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for an Adaptive Cruise Control (ACC) system. Centralized PFC utilizes a linearized model of the Published - 26" Deo. 2003

vehicle longitudinal dynamics to compute the control law, while hierarchical PFC uses a simple

kinematic model with inverse vehicle longitudinal dynamics. Based on the simulation results, both KEYWORDS

control structures produced a satisfactory performance. However, in the presence of disturbances Cruise control

such as road slopes and wind gusts, the centralized PFC becomes more sensitive and conservative Predictive control

than the hierarchical PFC. The main reason is that the linearization model used in centralized PFC Model predictive control
is only effective around the selected nominal operating points. Since the decision-making process PID control

depends on the internal model performance, centralized PFC cannot compensate for this effect.
Besides, it also takes a longer computation time than hierarchical PFC since more mathematical
operations must be solved than the kinematic model, especially when physical and operational
constraints are considered. The standard performance parameters such as Root Mean Squared
Error (RMSE), settling time, and rise time are also used for the analysis. These findings can become
a solid justification for using the hierarchical PFC structure in designing an ACC system for future
work.

Tuning performance

1.0 INTRODUCTION

Adaptive Cruise Control (ACC) is a system that automates the acceleration and deceleration of a vehicle according to
the driver’s desired speed while maintaining a safe following distance with the lead car, even in the presence of
uncertainties such as steep terrain, changing passenger weight or strong wind gust. This system can provide many benefits
to a user, such as reducing body fatigue, improving fuel consumption, and preventing accidents [1]. With the advancement
of microprocessor and sensor technologies, more features are being added, such as stop-and-go function, terrain
estimation, and control optimization. According to the Society of Automotive Engineers (SAE), ACC is the most basic
function required by an autonomous vehicle, which is considered as level 1 [2]. Thus, it is essential to keep improving
this system for the future development of autonomous vehicles.

One of the critical areas for development is the control algorithm, which is responsible for computing the best control
action for the decision-making process. Commercialized ACC systems often use traditional control algorithms such as
PID controller and Fuzzy Logic Controller (FLC) [3]. Nevertheless, there are several limitations to these controllers. For
example, a conventional PID controller can only be tuned based on the current measurement; thus, no future prediction
is incorporated into the decision-making process. Therefore, a switching strategy is often proposed either for speed control
or distance control [4]. As for the FLC, a customized logic rule is needed to design the decision-making process. Although
it works in most applications, the rule cannot be generalized to other types of vehicles [3]. In general, these traditional
controllers have a robustness issue, where special modifications or integration between the two controllers is often
proposed to improve their performance [5]. Additionally, the tuning method and control structure are not that
straightforward, as many trial-and-error procedures must be tested [6,15].

Most of the recent proposals on ACC concepts use Model Predictive Control (MPC) [3] since it can offer better
response and systematic design procedures. MPC is an optimal control method that computes a control action based on a
future prediction of the internal model [16]. The difference between prediction and the desired target is typically optimized
using a quadratic cost function to get the optimal control input. Besides, this controller can also consider multiple control
objectives, which is beneficial for the ACC system, such as fast response, safe distancing, and good fuel consumption [5].
Many works have demonstrated this concept [3,5,7], but most are still in the simulation phase, and only a few managed
to implement it in a prototype system. There is a potentially high price for implementing MPC, where a higher
computation load is needed to solve many mathematical operations in the algorithm [8]. In return, a more expensive
microprocessor is required to cope with the demand. In the future, a full-spec Autonomous car must consider more
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complex functions such as lane changes, image processing, mapping, and others. If the computation time for the basic
function of the ACC system can be kept to a minimum, it will bring a considerable advantage to the entire system.

Indeed, many efforts are proposed to reduce the computation load of MPC either by modifying the algorithm or the
control structure [16]. Several authors have demonstrated by utilizing the Laguerre function in the control law, where a
large control horizon can be represented using a smaller horizon to reduce the computation load [9]. Nevertheless, an
additional tuning parameter is needed. Conversely, in ACC applications, a hierarchical structure can be used. The control
law of MPC can be formulated based on a simple kinematic model with time delay, while an inverse kinetic model can
be used to compute the control law [3]. Thus, all the prediction and optimization will be simplified while reducing the
computational load. However, even with this modification, the computation is still considered heavy, especially when
constraints on the vehicle, such as acceleration limits and safe distancing, are considered.

