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ABSTRACT - As the Linear Quadratic Regulator (LQR) approach is applied extensively in the 
system control of automobile suspension, the accuracy improvement of the weighting Q and 
R matrices is getting concern. The Particle Swarm Optimization (PSO) algorithm is being 
introduced to identify parameters and optimize matrix Q and R in order to fix the insufficiency 
of these experienced values because of the fast convergence and a more accurate solution. 
In this article, a quarter car model and a Bouc-Wen-based magnetorheological (MR) damper 
model are developed to combine the control of PSO identification and PSO-LQR controller in 
the semi-active suspension system. The MR damper was performed with an experimental test 
for running identification using experimental data as input into the Bouc-Wen model to obtain 
six unknown parameters, where the parameters were estimated with the PSO algorithm. Since 
the numerical model has been done with all parameters clear, the need for damping force 
from suspension is obtained by means of running the model using an input current. In the 
employment of PSO for damper model and vehicle control, the dual applications succeeded 
in verifying the feasibility of parameter identification in the MR damper and successfully tuned 
the LQR controller in the semi-active suspension, which decreases the vehicle body 
acceleration and displacement so that the improvement of ride comfort and drive stability 
achieved. 
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1.0 INTRODUCTION 
Suspension acts an important role in the chassis system of a vehicle, which works to hold the body of the vehicle, to 

keep the connection of wheels and to reduce vibration from road disturbance. In general, the suspension system is divided 
into three kinds, passive suspension, active suspension, and semi-active suspension, respectively. The passive suspension 
consists of a strong spring (used to store energy) and a hydraulic damper (shock absorber). The active suspension has a 
force generator that provides continuously variable damping force, which performs the best dynamic compensation for 
ride comfort and drive stability. However, the active suspension has great shortcomings, including the manufacturing cost 
and energy consumption. For semi-active suspension, it makes the balance of active suspension and passive suspension; 
it provides real-time continuous damping outputs and has both lower energy and lower cost [1]. Semi-active dampers can 
directly work as passive dampers if the controlled damper loses function. One of the most attractive semi-active devices 
is the MR damper; it has great advantages, such as large damping force, fast response, low energy cost, low manufacturing 
cost and small size [2]. The MR damper is being used in the study for both experimental and simulation works. For the 
simulation work, the damper model is using PSO algorithm to identify parameters, where the parameters highly have a 
dependency on the experimental data, which are used to calculate for reducing the PSO searching range of these 
parameters. 

Parameter identification is a usual and useful method to deliver experimental to simulated work. Ikhouane [3] used an 
analytical method to describe entirely in the parameter identification. However, it’s not a universally acceptable method 
due to the complex processing and the grand assumptions applied to this method. Later, Kwok [4] simplified the 
identification by using the GA algorithm in the parameter identification in which the crossover and mutation were 
adaptive. Zaman et al. [5] implemented a firefly algorithm to estimate parameters using the Bouc-wen model; they 
compared the performance with the GA algorithm and had the conclusion that the firefly algorithm works more efficiently 
than GA. Liu et al. [6] worked with PSO for parameter estimation in synchronous motors. However, the PSO can be 
generally used in the identification process in many fields if more precise parameters are not needed in the modeling 
application. To improve the accuracy of parameter identification, PSO is implemented in this article. 

ElMadany et al. [7] developed the LQR methodology for 1/4 vehicle model by deriving from optimal control theory 
and the singular value of inequality matrix. Gigih et al. [8],[9] proposed the PSO algorithm to optimize a neural network 
strategy in suspension controlling. In 2008, PSO was used to achieve different performance aims for PD robust controllers 
[10]. Then, Rajeswari et al. [11] applied the PSO algorithm to tune Fuzzy Logic Controller in an active suspension [12]. 
A few years later, PSO tuned LQR strategy was used in an active mass damper [13]. Assahubulkahfi et al. [14] obtained 
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better performance with a full-car model system running PSO tuned LQR controller than passive suspension, and the 
traditional LQR-controlled suspension, where PSO combined LQR is indicated as the best solution for the stability of car 
body movement. Due to the successful optimization implemented in the full-car model, the authors would suppose that 
the same method improves the quarter model. Also, the improvement effect of GA and PSO algorithms is usually 
addressed to make comparisons. PSO has a great efficiency on computational convergence, meanwhile has an apparent 
superiority in dealing with complex systems of Q matrix[14], [15]. Generally, the weighting matrix Q is more dependent 
on experience values in standard LQR strategy, and they are getting pretty complex when employed in vehicle control 
systems. To solve this problem, the PSO algorithm is introduced to search plenty of particles and select suitable matrix 
coefficients for LQR. Also, random pavement excitations are used as input for simulation analysis to verify the 
effectiveness of the optimized control strategy. 

