Instrumental Analysis 

The surface roughness of the processed specimen was evaluated using a roughness meter (TR2000), as shown in 

Figure 4(a). Additionally, the surface microhardness of the processed specimen was measured using a hardness tester 

(TIME5310), as indicated in Figure 4(b). The TIME5310 Portable Hardness tester is a modern digital device designed 

with advanced microelectronic technology. It offers various features for metal hardness testing, including probe auto 

recognition, a large memory, USB output, a removable mini-printer, and software. The enhanced display of the tester 

makes it significantly easier to read the measured values. A digital display micrometer was used to measure the diameter 

of the processed specimen. In all the measurements, three (3) measurement points were taken equidistantly on the outer 

surface of the workpiece and each measurement point rotated at 120° in the circumferential direction to obtain three (3) 

values. The averages of the three sets of values were calculated to obtain the surface roughness, microhardness and the 

diameter of the specimen respectively. The dimensional error ( ) of the specimen was obtained by Eq (1)  

o
D D = −

 (1) 

where δ is the absolute value of the machining error of the test piece, that is, the size error; D  is the actual size; o
D

is 

the theoretical size of the workpiece.  

 

Figure 4. Photograph of (a) TR2000 roughness meter and (b) TIME5310 hardness tester 

 

3.0 RESULTS AND DISCUSSION 

The test arrangement and measured results of surface microhardness (H), dimensional error (δ), and surface roughness 

(Ra) are shown in Table 6. 
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Table 6. Measured results of experimental work 

No. 

Machining Input Parameters Responses 

c
V

(m/mm) z
f

(mm/rev) 
H (HB)  (mm) Ra (μm) 

1 120 0.050 61.9 0.0240 0.6245 

2 103 0.125 64.1 0.0191 0.7225 

3 120 0.200 68.4 0.0126 0.7649 

4 160 0.019 56.3 0.0274 0.6467 

5 160 0.125 58.3 0.0034 0.4568 

6 160 0.125 58.5 0.0038 0.4267 

7 160 0.125 59.1 0.0055 0.3970 

8 160 0.125 58.7 0.0048 0.4071 

9 160 0.125 60.1 0.0059 0.4761 

10 160 0.231 69.0 0.0192 0.9322 

11 200 0.050 51.2 0.0208 0.7224 

12 216 0.125 48.2 0.0235 0.9760 

13 200 0.200 56.5 0.0221 1.0928 

The response surface method is based on the target parameter values solved at each experimental design point, and 

can quickly give the approximate value of the target parameters at all points in the design space without a complete 

solution [30]. In this paper, the second-order polynomial response surface of surface roughness, dimensional error and 

surface microhardness is constructed by using the response surface method and the linear relationship between the surface 

roughness, dimensional error and surface microhardness and the processing parameters of the SB/C/CNC precision lathe 

is described respectively. In this research article, the response surface method is used to construct the second-order 

polynomial of surface roughness, dimensional error and surface microhardness. The linear relationship between surface 

roughness, dimensional error and surface microhardness and processing parameters of the SB/C/CNC precision lathe is 

described respectively, and the fitting results are verified by significance. The second-order regression equation of process 

parameters and response values can be expressed in Eq. (2).  

2

1 1 1 1

n n n n

o i i ij j ii i

i i j i i

y x x x
= = = + =

=  +  +  +  +   ˆ

 
(2) 

In Eq. (2) 
ŷ

 is the estimated response value; n  is the number of process parameters;  is the quadratic regression 

coefficient;  is the experimental error. 

3.1 Response Surface Model Construction 

The measured data of H, δ, and Ra were subjected to regression analysis using MINITAB software. This analysis led 

to the establishment of a second-order mathematical response model, represented by Eq. (3). The test results, obtained at 

a predetermined significance level of ( )0 05
5 12 3 11F =

.
, .

