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ABSTRACT - Utilizing a universal joint can lead to significant vibration within a driveline system. 
This study presents a model for analyzing the torsional and lateral vibrations of a driveline connected 
by a double universal joint. The governing equations of motion are derived, and the Runge-Kutta 
method computes steady-state responses across a spectrum of input rotational speeds. The focus 
is to examine the effect of system parameters, including static angular misalignment, load torque, 
and lateral stiffness. Relative amplification is used to analyze the effects of parameters on system 
vibration. Results indicated that the second-order component of input rotational speed induced by 
the universal joint was the factor that caused the vibrations. For the considered system, static 
angular misalignment significantly impacts both the torsional and lateral vibrations. Increasing the 
angular misalignment from 15° to 30° results in a threefold increase in lateral vibration amplification, 
while torsional vibration amplification is increased by nearly two times.  The effect of load torque is 
almost linearly proportional to torsional vibration but is nonlinear to lateral vibration. Thus, lateral 
vibration is significantly impacted compared to torsional vibration for higher load torque. Changing 
the stiffness leads to a modification of the natural frequency. Increasing the lateral stiffness shifts 
the critical speed to a higher speed range, resulting in reduced lateral vibration amplitude.  It is 
demonstrated that a slight fluctuation in angular misalignment due to lateral vibration will not affect 
the torsional vibration even if both vibrations are coupled. The findings may enhance understanding 
of how changing system parameters affects vibration. 
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1.0 INTRODUCTION 

The driveline system is a prominent source of noise and vibration in vehicles, spanning from cars to high-speed trains 

[1–3]. The vibrational properties of drivelines are currently an essential practical issue due to their potential to cause 

boom noise and gear rattle, which can negatively impact vehicle performance and passenger comfort [4–6]. The 

automotive driveline system includes various components, including the transmission, drive shafts, universal joints, and 

main reducer. The propeller shaft and universal joints are a significant source of driveline system vibration among the 

components. A Cardan or universal joint is a mechanical coupling between two misaligned rotating shafts. It is used in 

various systems, such as automobiles, agricultural, and rail vehicles [7]. When there is an angular misalignment, the 

driveline connected by a universal joint can experience fluctuations in the driven shaft speed and the lateral moment [8]. 

The fluctuations can cause undesirable vibrations in torsional and lateral directions. These vibrations can excite the 

system's natural frequencies and lead to instability under certain conditions. 

  Several attempts have been made to investigate vibration problems in specific components of a vehicle driveline 

system through the Multi-Body System (MBS) method. The aim is to derive valuable kinematic and dynamic information 

from simulations to replace a portion of the testing procedure and minimize testing expenses. Liu et al. [9] developed a 

hybrid approach that combines MBS and Finite Element Analysis (FEA) to precisely predict the occurrence of high-

frequency driveshaft moan vibration caused by universal joints. The proposed approach was validated by comparing it 

with test rig and vehicle test data to analyze the second-order and fourth-order vibrations caused by the universal joint. 

Qiu and Shangguan [10] developed a kinematic model for the double roller tripod joint to analyze its kinematic 

characteristics and provide a theoretical foundation for its application and enhancement. The kinematic model of the 

double roller tripod universal joint was verified through motion simulation in ADAMS software. In their study, Yu et 

al.[11] employed the MBS method to predict the torque transmission efficiency of constant velocity joints (CVJ). Next, 

an analysis was conducted to examine the theoretical foundation behind the high transmission efficiency of the high-

efficiency joint, specifically focusing on contact force and friction. Li et al. [12] developed a methodology for calculating 

and analyzing the secondary torque caused by the ball-type universal joint using the MBS approach. The model examines 

the impact of various parameters on the secondary torque. 

Interaction between the two vibration modes, or one vibration inducing an oscillation in the other coupled mode, may 

cause undesirable vibration in the rotor system. There have long been issues with coupled vibration in a rotating system. 

Engineers have frequently been concerned by their existence and frequency response characteristics. Han et al. [13, 14] 
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showed that the coupled torsional and lateral vibration causes high torsional vibration in the propulsion shaft system of a 

ship. The impact of a significant rotor imbalance resulting from a fan blade breakage during gas turbine engine operation 

on the combined torsional and lateral vibration was investigated by Hong et al. [15]. The study extensively addresses the 

correlation between the modes and responses exhibited by an unbalanced rotor. Shen and Lu [16] developed a model of 

coupled torsional-lateral-longitude vibration of vehicular drivelines to study the interior boom problems. Wahab et al. 

[17] investigated the effect of torsional deformation on the dynamic instability of a high-speed rotating Timoshenko shaft 

system. A parametric instability chart was calculated with Bolotin’s method to study the shaft system with different 

boundary conditions.  