In the past, researchers either focused on the damper itself for modeling as well as parameter estimation or 
concentrated on the aspects of vehicle controlling, rarely applying the same algorithm to both. Also, due to previous 
researchers’ work in comparison of the Genetic Algorithm (GA), PSO algorithm and Firefly Algorithm(FA) in other 
applications, PSO indicated having great advantages of computing cost and best performance as well as cost 
functions[16], the authors would like to perform PSO to optimize MR damper estimation and suspension system. 
However, previously PSO was employed for active suspension or full car models rather design than a semi-active 
suspension with 1/4 model. In this article, the authors employ dual PSO to identify MR damper and control the semi-
active automobile using a quarter car model. 

2.0 DAMPER BASED OPTIMIZATION 
2.1 Mechanical model of Bouc-wen 

Bouc-Wen model was first proposed as a hysteretic model by Bouc in 1967; then Wen promoted it in 1976. It is one 
of the simplest mathematical models for large hysteretic behavior, as shown in Figure 1. 

 
Figure 1. MR Damper of Bouc-Wen Model 

The Bouc-Wen model consists of a hysteretic system, a damping component and an elastic element, the damping force 
equations of which is described as: 

�
𝐹𝐹 =  𝑐𝑐�̇�𝑥 + 𝑘𝑘(𝑥𝑥 − 𝑥𝑥0 + 𝛼𝛼𝛼𝛼)
ż =  −𝛾𝛾 · |�̇�𝑥| · 𝛼𝛼 · |𝛼𝛼|𝑛𝑛−1 − 𝛽𝛽 · �̇�𝑥 · |𝛼𝛼|𝑛𝑛 + 𝜅𝜅 · �̇�𝑥 (1) 

where 𝐹𝐹 is the MR damping force, 𝑐𝑐 is the damping coefficient, 𝑘𝑘 is the stiffness of the mechanism, �̇�𝑥 and 𝑥𝑥 are for the 
velocity and displacement of the piston, 𝑥𝑥0 stands for the initial position of the piston, and 𝛼𝛼 is for the evolutionary 
variable. 𝛼𝛼, 𝛾𝛾, 𝛽𝛽, 𝜅𝜅 and 𝑛𝑛 are adjusting parameters for hysteretic shape. 𝛾𝛾 and 𝛽𝛽 only affect the shape of the hysteresis 
loop but have no influence on the damping force. Also, the parameter 𝑛𝑛 only affects the smoothness of the curve 
transitioning from the elastic area to the plastic area [4],[17]. 

2.2 Test on MR damper 

The MR damper was tested at BWI laboratory Moraine, and hysteresis loops were generated under amplitude 25 mm 
with excitation current 0A, 0.75A, 1.5A, 3A and 5A. The characteristic curves of force-velocity (F-v) and force-
displacement (F-x) are shown in Figure 2 and Figure 3, respectively. Look through the F-v curve; it’s a typical hysteretic 
characteristic that damping force is non-zero at the 0 speed of the piston. The loop area is expanding more visible with 
the excitation current getting larger. That means when the current is a non-changing steady value, the area enclosed by 
the curve indicates that the magnetorheological fluid deliveries work by outputting the damping force, and the scale of 
the graphic area shows how much energy the damper can absorb from vibration. So, at a higher speed zone, the energy 
absorbed is getting saturation. On the other hand, looking through the F-x curve, it shows a significant nonlinear between 
damping force and piston displacement. Generally, the damping force is going larger while the excitation current gets 
larger. However, when the excitation current increases from 3A to 5A, the rising trend of damping force becomes slower, 
and soon achieve to saturation.  
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Figure 2. Velocity vs damping force 

 
Figure 3. Displacement vs damping force 

3.0 IDENTIFY PARAMETERS OF MR DAMPER USING PARTICLE SWARM OPTIMIZATION 
The PSO algorithm was proposed by James Kennedy and Russell Eberhart in 1995 [18], where it was improved from 

Bird Swarm Algorithm and Fish Swarm Algorithm. The PSO algorithm processes each solution as an individual case, 
which is called a particle, and the dynamic position of which is determined by the fitness value. There are two best 
solutions for each particle by keeping search; one of them is called individual best (𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) of 𝑖𝑖 particle, and the other is 
called global best (𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) of the group particles. The purpose of applying the PSO algorithm is to get its advantages of 
fast convergence, high precision and easy-to-implement [19]. 