Alternatively, several works have proposed using Predictive Functional Control (PFC), a simplified MPC subvariant,
to design an ACC system [9-10]. PFC uses a similar concept to MPC, except that it minimizes a single target error with
direct inversion of equality between target trajectory and output prediction at a specific coincidence horizon instead of
using a quadratic cost function. Hence, the controller only needs minimum computation effort, yet due to the simplicity
of the objective, one can argue that the control input is suboptimal. However, for the single input single output application,
the performance of PFC is acceptable considering its low computation time and often giving a better response than the
traditional PID controller [9]. Nevertheless, there is a lack of clarity over which method should be used with the PFC,
either the centralized or hierarchical structures, where both approaches have their advantages and disadvantages.

The prime aim of this work is to provide a formal comparison between the two control structures for the ACC
application. The findings can become a solid justification for designing the controller in future applications. The paper is
organized such that Section 2 provides the mathematical model for longitudinal vehicle dynamics. Section 3 presents the
formulation for Centralized PFC, and Section 4 for Hierarchal PFC. Section 5 discusses the result and analysis. Section
6 concludes the work.

2.0 VEHICLE LONGITUDINAL DYNAMICS

This work will consider a standard vehicle longitudinal dynamic as the plant. The input to the model is the traction
force, and the output is the vehicle speed. For simplicity of simulation, the power train and braking dynamics will not be
considered, although a simple extension can be implemented. The actual accelerator pedal pressing can be determined
from the positive traction force by using specific engine mapping [4]. Similarly, from negative traction force, the actual
brake pressing can be calculated using a linear brake equation [4]. Figure 1 shows the free-body diagram representing the
car’s primary force distribution.

Figure 1. Free body diagram for longitudinal vehicle dynamics [9]

The positive horizontal direction is assumed to be on the right, and the positive vertical direction is upward. The
equation of motion is derived based on Newton’s second law, where:

dv
mE=Ft—FW—Fr—Fd (5]
Given that m is the vehicle mass, v is the vehicle speed, F; is the input traction force, F, is the weight, E,. is the

aerodynamic force, and F; is the rolling resistance force. Each of these forces has its equation, and based on a lumped
parameter assumption; they can be represented as:

F, =mgsin@ 2
F. = C,mgcos@ ®)
F; = 0.5pAC;(v + v,)? (4
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Table 1 explains each term in Equations (2), (3), and (4), along with the values that will be used in the simulation,
which are based on Proton Perdana's second-generation specifications.

Table 1. Parameters for the longitudinal vehicle dynamics

Parameters Value

Mass of vehicle, m 1535 kg
Front cross-section area, A 1.88 m?
Slope angel, & 0°

Air density, p 1.202 kg/m?
Drag coefficient, Cq 0.31
Gravity acceleration, g 9.81 m/s?
Rolling coefficient, C, 0.015

3.0 CENTRALIZED PFC

The centralized PFC uses a linearized model of the kinetic equation in Equation (1) to formulate the control law. Since
the step response of this model is stable, a standard PFC formulation can be used to compute the control action and
implement the constraints. There are three important formulations: model prediction, control law, and constraint handling.
The following subsections will discuss these in detail.

3.1 Model Linearization, Discretization, and Prediction

PFC is a discrete linear controller; thus, the nonlinear equation of motion in Equation (1) needs to be linearized and
discretized for prediction and control law formulations [11]. The nominal operating points for the linearization are given
in Table 2. The speed of 14 m/s is selected because most of the ACC operation is within this value. The rest of the
parameters are measured or calculated based on the steady-state condition.

Table 2. Nominal operating parameters

Parameters Value
Nominal vehicle speed, v, 14 m/s
Nominal wind gust speed, v,,,, 0m/s

Nominal slope angle, 6,, 0°
Nominal traction force, F; 29453 N

From the Taylor series expansion, the linearized model of Equation (1) can be represented as:
mv' = F,' — mg(C,sin, — c0s6,)0" — pAC,(Vy — Vyn)V' (%)

Note that the superscript {‘} in Equation (5) represents the difference between actual and nominal values of the respective
parameters. With a simple algebraic manipulation, Equation (5) can be further simplified into:

' +v' =K(F,'+D) (6)

where:
m

T=—
pACd (vn - vwn)