, are presented in Table 7. The variance analysis of H was carried 

out and the model’s F value is 83.70 (greater than 3.11), 
98 35

sq
R = . %

, and P < 0.0001, which is less than the confidence 

coefficient of 0.05. For variance analysis on δ, the F value of the model is 77.93 (greater than 3.11),
98 24

sq
R = . %

, and P 

is less than the confidence coefficient of 0.05. Similarly, the variance analysis of Ra is carried out, and the F value of the 

model is 129.50 (greater than 3.11), 
98 93

sq
R = . %

, and P < 0.0001, which is much smaller than the confidence coefficient 

of 0.05.  It can be seen that the H, δ, and Ra models have higher reliability and better significance. The columnar 

comparison between the target real value and the predicted value is shown in Figure 5. It can be clearly seen that the 

surface microhardness, dimensional error and surface roughness are well-fitted to the mathematical order response model 

of the lathe processing parameters.  

 

 

 

Table 7. Variance analysis 

Object Source 
Degree of 

freedom 

Sum of 

squares 

Mean 

square 
F P 

% 

Contribution 

H Model 5 408.185 81.637 83.70 0.000 98.35 
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 Linear 2 363.908 181.685 186.27 0.000 87.69 

c
V

 1 253.211 252.486 258.85 0.000 61.01 

z
f

 1 110.697 110.885 113.68 0.000 26.67 

Square 2 43.917 21.958 22.51 0.001 10.58 
2

c
V  1 19.071 13.576 13.92 0.007 4.60 

2

z
f  1 24.846 24.846 25.47 0.001 5.99 

2-Way 1 0.360 0.360 0.37 0.563 0.09 

c z
V f

 1 0.360 0.360 0.37 0.563 0.09 

Error 7 6.828 0.975   1.65 

Total 12 415.012    100.00 

Model summary 98 35
sq

R = . %
 

97 18
sq

R adj =( ) . %
   

  
 

Model 5 0.000951 0.000190 77.93 0.000 98.24 

Linear 2 0.000078 0.000039 15.93 0.002 8.05 

c
V

 1 0.000019 0.000017 7.04 0.033 1.97 

z
f

 1 0.000059 0.000061 24.82 0.002 6.08 

Square 2 0.000832 0.000416 170.59 0.000 86.02 
2

c
V  1 0.000306 0.000413 169.33 0.000 31.65 

2

z
f  1 0.000526 0.000526 215.63 0.000 54.36 

2-Way 1 0.000040 0.000040 16.53 0.005 4.17 

c z
V f

 1 0.000040 0.000040 16.53 0.005 4.17 

Error 7 0.000017 0.000002   1.76 

Total 12 0.000968    100.00 

Model summary 98 24
sq

R = . %
 

96 97
sq

R adj =( ) . %
   

a
R

 
 

Model 5 0.636953 0.127391 129.50 0.000 98.93 

Linear 2 0.180556 0.088053 89.51 0.000 28.04 

c
V

 1 0.075996 0.072888 74.09 0.000 11.80 

z
f

 1 0.104560 0.103217 104.92 0.000 16.24 

Square 2 0.443173 0.221586 225.25 0.000 68.83 
2

c
V

 
1 0.233660 0.290083 294.88 0.000 36.29 

2

z
f

 
1 0.209513 0.209513 212.98 0.000 32.54 

2-Way 1 0.013225 0.013225 13.44 0.008 2.05 

c z
V f

 1 0.013225 0.013225 13.44 0.008 2.05 

Error 7 0.006886 0.000984   1.07 

Total 12 0.643840    100.00 

Model summary 98 93
sq

R = . %
 

98 17
sq

R adj = . %( )
 

  

 
2 2

2 2

2 2

56 23 0 1510 18 5 0 000875 336 3 0 100

0 1714 0 001635 0 5923 0 000005 1 547 0 001058

3 978 0 04079 9 26 0 000128 30 88

c z c z c z

c z c z c z

c z ca z

V f VH f V f

V f V f V f

V f V fR

+ − − + −

− − + +

− − + +

=

 =

=

.    .     .     .     .     .    *

.    .     .    +   .     .     .   *

.   .     .    +   .     .   0 01917
c z

V f





   .   *

 

(3) 
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Figure 5. Comparison histograms of (a) actual surface hardness value and predicted value, (b) actual dimensional error 

value and predicted value (c) actual surface roughness value and predicted value 

In Eq. (3) c
V

is the cutting speed, m/min; z
f

is the feed rate, mm/rev; H represents the predicted surface 

microhardness, HB; δ represents the predicted dimensional error, mm; Ra represents the predicted surface roughness, μm. 