In the Bouc-Wen model, there are eight unknown parameters, which are 𝑐𝑐, 𝑘𝑘, 𝑥𝑥0, 𝛼𝛼, 𝛾𝛾, 𝛽𝛽, 𝜅𝜅 and 𝑛𝑛, respectively. Here, 
𝐹𝐹 can be transformed into the equation as follows. 

𝐹𝐹 =  𝑐𝑐�̇�𝑥 + 𝑘𝑘𝑥𝑥 − 𝑘𝑘𝑥𝑥0 + 𝑘𝑘𝛼𝛼𝛼𝛼 (2) 
Further,  

𝐹𝐹 =̇  𝑐𝑐�̇�𝑥 + 𝑘𝑘𝑥𝑥 + 𝑘𝑘𝛼𝛼𝛼𝛼 (3) 

𝑥𝑥0 has fewer effects on the damping force and also has absolutely nothing to the evolutionary variable 𝛼𝛼. Therefore, 𝑥𝑥0 is 
assumed to be 0 for parameter identification in this article. For the parameter 𝑛𝑛, it is assumed to be two due to a fixed MR 
fluid used in the MR damper. The coefficient 𝑛𝑛 values are stable by changing the suitable MR fluid of the specified 
damper. Therefore, there are six parameters needed to get identified; 𝑐𝑐, 𝑘𝑘, 𝛼𝛼, 𝛾𝛾, 𝛽𝛽 and 𝜅𝜅.  

The criteria to see if all the six parameters have achieved good identification is the matching level between testing 
data and simulation data. Also, it can be called fitness function, which is a population standard deviation as in Eq. (4). 

𝜎𝜎 =  �
1
𝑁𝑁
� (𝐹𝐹𝑏𝑏(𝑖𝑖) − 𝐹𝐹𝑏𝑏(𝑖𝑖))2

𝑁𝑁

𝑖𝑖=1
 (4) 

where N is the sample number for testing and simulation data, 𝐹𝐹𝑏𝑏(𝑖𝑖) stands for the damping force of experimental testing, 
and 𝐹𝐹𝑏𝑏(𝑖𝑖) is the value of simulation. 
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Then, the important step of PSO is able to keep updating for the individual best solution (𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) and the global best 
solution (𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏). During the searching or updating process, the velocity and position are the two critical aspects as 
formulated in Eq.(5) and Eq. (6), respectively [20]-[22]. 

𝑣𝑣𝑏𝑏+1 =  𝜔𝜔𝑏𝑏𝑣𝑣𝑏𝑏 + 𝑐𝑐1𝑟𝑟1(𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑥𝑥𝑏𝑏) + 𝑐𝑐2𝑟𝑟2(𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑥𝑥𝑏𝑏) (5) 
  

𝑥𝑥𝑏𝑏+1 = 𝑣𝑣𝑏𝑏+1 + 𝑥𝑥𝑏𝑏 (6) 

where 𝑣𝑣 is the velocity, 𝑥𝑥 stands for the position, 𝑟𝑟1, 𝑟𝑟2 account for random numbers, and 𝑡𝑡 is the current iteration. The 𝜔𝜔 
accounts for a function of inertia weighting as the formula in Eq. (9) with the meaning of searching capability of the PSO 
algorithm. 𝑐𝑐1, 𝑐𝑐2 are learning factors that can be described as in Eq. (7) and Eq. (8). 