Many studies have been conducted on the coupled torsional and lateral dynamics of driveline systems driven by a 

single universal joint. The instability of lateral and torsional vibrations was observed by Kato et al. [18, 19]. They found 

that the combination of two natural frequencies about bending and torsional, when nearly coinciding with the twice input 

rotational speed, led to the instability of stated vibrations. The region of instability exhibited an upward trend in response 

to an increase in angular misalignment. At the same time, it demonstrated a downward trend in response to an increase in 

the viscous damping coefficient of torsional vibration as opposed to bending vibration. DeSmidt et al. [20] conducted a 

study investigating the dynamics of a rotor disc system connected to soft support and propelled through a universal joint. 

The Floquet theory was employed to examine the stability of the system across varying degrees of angular misalignment. 

The results of the study indicated that angular misalignment could result in dynamic coupling, which may cause 

parametric instability near the sum-type combinations of lateral and torsional natural frequencies. Xia et al. [21, 22] 

conducted a numerical study considering the additional bending moment caused by the universal joint. The torsional and 

lateral vibrations were excited by the second-order component of input rotational speed. However, the sum-type 

combination of the natural frequencies is not observed. The numerical results were verified using the experimental study 

on the 4WD vehicle. Tchomeni et al. [23, 24] investigated the dynamic characteristics of two misaligned rotors under the 

influence of an unbalanced rotor. The vibration caused by misalignment and unbalance has a second-order frequency 

component.  

Regarding the dynamic of double universal joint driveline systems, Browne and Palazzolo [25] developed an 

analytical model of a secondary moment to study the nonlinear lateral vibration caused by the universal joint. Results 

showed that the secondary moment is proportional to the angular misalignment and the load inertia. Compared to load 

inertia, the variations in angular misalignment significantly impact the lateral vibration. Using the monodromy matrix, 

SoltanRezaee et al. [26, 27] investigated the torsional stability of three flexible shafts under the effects of angular 

misalignment, damping, and stiffness values. Several zones of resonance have been discovered, with the parametric 

resonances associated with lower natural frequencies being the most clearly recognized. Bharti and Samantaray [28] 

examined the Sommerfeld effect caused by torsional vibration in the driveline system configured in large angular 

misalignment. Two regions of resonance capture and escape phenomenon were observed, one near half of the natural 

frequency and the other at that natural frequency. When a constantly high torque is applied, the Sommerfeld effect is 

always visible when the speed range is half the natural frequency. However, there is no symptom of the Sommerfeld 

effect as the speed range approaches the natural frequency. Reducing angular misalignments or boosting shaft torsional 

damping could help to lower vibration amplitude and avoid Sommerfeld effects. The Sommerfeld effect resulting from 

the coupling of torsional and lateral vibrations of the driveline was assessed by Yao and DeSmidt [29]. Investigations 

were conducted to analyze the vibrations under varying conditions of static angular misalignment and lateral damping 

values. The observation of the Sommerfeld effect was limited to a speed range that corresponded to half of the torsional 

natural frequency. Hence, it was concluded that the phenomenon of speed capture is mainly attributed to the torsional 

mode.  

A driveline connected by a pair of universal joints suffers torsional and lateral vibrations due to the kinematics of the 

universal joints. These vibrations might lead to the failure of the shaft and other components. Previous studies have not 

thoroughly examined a comprehensive model of this particular system. The reason for this separation in the study of 

vibrations is due to the distinct nature of these two types of vibrations. Additionally, previous research has predominantly 

focused on systems that incorporate a single universal joint. This study presents a model for analyzing the torsional and 

lateral vibrations of a driveline connected by a double universal joint to predict these vibrations in their design state. 

Analyzing the vibration of the system using mathematical models and simulations can help identify potential issues and 

design solutions. The governing equations representing the dynamics of the system are derived using the Lagrange 

method. The developed model integrates the torsional damping effect and the complete kinematics relationship of the 

universal joint into the equation of lateral vibration. The Runge-Kutta method computes steady-state responses of the 

angle of twist and dynamic angular misalignment across a spectrum of input rotational speeds. A relative amplification 

value is employed to examine the impacts of static angular misalignment, load torque, and lateral stiffness on the system 

vibration.  

2.0 METHODOLOGY 

The methodology for the current investigation is structured as follows. The study commenced by developing a 

dynamic model of the driveline system. The system description section provides further information on the system's 

parameters and underlying assumptions. The equations of motion are then derived using Lagrange's equations. The 

numerical method subsection focuses on establishing a theoretical foundation for numerical simulation. Its purpose is to 
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determine both the steady-state twist and dynamic angular misalignment. The effects of system parameters, including 

static angular misalignment, load torque, and lateral stiffness, on the torsional and lateral vibrations are discussed in the 

result and discussion section. Figure 1 summarizes the process involved in this study. 