3.2 Analysis of Influence Law 

Figure 6 displays the main effect of surface microhardness (H) and process parameters. In Figure 6(a), the relationship 

between cutting speed and the surface microhardness of the processed AL6061 is shown. It can be observed that as the 

cutting speed increases from 103 m/min to 216 m/min, the surface microhardness gradually decreases. This decrease can 

be attributed to the generation of more cutting heat as the speed increases, leading to a softening of the workpiece surface. 

Additionally, the shortened contact time between the AL6061 rod and the cutting edge prevents the surface work 

hardening process from fully completing, resulting in a reduction in surface microhardness. In Figure 6(b), the response 

trend of surface microhardness to the feed rate is depicted. It indicates that the surface microhardness increases with an 

increase in the feed rate. As the lathe's feed rate increases, the friction between the AL6061 workpiece surface and the 

cutting tool intensifies. This intensification leads to plastic deformation on the surface, causing the entanglement of 

dislocations within the crystal lattice. Consequently, the grains elongate, break, and form a fibrous structure, resulting in 

the phenomenon of hardening. This hardening process promotes an increase in the surface microhardness of the 

workpiece.  

 

Figure 6. Main effect plot of surface microhardness with (a) cutting speed and (b) feed rate 

The main effect of dimensional error and process parameters is shown in Figure 7. The response trend of the 

dimensional error to the cutting speed is shown in Figure 7(a). With the increase in the cutting speed, the dimensional 

error shows a trend of decreasing first and then increasing. The response trend of the dimensional error to the feed rate is 

shown in Figure 7(b). When the feed rate is adjusted from 0.019 mm/rev to 0.125 mm/rev, there is a significant decrease 

in dimensional error. However, when the feed rate is further increased from 0.125 mm/rev to 0.231 mm/rev, the 

dimensional error gradually starts to increase. The overall dimensional error is less than 0.03 mm, and the overall change 

amplitude is small, which further indicates that the SB/C/CNC lathe has higher machining accuracy.  
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Figure 7. Main effect plots of dimensional error with (a) cutting speed and (b) feed rate 

Figure 8 illustrates the main effect of surface roughness and process parameters. In Figure 8(a), the relationship 

between cutting speed and the surface roughness of the processed AL6061 is depicted. When the cutting speed ranges 

from 103 m/min to 160 m/min, the surface roughness demonstrates a gradual decrease. However, when the cutting speed 

increases from 160 m/min to 216 m/min, the surface roughness rapidly increases. The gradual increase in cutting heat 

transmitted by the tool as the cutting speed rises from 103 m/min to 160 m/min leads to visible high-frequency vibrations 

in the test material. Consequently, the surface roughness of the workpiece experiences a sharp increase. Figure 8(b) 

showcases the response trend of surface roughness to the feed rate. At low feed rates, the prolonged presence of cutting 

heat on the cutting surface of the workpiece results in the formation of a built-up edge on the cutting tool. This, in turn, 

causes regular lines to appear on the surface of the AL6061 material, leading to poor surface quality. As the feed rate 

gradually increases within the range of 0.125-0.231 mm/rev, the accelerated contact wear between the cutting edge and 

the AL6061 material generates a significant amount of cutting heat, causing the surface roughness to sharply increase. 

The overall trend aligns closely with the variation observed in dimensional error.  