𝑐𝑐1 =  
𝑡𝑡
𝑖𝑖𝑡𝑡 �𝑐𝑐1_0 − 𝑐𝑐1_𝑏𝑏𝑛𝑛𝑒𝑒� + 𝑐𝑐1_𝑏𝑏𝑛𝑛𝑒𝑒 (7) 

  
𝑐𝑐2 =  

𝑡𝑡
𝑖𝑖𝑡𝑡 �𝑐𝑐2_0 − 𝑐𝑐2_𝑏𝑏𝑛𝑛𝑒𝑒� + 𝑐𝑐2_𝑏𝑏𝑛𝑛𝑒𝑒 (8) 

where 𝑐𝑐1_0, 𝑐𝑐2_0 stand for the initial learning factor, 𝑐𝑐1_𝑏𝑏𝑛𝑛𝑒𝑒, 𝑐𝑐2_𝑏𝑏𝑛𝑛𝑒𝑒 are completed learning factors in the end, and 𝑖𝑖𝑡𝑡 is the 
total times of iteration. 

𝜔𝜔 = 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 −  
𝑡𝑡
𝑖𝑖𝑡𝑡

(𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜔𝜔𝑚𝑚𝑖𝑖𝑛𝑛) (9) 

Initial inertia weighting 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 is always taking a larger value to help improve searching capability, meanwhile final 
inertia weighting 𝜔𝜔𝑚𝑚𝑖𝑖𝑛𝑛 is taking smaller value with the help of local searching capability. A smaller weighting factor 𝜔𝜔 
has  a higher ability in local searching and a lower function for global searching. On the other hand, a larger weighting 
factor 𝜔𝜔 has weaker searching in the local domain and more powerful for global searching. 

In the parameter estimation process for MR damper, the setting parameters for the algorithm are shown as particles = 
20, iteration= 50, dimensions = 6, 𝑐𝑐1 = 1, 𝑐𝑐2 = 1 and 𝜔𝜔 = 0.6. Meanwhile, for the use of PSO in the vehicle control for 
LQR optimization, these parameters are set as particles = 30, iteration= 80, dimensions = 3, 𝑐𝑐1 = 2, 𝑐𝑐2 = 2 and 𝜔𝜔 = 0.9. 
Basically, the number of particles is the larger, the better. However, the balance of running time and slight global 
improvement should be taken into account. Usually, the number of particle and iterations should be considered a larger 
value for a complex system, which is the reason to set the larger valve for vehicle control comparing with damper 
estimating. In the testing by the authors, 𝑐𝑐1 and 𝑐𝑐2, the learning factor, the value of which is affecting not too much to the 
system, but the value for 𝑐𝑐1 and 𝑐𝑐2 should be the same and none zero so that the system has equal ability for 𝑐𝑐1 and  𝑐𝑐2 to 
solve the object system in order to get the best solution. 

The group parameters setting above are just the best choices for the systems mentioned in this article. However, the 
actual determination of the above parameters should be slightly adjusted per the complexity of each object as well as the 
quantity of the variables. 
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Figure 4. Scheme of PSO applied in the damper 

 
Figure 5. Parameter identification Block of Bouc-wen 

After the parameter identification, six unknown parameters can be identified to compare with the simulated damping 
force. Moreover, the most important curve-fitting work can be done when the six parameters (𝑐𝑐, 𝑘𝑘, 𝛼𝛼, 𝛾𝛾, 𝛽𝛽 and 𝜅𝜅) are 
replaced with excitation current so that we can run suspension performance with force instead than offline; looking for 
the related current and damping force to implement the active suspension as a semi-active suspension. 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑐𝑐 = 0.01𝐼𝐼3 +  0.075𝐼𝐼2 − 0.35𝐼𝐼 + 0.63          
𝑘𝑘 =  −5.6𝐼𝐼3 +  49.17𝐼𝐼2 − 54.28𝐼𝐼 + 33.98   
𝛼𝛼 =  7.26𝐼𝐼3 − 501𝐼𝐼2 + 373𝐼𝐼 + 239.1            
𝛾𝛾 =  −11.51𝐼𝐼3 −  56.04𝐼𝐼2 − 93.32𝐼𝐼 + 1022
𝛽𝛽 =  −0.94𝐼𝐼3 + 12.99𝐼𝐼2 − 49.3𝐼𝐼 + 64.09    
𝜅𝜅 =  −5.6𝐼𝐼3 + 49.17 𝐼𝐼2 − 54.28𝐼𝐼 + 3.98      
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4.0 SUSPENSION BASED OPTIMIZATION 
4.1 Quarter-Car Suspension Model 

With the purpose of the analysis for vertical movement of the vehicle body and tire, a 1/4 vehicle model with 2 DoF 
is developed to address related problems, as shown in Figure 6. The 1/4 car model is not only much simpler than a 1/2 
car model or a full car model but also has good accuracy in the simulation of body acceleration, suspension deflection 
and tire dynamic loads with an excitation from the road.  