 

Figure 1. Flowchart of methodology 

2.1 System Description 

The diagram presented in Figure 2 illustrates a schematic representation of the driveline system incorporating a double 

universal joint. The system configuration comprises three shafts interconnected by two sets of universal joints, wherein 

the drive and driven shafts exhibit rigidity. The intermediate shaft has a length denoted by 𝐿𝑐 and possesses an external 

diameter of  𝑑𝑜. It is assumed that the intermediate shaft with torsional stiffness, 𝑘𝜃 and torsional damping, 𝑐𝜃 is attached 

to the input and output shafts with an equal static angular misalignment, 𝛽. The present system is susceptible to angular 

misalignment solely in the XZ plane. The suspended mass, 𝑚𝑠 is supported by a support structure with translational 

stiffness, 𝑘𝜙, and translational damping, 𝑐𝜙, which act on the Z-axis. The driven side is characterized by a lumped moment 

of inertia denoted as 𝐽𝑙𝑜𝑎𝑑  and is subjected to an axial load torque, 𝑇𝑙𝑜𝑎𝑑 . In modeling the system, a few assumptions are 

made. First, the stiffness of the support structure is considered to be lower than that of the output shaft's bending stiffness. 

As a result, according to Yao and DeSmidt [29], the suspended mass undergoes rigid lateral modes along the Z-axis, with 

both universal joints remaining in equal angular misalignment. Second, the intermediate shaft is massless as its 

contributions to inertia are typically much smaller than those of 𝐽𝑙𝑜𝑎𝑑 and 𝑚𝑠. Third, the intermediate shaft's natural 

frequencies for the bending mode are significantly higher than those for the torsional modes. For the damping effect in 

the system, it is represented by  𝑐𝜃 = 𝜉𝜃𝑐𝜃, and  𝑐𝜙 = 𝜉𝜙𝑐𝜙, where 𝜉𝜃  and 𝜉𝜙  denote the viscous damping coefficient. 

The driveline runs under a constant input rotational speed, where the angular position of the input shaft and output shaft 

are labeled as 𝜑1 and  𝜑4, respectively. Meanwhile, the angular position of the intermediate shaft on the drive side is 

denoted as 𝜑2, and on the driven side is denoted as 𝜑3. The calculation of dynamic angular misalignment resulting from 

the elastic deformation of the support is performed by applying the moment equation around point 1. Table 1 provides 

the parameter values selected for the current investigation. 

 
Figure 1. Double universal joint driveline dynamic model schematic 
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Table 1. Model parameters of the double universal joint driveline system 

Description Symbol Value Unit 

Outer diameter of the intermediate shaft  𝑑𝑜 0.010 m 

Length of the intermediate shaft  𝐿𝑐 0.325 m 

Moment of inertia of the driven side 𝐽𝑙𝑜𝑎𝑑  0.0045 kg.m2 

Suspended mass 𝑚𝑠 4.09 kg 

Torsional stiffness of the intermediate shaft  𝑘𝜃 92.20 Nm.rad-1 

Damping coefficient of the intermediate shaft 𝜉𝜃  0.002 s 

Load torque 𝑇𝑙𝑜𝑎𝑑  5 Nm 

Stiffness of support structures 𝑘𝜙 26331 N.m-1 

Damping coefficient of support structures 𝜉𝜙 0.002 s 

2.2 Equations of Motion 

The present study analyzes a two-degree-of-freedom system that represents torsional and lateral vibrations. The 

phenomenon of torsional vibration is depicted by an angle of twist resulting from the angular deformation occurring in 

the intermediate shaft, as illustrated in Figure 2. Therefore, an angle of twist and its derivative can be expressed as [30] 

𝜃𝑠 = 𝜑3 − 𝜑2 (1) 

  

�̇�𝑠 = �̇�3 − �̇�2 (2) 

 

 

Figure 2. The angle of twist 

Initially, the intermediate shaft is connected to drive and driven shafts with static angular misalignment, 𝛽0. Due to 

the bending moment generated by the universal joint, the suspended mass will experience lateral oscillations along the Z-

axis. This results in the introduction of a dynamic angular misalignment, denoted as 𝜙. The resulting angular 

misalignment, 𝛽, is hence a combination of static and dynamic angular misalignments, written as [22] 

𝛽 = 𝛽0 + 𝜙 (3) 

The model of the system is created based on the kinematic equations of a single universal joint with constant angular 

misalignment, as illustrated in Figure 3. The kinematic correlation between the angular positions of the driving and driven 

yokes of a universal joint can be mathematically represented as [31] 