 

Figure 8. Main effect plots of surface roughness with (a) cutting speed and (b) feed rate  

Based on the second-order mathematical prediction model for each response, an interaction diagram of the cutting 

process parameters is presented in Figure 9. In Figure 9(a), it is evident that a higher surface microhardness can be 

achieved with a lower cutting speed and a higher feed rate. The influence of the spindle speed and feed rate on dimensional 

error is relatively similar, as depicted in Figure 9(b). When cutting AL6061 material using an SB/C/CNC lathe, changes 

in cutting speed have a more significant impact on surface roughness, and an increase in cutting speed leads to relatively 

larger changes in surface roughness. Figure 9 reveals that the maximum surface microhardness (Hmax) is 73.80HB, with 

corresponding process parameters of cutting speed (Vc) at 154.363 m/min and feed rate (fz) at 0.231 mm/rev. The 

minimum dimensional error is 0.004315 mm, with corresponding process parameters of cutting speed (Vc) at 154.363 

m/min and feed rate (fz) at 0.1389 mm/rev. The minimum surface roughness (Ramin) is 0.4055 μm, with corresponding 

process parameters of cutting speed (Vc) at 152.081 m/min and feed rate (fz) at 0.1025 mm/rev.  
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Figure 9. 3D response surface due to interaction of cutting speed and feed rate on (a) surface hardness, (b) dimensional 

error and (c) surface roughness  

3.3 Multi-Objective Optimization Model Construction 

3.3.1 Gray Relational Degree Calculation Process  

Gray Relational Analysis (GRA) is utilized in multi-objective optimization research to transform multiple 

optimization objectives into gray relational degree values. This conversion process involves dimensionality reduction 

techniques. Once the objectives are converted, single-objective optimization analysis is performed on them. The 

significance of the gray correlation degree lies in its value, where a higher value indicates a stronger correlation and, 

consequently, a more favorable input response. 

a) Normalization processing. Normalize the surface roughness, dimensional error, and surface microhardness to [0, 1] 

respectively. The smaller the surface roughness and dimensional error, the better. The data transformation is shown 

in Eq. (4); The greater the microhardness, the better, and its data transformation is shown in Eq. (5).  

( )

( ) ( )

y y

y y


−
=

−

max

max min
 

(4) 

  

( )

( ) ( )

y y

y y


−
=

−

min

max min
 

(5) 

In Eqs. (4) and (5): 


 is the corresponding normalized value obtained from the test; "max(y)" represents the highest 

value of the actual response, while "min(y)" represents the lowest value of the actual response. In this context, "y" refers 

to the actual value for each set of process parameters. 

b) Gray Relational Coefficient (GRC) computation. The Gray Relational Coefficient (GRC) is computed to assess the 

correlation between the measurement results and the optimal solution. The comparison sequence of the data being 

analyzed is represented by 


. The calculation of GRC is demonstrated in Eqs. (6)-(7).  

RC
G





 + 
=

 + 

min min
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1  = −
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In Eq. (7) Δ represents the deviation sequence; Δmin and Δmax are the minimum and maximum values of the deviation 

sequence; ξ is the judgment coefficient, ξ [0, 1], ξ is taken as 0.5 here. 

c) Gray Relational Grade (GRG) Calculation. The Gray Relational Grade (GRG) is computed to assess the correlation 

between the experimental process parameters and the response. It represents the weighted sum of the Gray Relational 

Coefficient (GRC). A higher GRG indicates a closer match between the corresponding process parameter combination 

and the expected value. The calculation of GRG is demonstrated in Eq. (8) 

n

RG i RC

i 1

G G
=

=
                   

(8) 

In Eq. (8) βi is the weight of the ith response variable, which is obtained from step 4 through the analytic hierarchy 

process,

n

i

i 1

1
=

=
 

d) Analytic Hierarchy Process (AHP). In practical applications, the reference and importance of each response are not 

average. To ensure that the weights of each response are consistent with the actual application requirements, the AHP 

is used to determine the corresponding weights of each response in GRG calculation. By constructing the response 

evaluation matrix P, the nine-level scaling method is used to make quantitative comparisons between different 

responses. Label according to the following basic principles: "1" indicates that the two targets have the same 

importance; "2-9", the larger the number, the higher the importance; among them, the importance of the i th response 

relative to the jth response is 1j
a

, then the importance of the jth response relative to the ith response is 1j 1j
a 1 a=

. 