According to Newton’s law of mechanics [23], mathematical equations are obtained from Figure 6 as in the following 
Eq. (10). 

�
𝑀𝑀𝑏𝑏�̈�𝑋𝑏𝑏 + 𝐾𝐾𝑏𝑏(𝑋𝑋𝑏𝑏 − 𝑋𝑋𝑢𝑢) + 𝐶𝐶𝑏𝑏��̇�𝑋𝑏𝑏 − �̇�𝑋𝑢𝑢� +  𝐹𝐹𝑏𝑏 = 0
𝑀𝑀𝑢𝑢�̈�𝑋𝑢𝑢 + 𝐾𝐾𝑏𝑏(𝑋𝑋𝑢𝑢 − 𝑋𝑋𝑏𝑏) + 𝐶𝐶𝑏𝑏��̇�𝑋𝑢𝑢 − �̇�𝑋𝑏𝑏� + 𝐾𝐾𝑏𝑏(𝑋𝑋𝑢𝑢 − 𝑋𝑋𝑟𝑟) − 𝐹𝐹𝑏𝑏 = 0

 (10) 

where 𝑀𝑀𝑏𝑏 and 𝑀𝑀𝑢𝑢 are the sprung mass and unsprung mass, 𝐾𝐾𝑏𝑏, 𝐾𝐾𝑏𝑏 stand for spring stiffness of suspension and stiffness of 
the tire, 𝐶𝐶𝑏𝑏 is the damping coefficient of uncontrollable part, 𝐹𝐹𝑏𝑏 is a variable damping force controlled by LQR in this 
article. 𝑋𝑋𝑏𝑏, 𝑋𝑋𝑢𝑢 and 𝑋𝑋𝑟𝑟 are the displacements of sprung mass, unsprung mass, and road displacement of disturbance, 
respectively. 

In order to make it convenient to get solution process, the state space equation is introduced as the following Eq. (11). 

��̇�𝑋 = 𝐴𝐴𝑋𝑋 + 𝐵𝐵𝐵𝐵 + 𝐸𝐸𝐸𝐸
𝑌𝑌 = 𝐶𝐶𝑋𝑋 + 𝐷𝐷𝐵𝐵

 (11) 

𝑋𝑋 is the state variable matrix, where (𝑋𝑋𝑏𝑏 − 𝑋𝑋𝑢𝑢) is suspension dynamic displacement, (𝑋𝑋𝑢𝑢 − 𝑋𝑋𝑟𝑟) is the tire dynamic 
displacement, 𝑌𝑌 is the output variable matrix, 𝐵𝐵 is the controllable damping force. 

𝑋𝑋 = �𝑋𝑋𝑏𝑏 − 𝑋𝑋𝑢𝑢,   𝑋𝑋𝑢𝑢 − 𝑋𝑋𝑟𝑟 ,   �̇�𝑋𝑏𝑏，�̇�𝑋𝑢𝑢，𝑋𝑋𝑟𝑟�
𝑇𝑇 (12) 

  
𝑌𝑌 = ��̈�𝑋𝑏𝑏,   𝑋𝑋𝑏𝑏 − 𝑋𝑋𝑢𝑢,   𝑋𝑋𝑢𝑢 − 𝑋𝑋𝑟𝑟�

𝑇𝑇 (13) 

𝐸𝐸 is the road excitation displacement input called filtered Gaussian white noise, which can be described as the expression 
in Eq. (14). 

�̇�𝑋𝑟𝑟 = −2𝜋𝜋𝑓𝑓0𝑋𝑋𝑟𝑟 + 2𝜋𝜋�𝐺𝐺0𝑣𝑣 𝑤𝑤 (14) 
 

 
Figure 6. Quarter vehicle model of semi-active suspension 

where 𝑓𝑓0 is the lower cutoff frequency of road-passing signal, 𝐺𝐺0 is the coefficient of road roughness, 𝑣𝑣 is the velocity of 
the vehicle, and 𝑤𝑤 is the white noise time domain variable. 

Following results are obtained by calculation of transforming Eq. (10) to Eq. (14). 