𝑡𝑎𝑛(𝜑2) =
𝑡𝑎𝑛(𝜑1)

𝑐𝑜𝑠(𝛽)
 (4) 

 

 

Figure 3. Single universal joint 

The angular positions of the yokes on the driving and driven sides of the intermediate shaft with dynamic angular 

misalignments can be expressed using the kinematic relationships given in Equation 4 as 

𝑡𝑎𝑛(𝜑2) =
𝑡𝑎𝑛(𝜑1)

𝑐𝑜𝑠(𝛽𝑜 + 𝜙)
 (5) 

  

𝑡𝑎𝑛(𝜑3) =
𝑡𝑎𝑛(𝜑4)

𝑐𝑜𝑠(𝛽𝑜 + 𝜙)
 (6) 
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The first derivative of Equation 5 and Equation 6 gives the relationship between the angular speeds of the intermediate 

shaft's yokes as [32] 

�̇�2 = Ω0

𝑐𝑜𝑠(𝛽𝑜 + 𝜙)

1 − 𝑠𝑖𝑛2(𝛽𝑜 + 𝜙) 𝑐𝑜𝑠2(𝜑1)
+ �̇�

0.5 𝑠𝑖𝑛(2𝜑1𝑡) (𝑠𝑖𝑛(𝛽𝑜 + 𝜙))

1 − 𝑠𝑖𝑛2(𝛽𝑜 + 𝜙) 𝑐𝑜𝑠2(2𝜑1)
 (7) 

  

�̇�3 = �̇�4

𝑐𝑜𝑠(𝛽𝑜 + 𝜙)

1 − 𝑠𝑖𝑛2(𝛽𝑜 + 𝜙) 𝑐𝑜𝑠2(𝜑4)
+ �̇�

0.5 𝑠𝑖𝑛(2𝜑𝑜𝑢𝑡) (𝑠𝑖𝑛(𝛽𝑜 + 𝜙))

1 − 𝑠𝑖𝑛2(𝛽𝑜 + 𝜙) 𝑐𝑜𝑠2(𝜑4)

̇
 (8) 

The current framework involves the derivation of equations of motion through the utilization of Lagrange's equations, 

written as 

𝑑

𝑑𝑡
(

𝜕𝐾

𝜕�̇�𝑖

) −
𝜕𝐾

𝜕𝑞𝑖

+
𝜕𝐷

𝜕�̇�𝑖

+
𝜕𝑃

𝜕𝑞𝑖

= 𝑄𝑖 , 𝑖 = 1,2, . , 𝑛 (9) 

The generalized coordinate of the system is described by 

𝑞 = {𝜑4 𝜙}𝑇 (10) 

The total kinetic energy of the system is expressed as 

𝐾 =
1

2
𝐽𝑙𝑜𝑎𝑑�̇�4

2 +
1

2
𝑚𝑠(𝐿𝑐  𝑐𝑜𝑠 𝛽0 �̇�)

2
 (11) 

The total damping dissipated energy of the system is expressed as 

𝐷 =
1

2
𝑐𝜃(�̇�3 − �̇�2)2 +

1

2
𝑐𝜙(𝐿𝑐 𝑐𝑜𝑠 𝛽0 �̇�)

2
 (12) 

  

𝐷 =
1

2
𝑐𝜃 [(�̇�4

𝑐𝑜𝑠(𝛽𝑜 + 𝜙)

1 − 𝑠𝑖𝑛2(𝛽𝑜 + 𝜙) 𝑐𝑜𝑠2(𝜑4)
+ �̇�

0.5 𝑠𝑖𝑛(2𝜑4) (𝑠𝑖𝑛(𝛽𝑜 + 𝜙))

1 − 𝑠𝑖𝑛2(𝛽𝑜 + 𝜙) 𝑐𝑜𝑠2(𝜑4)
)

− (�̇�1

𝑐𝑜𝑠(𝛽𝑜 + 𝜙)

1 − 𝑠𝑖𝑛2(𝛽𝑜 + 𝜙) 𝑐𝑜𝑠2(𝜑1)
+ �̇�

0.5 𝑠𝑖𝑛(2𝜑1𝑡) (𝑠𝑖𝑛(𝛽𝑜 + 𝜙))

1 − 𝑠𝑖𝑛2(𝛽𝑜 + 𝜙) 𝑐𝑜𝑠2(2𝜑1)
)]

2

+
1

2
𝑐𝜙(𝐿𝑐 𝑐𝑜𝑠 𝛽0 �̇�)

2
 

(13) 