Using the scoring method of production experts and research experts, construct a response evaluation matrix P, as 

shown in Eq. (9). By finding the eigenvector x corresponding to the largest eigenvalue λmax of the matrix P, the 

response weight matrix β is obtained after normalization.  

11 1n

ij n n

n1 nn

a a

P a

a a


 
  = =   
    

(9) 

3.3.2 Gray Relational Degree Calculation Results and Analysis  

The test results were normalized using Eqs. (4)-(5), and the RCG
 value was calculated using Eq. (6). Afterwards, the 

Analytic Hierarchy Process (AHP) was employed to construct the response matrix P, as illustrated in Eq. (10). The 

maximum eigenvalue λmax was determined to be 3.0658, and its corresponding eigenvectors were presented in Eq. (11). 

The weight matrix β was obtained through normalization, as depicted in Eq. (12). Notably, the weight assigned to surface 

roughness is 0.7235, the weight for dimensional error is 0.1932, and the weight for microhardness is 0.0833. These 

weights indicate the primary evaluation factors for the turning operation. Finally, these values were substituted into Eq. 

(8) to calculate RGG
 . The computation results are presented in Table 8 and Table 9.  

1 5 7

P 1 5 1 3

1 7 1 3 1

 
 

=
 
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( )9 0246 2 3270 1 0000
T
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( )0 7235 0 1932 0 0833
T

 = . . .
 

(12) 

 

Table 8. Normalization and calculated deviation of responses 

Exp. 

No. 

Normalization Deviation 


( H ) 

( ) 
( a
R

) 
 ( H )  ( )  ( a

R
) 

1 0.659 0.659 0.142 0.341 0.858 0.327 

2 0.764 0.764 0.346 0.236 0.654 0.468 

3 0.971 0.971 0.617 0.029 0.383 0.529 

4 0.389 0.389 0.000 0.611 1.000 0.359 

5 0.486 0.486 1.000 0.514 0.000 0.086 
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6 0.495 0.495 0.983 0.505 0.017 0.043 

 

Table 8. (Cont.) 

Exp. 

No. 

Normalization Deviation 


( H ) 

( ) 
( a
R

) 
 ( H )  ( )  ( a

R
) 

7 0.524 0.524 0.913 0.476 0.087 0.000 

8 0.505 0.505 0.942 0.495 0.058 0.015 

9 0.572 0.572 0.896 0.428 0.104 0.114 

10 1.000 1.000 0.342 0.000 0.658 0.769 

11 0.144 0.144 0.275 0.856 0.725 0.468 

12 0.000 0.000 0.163 1.000 0.838 0.832 

13 0.399 0.399 0.221 0.601 0.779 1.000 

 

Table 9. Calculated GRC and GRG and the corresponding ranking of GRG 

Exp. 

No. 

Grey Relational Coefficient Grade 
Ranking 

RCG
( H ) RCG

(  ) RCG
( a

R
) RCG

 

1 0.594 0.368 0.605 0.558 6 

2 0.680 0.433 0.517 0.514 9 

3 0.945 0.566 0.486 0.540 7 

4 0.450 0.333 0.582 0.523 8 

5 0.493 1.000 0.853 0.852 4 

6 0.498 0.968 0.921 0.895 3 

7 0.512 0.851 1.000 0.931 1 

8 0.502 0.896 0.972 0.918 2 

9 0.539 0.828 0.815 0.794 5 

10 1.000 0.432 0.394 0.452 11 

11 0.369 0.408 0.517 0.483 10 

12 0.333 0.374 0.375 0.372 12 

13 0.454 0.391 0.333 0.355 13 

Table 10 demonstrates that a higher gray correlation degree indicates a better target response for the corresponding 

test process parameter combination. By analyzing the average gray correlation degree for five levels of cutting speed  

( c
V

) and feed rate (fz), it can be determined that the optimal level for c
V

 is Level 3 (160 m/min), and the optimal level 

for fz is Level 3 (0.125 mm/rev). Additionally, based on range analysis theory, it is observed that the cutting speed has a 

greater impact on the multi-target response compared to the feed rate, as indicated by the max-min values. 