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡

0 0 1 −1 0
0 0 0 1 −2𝜋𝜋𝑓𝑓0

−𝐾𝐾𝑏𝑏/𝑀𝑀𝑏𝑏 0 −𝐶𝐶𝑏𝑏/𝑀𝑀𝑏𝑏 𝐶𝐶𝑏𝑏/𝑀𝑀𝑏𝑏 0
𝐾𝐾𝑏𝑏/𝑀𝑀𝑢𝑢 −𝐾𝐾𝑏𝑏/𝑀𝑀𝑏𝑏 𝐶𝐶𝑏𝑏/𝑀𝑀𝑏𝑏 −𝐶𝐶𝑏𝑏/𝑀𝑀𝑏𝑏 0

0 0 0 0 2𝜋𝜋𝑓𝑓0 ⎦
⎥
⎥
⎥
⎤
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𝐵𝐵 =

⎣
⎢
⎢
⎢
⎡

0
0

−1/𝑀𝑀𝑏𝑏
1/𝑀𝑀𝑢𝑢

0 ⎦
⎥
⎥
⎥
⎤
          𝐶𝐶 = �

0 0 −𝐾𝐾𝑏𝑏/𝑀𝑀𝑏𝑏 𝐾𝐾𝑏𝑏/𝑀𝑀𝑏𝑏 0
0 0 1 −1 0
0 0 0 0 −1

� 

 

𝐷𝐷 = �
1/𝑀𝑀𝑏𝑏

0
0

�              𝐸𝐸 =

⎣
⎢
⎢
⎢
⎡

0
−2𝜋𝜋�𝐺𝐺0𝑣𝑣

0
0

2𝜋𝜋�𝐺𝐺0𝑣𝑣 ⎦
⎥
⎥
⎥
⎤

 

5.0 CONTROLLER DEVELOPMENT WITH PSO IMPROVED LQR 
Based on a 1/4 car model, there are three critical indicators to achieve for optimizing suspension performance, body 

vertical acceleration, suspension deformation and wheel deformation. Such indicators are showing inversely related to 
suspension performance, which means the smaller the indicators, the better the performance. So, mathematic functions 
should be introduced to clarify how such three indicators work, they are expressed in Eq. (15). 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝐽𝐽1 =  lim

𝑇𝑇→∞

1
𝑇𝑇
𝐸𝐸 �� �̈�𝑋𝑏𝑏

2
𝑇𝑇

0

𝑑𝑑𝑡𝑡�

𝐽𝐽2 =  lim
𝑇𝑇→∞

1
𝑇𝑇
𝐸𝐸 ��(𝑋𝑋𝑏𝑏 − 𝑋𝑋𝑢𝑢)2

𝑇𝑇

0

𝑑𝑑𝑡𝑡�

𝐽𝐽3 =  lim
𝑇𝑇→∞

1
𝑇𝑇 𝐸𝐸 ��

(𝑋𝑋𝑢𝑢 − 𝑋𝑋𝑟𝑟)2
𝑇𝑇

0

𝑑𝑑𝑡𝑡�

 (15) 

where 𝑇𝑇 is a limitation equal to infinity and，𝐸𝐸{… } is expectation operation. Combining performance indicators 𝐽𝐽1, 𝐽𝐽2, 
𝐽𝐽3 into a single indicator, 𝐽𝐽 is a better method to identify useful matrix helping to obtain solutions. 

𝐽𝐽 = lim
𝑇𝑇→∞

1
𝑇𝑇  𝐸𝐸 �� �𝑞𝑞1�̈�𝑋𝑏𝑏

2 + 𝑞𝑞2(𝑋𝑋𝑏𝑏 − 𝑋𝑋𝑢𝑢)2 + 𝑞𝑞3(𝑋𝑋𝑢𝑢 − 𝑋𝑋𝑏𝑏)2�
∞

0

𝑑𝑑𝑡𝑡� (16) 

where 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 are weighting factors, equation (16) can be transformed as in Eq. (17). 