The total potential energy of the system is expressed as 

𝑃 =
1

2
𝑘𝜃(𝜑3 − 𝜑2)2 +

1

2
𝑘𝜙(𝐿𝑐 𝑐𝑜𝑠 𝛽0 𝜙)2 (14) 

  

𝑃 =
1

2
𝑘𝜃 (𝑡𝑎𝑛−1 (

𝑡𝑎𝑛(𝜑4) 

𝑐𝑜𝑠(𝛽𝑜 + 𝜙)
) − 𝑡𝑎𝑛−1 (

𝑡𝑎𝑛(𝜑1𝑡) 

𝑐𝑜𝑠(𝛽𝑜 + 𝜙)
))

2

+
1

2
𝑘𝜙(𝐿𝑐 𝑐𝑜𝑠 𝛽0 𝜙)2 (15) 

Subsequently, the equations of motion can be derived by substituting the preceding equations for the kinetic, potential, 

and damping dissipated energy terms into Equation 9 [22] 

𝐽𝑙𝑜𝑎𝑑�̈�4 + 𝑐𝜃𝜂2(𝜂2�̇�4 − 𝜂1�̇�1) + 𝑘𝜃𝜂2(𝜑3 − 𝜑2) = 𝑇𝑙𝑜𝑎𝑑 − 𝑐𝜃𝜂2�̇�(𝜂2𝐴 − 𝜂1𝐴) (16) 

  

𝑚𝑠(𝐿𝑐 𝑐𝑜𝑠 𝛽0)2�̈� + 𝑐𝜙(𝐿𝑐 𝑐𝑜𝑠 𝛽0)2�̇� + [𝑘𝜙(𝐿𝑐 𝑐𝑜𝑠 𝛽0)2𝜙] + 𝑐𝜃�̇�(𝜂2𝐴 − 𝜂1𝐴)2

= −𝑐𝜃(𝜂2𝐴 − 𝜂1𝐴)(𝜂2�̇�4 − 𝜂1�̇�1) − 𝑘𝜃(𝜑3 − 𝜑2)(𝜂2𝐴 − 𝜂1𝐴) 
(17) 

From Equation 7 and Equation 8, Equation 2 can be further extended as 

�̇�𝑠 =  (𝜂2�̇�4 − 𝜂1�̇�1) + �̇�(𝜂2𝐴 − 𝜂1𝐴) (18) 

where 

𝜂1 =
𝑐𝑜𝑠(𝛽𝑜 + 𝜙)

1 − 𝑠𝑖𝑛2(𝛽𝑜 + 𝜙) 𝑐𝑜𝑠2(𝜑1)
  

  

𝜂2 =
𝑐𝑜𝑠(𝛽𝑜 + 𝜙)

1 − 𝑠𝑖𝑛2(𝛽𝑜 + 𝜙) 𝑐𝑜𝑠2(𝜑4)
  

  

𝜂1𝐴 =
0.5 𝑠𝑖𝑛(2𝜑1𝑡) (𝑠𝑖𝑛(𝛽𝑜 + 𝜙))

1 − 𝑠𝑖𝑛2(𝛽𝑜 + 𝜙) 𝑐𝑜𝑠2(2𝜑1)
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𝜂2𝐴 =
0.5 𝑠𝑖𝑛(2𝜑4) (𝑠𝑖𝑛(𝛽𝑜 + 𝜙))

1 − 𝑠𝑖𝑛2(𝛽𝑜 + 𝜙) 𝑐𝑜𝑠2(𝜑4)
  

2.3 Numerical Method 

This study uses the fourth-order adaptive Runge– Kutta algorithm (ode45) in MATLAB software to numerically 

simulate the steady-state vibration responses. The time step is set as 0.001s, and the error control tolerance is taken 10 -8 

to improve the numerical accuracy [22, 27]. Equations 16 through Equation 18, which pertain to the motion of the system, 

are transformed into a series of first-order ordinary differential equations, as denoted by Equation 19. Before simulating 

the steady-state responses, the natural frequencies of the system are calculated by considering the system under zero static 

angular misalignment. Thus, the undamped natural frequencies of the aligned driveline can be calculated as 𝜔𝑡 = (
𝑘𝜃

𝐽𝑙𝑜𝑎𝑑
)

1

2
 

and 𝜔𝑙 = (
𝑘𝜙

𝑚𝑠
)

1

2
 [29]. Based on the selected parameter values, the lateral and torsional modes have respective natural 

frequencies of 143 rad/s and 80 rad/s. 