Table 10. Average value of each grey correlation degree under different process parameters 

Process 

Parameters 
c

V
(m.mm-1) z

f
(mm.rev-1) 

Level 1 0.514102 0.523097 

Level 2 0.548911 0.520741 

Level 3 0.766325 0.753587 

Level 4 0.418966 0.447136 

Level 5 0.371547 0.451721 

Max−Min 0.394778 0.306451 

After the single-objective analysis of each response, it can be found that the microhardness, dimensional error and 

surface roughness are all parameter-dependent responses, so the gray relational degree GRG is also a parameter-dependent 

response. It is evident that the impact of process parameters on the gray correlation degree can be expressed as a weighted 

sum of the influences of surface microhardness, dimensional error, and surface roughness. The impact of process 

parameters on the three can be reflected by the change in the gray correlation degree, and the multi-objective prediction 

of microhardness, dimensional error and surface roughness can be realized by predicting the gray correlation degree. 
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3.3.3 GRG Response Model Construction 

Equation (13) presents the second-order mathematical prediction model for GRG. The results of variance analysis and 

residual analysis for the second-order mathematical prediction model of gray relational degree GRG are displayed in     

Table 11. The given significance level is 
( )0 05
5 12 3 11

.
, .=F

. ANOVA was performed on GRG, and the F value of the 

model was 55.69 (greater than 3.11), 
97 54. %=

sq
R

, and P < 0.000 1, far less than the confidence coefficient of 0.05. 

At the same time, Rsq is very close to Rsq (adj), indicating that the reliability of the prediction model is high. The 

distribution and comparison between the predicted value of the model and the real value are shown in Figure 10. There 

is no significant difference between the predicted value and the real value, the error range is 1.5% - 3.1%, and there are 

no abnormal points, which shows that the prediction model fits the observed value well.  

2 22 958 0 04234 9 53 0 000133 33 87 0 00922.  .      .       .        .       .    *+ + − −= − −−
c z c z c zRG

G V f V f V f
 (13) 

 

Table 11. Variance analysis of GRG response model 

Object Source 
Degree of 

freedom 
Sum of squares Mean square F P 

RG
G

 
 

Model 5 0.540158 0.108032 55.64 < 0.0001 

Error 7 0.013591 0.001942   

Total 12 0.553749    

 
Model 

summary 
97 54%.=

sq
R

 
97 32%( ) .=

sq
R adj

 
  

 

  
Figure 10. Graph of GRG (a) distribution of predicted value and real value (b) comparison of predicted value and real 

value  

Using the response optimizer in the MINITAB software combined with the response surface (Figure 11) to optimize 

the analysis of the GRG response surface prediction model, the optimal gray correlation degree RG
G

max obtained by the 

response surface method is 0.8832, and the corresponding process parameter group is: Cutting speed Vc =154.363 m/min, 

feed rate fz = 0.1196 mm/rev.  
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Figure 11. Response surface of GRG process parameters 

3.3.4 Test Verification 

By analyzing the test results, the optimal gray relational degree RG
G

max process parameter group is determined, and 

the RG
G

max is verified through the experiments below. In order to compare with the RG
G

max process parameter group in 

the design test run, the maximum surface microhardness Hmax, the minimum dimensional error δmin, the minimum surface 

roughness Ramin, and the optimal gray correlation degree process parameter group were selected as the control experiment. 

A comparison of test results is shown in Table 12. From the result, the surface microhardness obtained by the Hmax process 

parameter group is the highest. However, the dimensional error and the surface roughness values obtained by the δmin and 

Ramin process parameter group respectively, are relatively the lowest. This result proves the feasibility of the single-

objective prediction model of surface microhardness, dimensional error and surface roughness. 

In the test results obtained by the RG
G

max process parameter group compared with the Ramin process parameter group, 

the dimensional error is reduced by about 34.48%, and the surface microhardness is increased by about 5.50%. Similarly, 

comparing the RG
G

max process parameter group with the δmin process parameter group, the surface roughness is reduced. 