𝐽𝐽 = � (𝑌𝑌𝑇𝑇𝑄𝑄0𝑌𝑌)𝑑𝑑𝑡𝑡
∞

0
= � (𝑄𝑄𝑇𝑇𝐸𝐸𝑋𝑋 + 𝐵𝐵𝑇𝑇𝑅𝑅𝐵𝐵 + 2𝑋𝑋𝑇𝑇𝑁𝑁𝐵𝐵)𝑑𝑑𝑡𝑡

∞

0
 (17) 

where  

𝑄𝑄0 = �
𝑞𝑞1 0 0
0 𝑞𝑞2 0
0 0 𝑞𝑞3

�    𝑅𝑅 = 𝐷𝐷𝑇𝑇𝑄𝑄0𝐷𝐷     𝐸𝐸 = 𝐶𝐶𝑇𝑇𝑄𝑄0𝐶𝐶   𝑁𝑁 = 𝐶𝐶𝑇𝑇𝑄𝑄0𝐷𝐷 
 

Per optimal control theory considering system feedback [24], the controllable force expression is described as Eq. 
(18). 

�𝐵𝐵 = −𝐾𝐾𝑋𝑋 =  𝐹𝐹𝑏𝑏
𝐾𝐾 = 𝑆𝑆𝑅𝑅−1𝐵𝐵𝑇𝑇

 (18) 

where 𝑆𝑆 is the solution obtained from the Riccati equation which is transformed from Eq. (17), 𝐾𝐾 is the optimal control 
feedback gain matrix, 𝐵𝐵 is generated by LQR controller as an optimal damping force 𝐹𝐹𝑏𝑏 

𝑆𝑆𝐴𝐴 + 𝐴𝐴𝑇𝑇𝑆𝑆 − 𝑆𝑆𝐵𝐵𝑅𝑅−1𝐵𝐵𝑇𝑇𝑆𝑆 + 𝑄𝑄 = 0  (19) 

Observing from Eq. (15) to Eq. (19), the controlled performance using the optimal control law is affected by weighting 
factors, 𝑞𝑞1, 𝑞𝑞2 and 𝑞𝑞3. The Q matrix is developed with multiple attempts based on the designer’s experimental work. 
Thus, the PSO algorithm is used for optimizing the weighting parameter. As the PSO method mentioned above in the 
implementation of parameter identification Eq. (4) to Eq. (9), it does not have a repetition of introduction in this section. 

A fitness function in Eq. (20) is addressed to deal with suspension problem, this function is compared based on the 
performance of passive suspension. 

𝜎𝜎(𝑞𝑞) = �
𝜎𝜎�̈�𝑋
𝜎𝜎𝑝𝑝𝑚𝑚𝑏𝑏�̈�𝑋

+
𝜎𝜎𝑋𝑋𝑠𝑠−𝑋𝑋𝑢𝑢

𝜎𝜎𝑝𝑝𝑚𝑚𝑏𝑏𝑋𝑋𝑠𝑠−𝑋𝑋𝑢𝑢
+

𝜎𝜎𝑋𝑋𝑢𝑢−𝑋𝑋𝑟𝑟
𝜎𝜎𝑝𝑝𝑚𝑚𝑏𝑏𝑋𝑋𝑢𝑢−𝑋𝑋𝑟𝑟

�
𝑞𝑞=𝑞𝑞1,𝑞𝑞2,𝑞𝑞3

𝑚𝑚𝑖𝑖𝑛𝑛

 (20) 
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where 𝜎𝜎�̈�𝑋 , 𝜎𝜎𝑋𝑋𝑠𝑠−𝑋𝑋𝑢𝑢 and 𝜎𝜎𝑋𝑋𝑢𝑢−𝑋𝑋𝑟𝑟 are the root mean square (RMS) for body vertical acceleration, suspension deformation 
and wheel dynamic deformation; meanwhile, they contain weighting factor 𝑞𝑞1, 𝑞𝑞2 and 𝑞𝑞3. These three parameters should 
be lower than passive indicators 𝜎𝜎𝑝𝑝𝑚𝑚𝑏𝑏 as per Eq. (21). 

�

𝜎𝜎�̈�𝑋  < 𝜎𝜎𝑝𝑝𝑚𝑚𝑏𝑏�̈�𝑋
𝜎𝜎𝑋𝑋𝑠𝑠−𝑋𝑋𝑢𝑢 < 𝜎𝜎𝑝𝑝𝑚𝑚𝑏𝑏𝑋𝑋𝑠𝑠−𝑋𝑋𝑢𝑢
𝜎𝜎𝑋𝑋𝑢𝑢−𝑋𝑋𝑟𝑟 < 𝜎𝜎𝑝𝑝𝑚𝑚𝑏𝑏𝑋𝑋𝑢𝑢−𝑋𝑋𝑟𝑟

 (21) 

To have a better convergence and efficiency, 𝑞𝑞1, 𝑞𝑞2 and 𝑞𝑞3 should be set a constraint range between 0.01 to 106. 