�̇�1 = 𝑋2  

  

�̇�2 = [𝑇𝑙𝑜𝑎𝑑 − 𝑐𝜃𝜂2N𝑋4(𝜂2𝐴𝑁 − 𝜂1𝐴𝑁) − 𝑐𝜃𝜂2𝑋(𝜂2N𝑋2 − 𝜂1N�̇�1) − 𝑘𝜃𝜂2N𝑋5]/𝐽𝑙𝑜𝑎𝑑  

�̇�3 = 𝑋4  

  

�̇�4 = −[𝑐𝜃(𝜂2𝐴𝑁 − 𝜂1𝐴𝑁)(𝜂2N𝑋2 − 𝜂1N�̇�1) − 𝑘𝜃(𝑋5)(𝜂2𝐴𝑁 − 𝜂1𝐴𝑁) − 𝑐𝜙(𝐿𝐶 𝑐𝑜𝑠 𝛽0)2𝑋4

− 𝑘𝜙(𝐿𝐶 𝑐𝑜𝑠 𝛽0)2𝑋3 − 𝑐𝜃𝑋4(𝜂2𝐴𝑁 − 𝜂1𝐴𝑁)2]/𝑚𝑆(𝐿𝑐 𝑐𝑜𝑠 𝛽0)2 
 

  

�̇�5 = (𝜂2N𝑋2 − 𝜂1NΩ0) + 𝑋4(𝜂2𝐴𝑁 − 𝜂1𝐴𝑁) (19) 

where 

[𝑋1 𝑋2 𝑋3 𝑋4 𝑋5]𝑇 = [𝜑4 �̇�4 𝜙 �̇� 𝜃𝑠]𝑇   

  

𝜂1N =
𝑐𝑜𝑠(𝛽𝑜 + 𝑋3)

1 − 𝑠𝑖𝑛2(𝛽𝑜 + 𝑋3) 𝑐𝑜𝑠2(𝜑1)
  

  

𝜂2N =
𝑐𝑜𝑠(𝛽𝑜 + 𝑋3)

1 − 𝑠𝑖𝑛2(𝛽𝑜 + 𝑋3) 𝑐𝑜𝑠2(𝑋1)
  

  

𝜂1𝐴𝑁 =
0.5 𝑠𝑖𝑛(2𝜑1) (𝑠𝑖𝑛(𝛽𝑜 + 𝑋3))

1 − 𝑠𝑖𝑛2(𝛽𝑜 + 𝑋3) 𝑐𝑜𝑠2(2𝜑1)
  

  

𝜂2𝐴𝑁 =
0.5 𝑠𝑖𝑛(2𝑋1) (𝑠𝑖𝑛(𝛽𝑜 + 𝑋3))

1 − 𝑠𝑖𝑛2(𝛽𝑜 + 𝑋3) 𝑐𝑜𝑠2(𝑋1)
  

3.0 RESULTS AND DISCUSSION 

It is essential to comprehensively identify and analyze the parameters that influence the system's dynamics. The static 

angular misalignment is a notable parameter. In practice, most of the universal joint is designed to be operated less than 

45° of angular misalignment, and their effect on driveline vibration within this range is investigated. The load torque and 

stiffness of the support system are additional factors that impact the system's dynamics and can be quantitatively analyzed. 

This section examines the impact of these parameters on the vibration of the system. The results are presented as the 

maximum and minimum steady-state responses observed across a range of input rotational speeds. The input rotational 

speed is varied within the range of 100 to 1500 rpm to encompass the system's highest natural frequency. The figures are 

presented as an angle of twist and dynamic angular misalignment representing the torsional and lateral vibrations, 

respectively. 

3.1 Effect of static angular misalignment 

This section examines the impact of static angular misalignment of universal joints on system vibrations based on the 

specified parameters listed in Table 1. Numerical simulations are carried out in the range of 15° to 30° of the static angular 

misalignments. Figure 4 shows the vibration responses for the static angular misalignment of 15°. The torsional vibration 

represented by an angle of twist in Figure 4a shows the vibration amplitude reached a peak value of 3.87° when the input 

rotational speed is 684 rpm. For lateral vibration shown in Figure 4b, the dynamic angular misalignment reached 0.01° 

when the input rotational speed was 381 rpm. By comparing with the natural frequencies of the system, the torsional and 

lateral vibrations are excited when twice the input rotational speed equals each of the torsional and lateral natural 

frequencies. This shows that the driveline system exhibits nonlinear vibration due to the kinematic relationship of the 
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universal joints. Mechanical systems with nonlinear characteristics can exhibit second-order vibrations. Second-order 

vibration is a vibration that occurs at twice the frequency of a fundamental oscillation. For the considered driveline, the 

primary oscillation is the input rotational speed. Therefore, the nonzero angular misalignment of the universal joint leads 

to the occurrence of second-order torsional and lateral vibrations. The input rotational speeds of 381 rpm and 684 are 

regarded as critical speeds due to the driveline experiencing significant vibrations at these speeds. 