However, when you compare the result of RG
G

max process parameter group with the Hmax process parameter group, the 

surface microhardness increased by about 12.56% and the surface roughness decreased by about 54.38%. This further 

proves the feasibility of the response surface method based on gray relational analysis. 

To verify the applicability of the RG
G

max process parameter group to the machining of different sizes of AL6061 

material, the AL6061 shaft with 


= 6mm was selected for experimental verification. The test results show that Ra = 

0.490 μm, δ = 0.0088 mm, and H = 62.9HB. The test results meet the process requirements and verify the applicability 

of the optimized process parameters to different sizes of shafts. 

Table 12. Experimental response optimal process parameter group 

Object Parameter Vc (m/min) fz (mm/rev) H ((HB)  (mm) Ra (μm) 

Hmax 
Prediction 103.0 0.2310    

Actual 103 0.231 70.8 0.0187 0.912 

δmin 
Prediction 154.3636 0.1389    

Actual 154 0.139 62.7 0.0039 0.457 

Ramin 
Prediction 152.0808 0.1025    

Actual 152 0.102 58.5 0.0116 0.396 

RG
G

max  

Prediction 154.3636 0.1196    

Actual 154 0.120 61.9 0.0076 0.416 

3.3.5 Feasible Process Parameter Domains 

Based on the multi-objective optimization outcomes for process parameters and the resulting surface microhardness, 

dimensional error, and surface roughness, a contour map is generated, as depicted in Figure 12.  

In engineering applications, the maximum threshold for surface roughness is 0.8 μm, the maximum threshold for 

dimensional error is 0.05 mm, and the minimum threshold for surface microhardness is 50HB for AL6061 alloy. At these 

thresholds, the corresponding minimum evaluation index of RG
G

max  is determined to be 0.3503. By solving the isocline 

boundary value and identifying the gradient direction associated with the minimum evaluation index of GRG in Figure 12, 

the parameter interval of the feasible process parameter domain can be determined. This information serves as a valuable 

reference for engineering practice.  
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Figure 12. Contour map of GRG process parameters 

4.0 CONCLUSIONS 

In this study, laser surface texturing technology was utilized to create micro-groove textures on the rake surface of a 

YG3X cemented carbide cutting tool. Subsequently, multiple-factor turning experiments were conducted on an 

SB/C/CNC precision lathe using Al 6061 as the workpiece material. Based on the test data, a single-objective response 

model for microhardness, dimensional error, and surface roughness was constructed using the response surface method. 

To optimize the surface quality, multi-objective optimization was performed using gray relational theory to reduce the 

dimensionality of the optimization target. The following conclusions were drawn from the research: 

a) The analysis of surface roughness and dimensional error revealed an initial decreasing trend followed by an increase 

with the increase in process parameters such as cutting speed and feed rate. However, surface microhardness 

exhibited an increasing trend with the increase in cutting speed. Additionally, surface microhardness showed a 

gradual decrease and subsequent increase with the increase in feed rate. 

b) The process parameter combination with the highest surface microhardness was found to be Vc = 154.363 m/min 

and feed rate fz = 0.231 mm/rev. On the other hand, the process parameter combinations resulting in the lowest 

dimensional error and surface roughness were Vc = 154.363 m/min, feed rate fz = 0.1389 mm/rev and Vc = 152.081 

m/min, feed rate fz = 0.1025 mm/rev, respectively. 

c) Experimental verification confirmed the consistency between the predicted and experimental values. Moreover, the 

optimized process parameters effectively improved surface microhardness, dimensional error, and surface 

roughness, indicating that the combination of optimized process parameters for each target can lead to better overall 

performance during the turning of Al 6061. 

d) The lowest evaluation index RG
G

max of the gray correlation value for surface microhardness, dimensional error, and 

surface roughness was found to be 0.3503. This finding holds practical significance for the machining of Al 6061 

rods in real-world engineering scenarios 

e) In conclusion, the findings of this research paper offer valuable insights for machining science practice from various 

perspectives. The authors recommend further research on the selection of machining parameters, machine tools, 

cutting tools, and advanced materials to provide additional guidance for the manufacturing of machine parts. 
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