6.0 SIMULATION RESULTS OF SUSPENSION 
The simulation is conducted based on a quarter-car model using an LQR controller with PSO-optimized weighting 

factors, as in Figure 7. The road roughness is using C class road [25], and other input parameters are documented below 
in Table 1. 

Table 1. Input parameters for simulation 
Parameters Value Unit 
Sprung mass 𝑀𝑀𝑏𝑏 360 kg 
Unsprung mass 𝑀𝑀𝑢𝑢 50 kg 
Suspension stiffness 𝐾𝐾𝑏𝑏 25000 N/m 
Tyre stiffness 𝐾𝐾𝑏𝑏 200000 N/m 
Vehicle speed 𝑣𝑣0 80 km/h 
Lower cut-off frequency 𝑓𝑓0 0.1 Hz 

 

 
Figure 7. Simulink Scheme of 1/4 model 

Setting initial particle dimension 3, maximum iteration 80, learning factors 𝑐𝑐1 = 2, 𝑐𝑐2 = 2, inertia weighting factor 
𝜔𝜔 = 0.9(The PSO parameters are stated in Section 3.0. Best solutions are obtained after the simulated work is completed, 
so the best (𝑞𝑞1, 𝑞𝑞2,𝑞𝑞3)= (8.554, 2.132e4, 1e-4). Then the program substitutes the best 𝑞𝑞1,𝑞𝑞2,𝑞𝑞3 into LQR solver to run 
final results, we have three critical indicators to judge the performance of a suspension, which are respectively body 
vertical acceleration, suspension deformation and tyre deformation. To have more gains, we should compare the indicators 
with passive suspension, traditional LQR controlling approach, and PSO-tuned LQR method, as in Figure 8. 
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(a) body vertical acceleration 

 

 
(b) suspension deformation 

 

 
(c) tyre deformation 

Figure 8. Comparison of suspension performances with different strategies 
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After the comparison works were completed, it was obvious to see that the suspension with a strategy of PSO-tuned 
LQR significantly reduced the body vertical acceleration. Moreover, it had a good reduction of suspension deformation 
and tyre dynamic deformation than the performances of the other two strategies. Thus, it indicates from the results that 
the control method of PSO-tuned LQR with a suspension works effectively, and it enhances the ability of the damper to 
absorb the energy of vibration. In this part of the work for running suspension analysis, a quarter car model is introduced 
to simulate the MR damper-based semi-active suspension in which PSO tuned LQR controlling method was successfully 
implemented to reduce the three critical judging indicators which are the body vertical acceleration, suspension 
deformation and tyre deformation. They have been improved by 37.8%, 24.2% and 15.8% through the comparison with 
passive suspension performance; meanwhile, they have been respectively improved by 17%, 16.67% and 7.76% by 
comparing traditional LQR controlling strategy, as given in Table 2. 

Table 2. Comparisons of improvement with RMS 
STRATEGY Body vertical acceleration Suspension deformation Tyre deformation 
PASSIVE 0.37 0.0033 240 
LQR 0.28 0.0030 219 
PSO LQR 0.23 0.0025 202 
Improvement compared with Passive 37.8% 24.2% 15.8% 
Improvement compared with LQR 17% 16.67% 7.76% 

7.0 CONCLUSIONS 
The purpose of identification parameters for MR damper is to build an ideal model which can produce a damping 

force that semi-active suspension needed by using an offline single excitation current to replace these six unknown 
parameters. It demonstrates the feasibility of the PSO algorithm that is able to have efficient parameter identification. The 
numerical model was significantly simplified, and we were able to run 1/4 model suspension with an ideal damping force 
using the related excitation current to replace semi-active suspension with executive active suspension. The results 
significantly indicate that the optimization aims for accuracy improving ride comfort, and handling stability have been 
successfully well achieved using PSO tuned LQR approach. The dual PSO optimization is feasibly employed for an LQR 
semi-active car system equipped with an MR damper, resulting in the improvement of body vertical acceleration, 
suspension deformation and tyre deformation. 
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