  
(a) Torsional vibration (b) Lateral vibration 

Figure 4. Vibration responses at 𝛽𝑜 = 15°  

When the static angular misalignment is increased, the results given in Figure 5 to Figure 7 show that the largest twist 

amplitudes and dynamic angular misalignment are observed for static angular misalignment of 30°.  This finding aligns 

with previous studies [20, 28] which have shown that the amplitude is proportional to the angular misalignment. Figure 

7 demonstrates a minor peak at 342 rpm for torsional vibration and 190 rpm for lateral vibration in the case of a 30° static 

angular misalignment.  These speeds correspond to the fourth-order vibration of both torsional and lateral vibrations. 

Previous findings [24, 33] have shown that when the angular misalignment is less than 30°, second-order vibration 

significantly affects vibration responses more than fourth-order vibration. Furthermore, approximating the kinematics of 

the universal joint relationship given in Equation 1 using the Taylor-McLaurin series up to second-order terms while 

ignoring the higher-order terms is feasible [27, 34]. So, the impact of fourth-order vibration on vibration responses is 

negligible and can be disregarded in contrast to second-order vibration. As a result, the dynamics of the system can be 

described by the amplitude of the second-order vibration.  

  
(a) Torsional vibration (b) Lateral vibration 

Figure 5. Vibration responses at 𝛽𝑜 = 20°  

 

  
(a) Torsional vibration (b) Lateral vibration 

Figure 6. Vibration responses at 𝛽𝑜 = 25°  

 

 

 

 

 



M. H. Omar et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 4 (2023) 

journal.ump.edu.my/ijame  10845 

  
(a) Torsional vibration (b) Lateral vibration 

Figure 7. Vibration responses at 𝛽𝑜 = 30°  

Relative amplification is calculated to demonstrate the effects of static angular misalignment further. Relative 

vibration amplification refers to the phenomenon where the amplitude or intensity of vibration is amplified due to certain 

conditions or factors. This amplification is measured in comparison to a reference point, often the baseline vibration level. 

Since the critical speeds are equal for all angular misalignments, the amplitude at these speeds due to second-order 

excitation is used to calculate the relative amplification. Vibration response at 15° static angular misalignment is treated 

as a baseline value. Figure 8 shows the calculated relative amplification for all considered values of static angular 

misalignments. The blue bar represents the torsional vibration, while the red bar represents the lateral vibration. The figure 

shows that as the static angular misalignment increases, the relative amplification increases for both vibrations. It can be 

seen that increasing the static angular misalignment from 15° to 30° results in a threefold increase in lateral vibration 

amplitude, while torsional vibration is amplified by nearly two times. Therefore, the static angular misalignment 

significantly impacts both the torsional and lateral vibrations.  

 

Figure 8. Relative amplification for different values of static angular misalignment 

3.2 Effects of load torque 

Herein, the effects of load torque on the system's dynamic will be thoroughly investigated. To display the effect, four 

different values of load torque, 10Nm, 15 Nm, 20 Nm, and 25 Nm, are compared with the default load torque, 5Nm. Other 

parameters in Table 1 are kept constant, and the static angular misalignment is fixed at 15°. When the load torque is 

doubled to 10 Nm, results in Figure 9 show that increasing load torque results in a higher amplitude of both torsional and 

lateral vibrations. However, the critical speed is in the assumed second-order vibration speed range because the natural 

frequencies of the system are not altered. Table 2 lists the maximum angle of twist and the maximum dynamic joint angle 

at critical speed for different load torque values.  

  
(a) Torsional vibration (b) Lateral vibration 

Figure 9. Vibration responses at 𝑇𝑙𝑜𝑎𝑑 = 10𝑁𝑚  
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Table 2. Vibration responses at critical speed for different values of load torque 

Input Torque 

(Nm) 

Maximum angle 

of twist (deg) 

Maximum dynamic angular 

misalignment (deg) 

5 3.87 0.0102 

10 7.73 0.0408 

15 11.58 0.0915 

20 15.42 0.1622 

25 19.24 0.2522 

The effect of the load torque on the amplification of vibration responses is shown in Figure 10. The vibration amplitude 

of critical speed at 5 Nm load torque is treated as a baseline value. The blue bar represents the torsional vibration, while 

the red bar represents the lateral vibration. The results show that the effect of load torque is almost linearly proportional 

to torsional vibration. For example, when the load torque is increased to 15 Nm, which is three times higher than 5 Nm, 

the maximum amplitude of the twist also increases three times. However, the effect of load torque on lateral vibration is 

in a nonlinear form. The maximum dynamic angular misalignment amplitude is amplified nine times when the input 

torque is increased to 15 Nm. The same finding also can be seen for 20 Nm and 30 Nm. Therefore, it is concluded that 

the lateral vibration is significantly affected when there are changes in load torque value. 

 

Figure 10. Relative amplification for different values of load torque 

3.3 Effects of lateral stiffness 

Two distinct values are considered in investigating lateral stiffness's effect on the system's dynamics. The static 

angular misalignment is fixed at 15° while the other parameters in Table 1 are maintained constant. The changes in the 

lateral stiffness result in the modification of the lateral natural frequency. In order to facilitate comparative analysis, the 

graph depicting the altered stiffness is graphically represented alongside the default value, as listed in Table 1. The black 

line represents the vibration responses of the default stiffness, 26331 Nms/rad, while the red line represents the vibration 

responses of the altered stiffness. For the first scenario, the lateral stiffness is reduced to 13166 Nms/rad, which is half of 

the default value. Reducing the lateral stiffness by 50% has modified the lateral natural frequency to 56.73 rad/s. 

Therefore, the critical speed due to second-order excitation has shifted to a lower speed region which is 270 rpm, as shown 

in Figure 11b. It is also noted that the peak amplitude has increased to 0.0287°, which means an amplification of almost 

three from the default value, 0.0102°.  However, the torsional vibration amplitude remains unchanged, as shown in  Figure 

11a. 

  
(a) Torsional vibration (b) Lateral vibration 

Figure 11. Vibration responses at lateral stiffness, 𝑘𝜙 = 13166 𝑁𝑚/𝑟𝑎𝑑  
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When the lateral stiffness is increased to 39497 Nms/rad, which is 1.5 greater than the default value, the lateral natural 

frequency has increased to 98.26 rad/s. The critical speed has shifted to a higher speed region, which is 468 rpm and with 

peak amplitude attenuated to 0.005, as shown in Figure 12b. Again, the torsional vibration amplitude remains unchanged, 

as shown in  Figure 12a. It is essential to explain that lowering the lateral stiffness will lower the lateral natural frequency. 

Thus, the critical speed is shifted to a lower speed region, which may expose the driveline to higher vibration amplitude 

at the low speed. Increasing the lateral stiffness makes the vibration in the lateral direction safer because the critical speed 

is shifted to a higher speed region with a lower vibration amplitude.  One observation that can be made from these two 

values of lateral stiffness is that minor deviations in angular misalignment are unlikely to have a significant impact on 

torsional vibration. This finding aligns closely with the results of Yao & DeSmidt (2021), indicating that the shaft speed 

capture phenomena are primarily caused by the torsional mode and not significantly affected by the driveline lateral. 

  
(a) Torsional vibration (b) Lateral vibration 

Figure 12. Vibration responses of lateral stiffness, 𝑘𝜙 = 39497 𝑁𝑚/𝑟𝑎𝑑 

4.0 CONCLUSIONS 

In this study, the torsional and lateral vibrations of a driveline connected by a double universal joint are studied by 

numerical method. The present study has devised a model that incorporates the torsional damping effect into the governing 

equation of lateral dynamics and the complete kinematics relationship of the universal joint. The effects of system 

parameters such as static angular misalignment, load torque, and lateral stiffness are discussed. The dynamic angular 

misalignment represents the lateral vibrations, whereas the angle of twist represents the torsional vibrations. A relative 

amplification is utilized to analyze the effects of these parameters on the vibration of the system. The results are 

summarized as follows. First, the driveline suffers second-order torsional and lateral vibrations induced by the kinematics 

of the universal joint. Consequently, the torsional and lateral vibrations are excited when twice the input rotational speed 

equals each of the torsional and lateral natural frequencies. Second, the numerical results show that the static angular 

misalignment significantly impacts both the torsional and lateral vibrations. When the static angular misalignment is 

increased, the vibration amplitudes for both vibrations are increased. So, restriction of this aspect in practical 

implementation is highly significant and feasible. Third, based on the relative amplification value, the impact of load 

torque on torsional vibration is nearly linear, while its effect on lateral vibration is nonlinear. Higher load torque has a 

greater impact on lateral vibration compared to torsional vibration. Fourth, lowering the lateral stiffness results in the 

critical speed being shifted to a lower speed range, potentially leading to increased lateral vibration amplitude in the 

driveline at low speeds. Enhancing the lateral stiffness shifts the critical speed to a higher speed range, reducing lateral 

vibration amplitude. However, a slight fluctuation in angular misalignment due to lateral vibration will not affect the 

torsional vibration even if both vibrations are coupled. The findings presented in this study may contribute in 

understanding the influence of altering system parameters on vibration, emphasizing the importance of considering these 

effects during design and practical applications.  
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