1
K=—r————
pACd (Vn - vwn)
D = mg(C,sinf,, — cos6,)0’
Applying the Laplace transform, a first-order transfer function can be obtained as:
K
! - ’ 7
V() = == [F{(s) + D(s)] )
The input to transfer function Equation. (7) is the traction force F’, the output is velocity v’, and the term D is

considered a disturbance. For the discretization process, a sampling time Ts of 0.1 s is used. Denotes y(z) as the discrete
output and u(z) as the discrete input and hence the first-order discrete transfer function can be represented as:
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) ®)
a

7 —

y(2) =
Equation (8) can then be transformed into a linear prediction equation by noting the term z as a shift operator. Thus, the
one-step ahead prediction at the sample k is formulated as:
y(k + 1lk) = bu(k) + ay(k) 9)

By using an independent Model (IM) approach to cater for plant model mismatch and other uncertainties [11], the term
d(k) which is the difference between calculated output y and measured output from a plant y, can be introduced. Thus,
Equation (9) can be extended to construct a vector of the nth step ahead output at sample k as:

Yo = HU + Fy(k) + d(k) (10)
where:
Yp(k +1]k) b 0 0 0
] P I
yp(k-i-nlk) a";lb a";zb b
u(k) a
v = [2k+D| g a:2
u(k.-i-n) a‘"

3.2 Centralized PFC Algorithm

In the PFC framework, at each sample time k, a new target trajectory will be calculated based on a desired steady-
state target R. A first order response dynamics from the measured output y, to R is often considered [12], where the nth
step ahead trajectory can be defined as:

r(k+nlk) = (1 —A")R + A"y, (k) (11)

There are two tuning parameters that need to be selected. First is the desired closed-loop pole 4, which corresponds to
the desired Closed-Loop Time Response (CLTR): the required time to reach 95% from the steady state value. The
relationship between A and CLTR is given as:

1 = g 3Ts/CLTR (12)

The second tuning parameter is the coincidence horizon n: the point where the future prediction of a system in Equation
(10) is forced to match with the first order target trajectory in Equation (11). Based on many PFC references [12-13], it
is noted that for a first order model as in Equation (8), a coincidence horizon of n=1, is considered the best choice. Thus,
the equality can be represented as:

bu(k) + ay(k) + d(k) = (1 — DR + Ay, (k) (13)

For the ACC application, the CLTR is set to be 15 s, which corresponds to 2 = 0.9. The final control law is derived
just by a simple algebraic manipulation of Equation (13), where:

u(k) = b7'[(1 = DR + Ay, (k) — ay (k) — d(k)] (14
3.3 Centralized PFC Constraints Handling

One of the advantages of any model-based predictive control is its ability to systematically handle system constraints.
In the traditional ACC system, a switching strategy is often used to switch between speed control or space control [4].
However, since a predictive controller can predict a future outcome, the control law can be formulated so that the
constraints are satisfied automatically within the control law.

For an ACC system, there are several constraints that need to be imposed. For safety and comfort, the maximum
acceleration is limited to amax = 2 m/s? and maximum deceleration to amin= -3m/s? [4]. These two limits can be considered
as output constraints by formulating:

:VMax(k +1) = AmaxTs + Y(k) (15)

Ymin(k +1) = AminTs + Y(k) (16)
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Figure 2. Schematic of centralized PFC for ACC application [8]

It should be noted that the value of y(k) in Equations (15) and (16) need to be updated for the next prediction by using
Equation (10). For the safe distancing, (refer to Fig. 2), a distance sensor is needed to measure the relative distance and
the value will be compared with the standard safe following distance [4] given as:

Dsafe(k) = Ddefault + Tgapy(k) (17)

The default distance is often set to 10 m for the complete stop and the safe time gap Tgap between the vehicle is set to
1.4 s [4]. Based on the output velocity prediction in Equation (10), the future relative position between the car D, can be
estimated by assuming the future velocity of the lead car is constant at the instantaneous sampling:

D.(k +1) = [v, — y()]T; + Dy.(k) (18)

By using superposition, at each sampling time, the maximum velocity to keep the safe distance can be formed by equating
the safe distance in Equation (17) and relative distance in Equation (18) as:

Ymax = (vlTs + Dr(k)_ Ddefault)/(Tgap + Ts) (19)
The following algorithm shows how all the constraints are computed in the control law:
Algorithm 1: At each sample time:

a) Compute the unconstrained input u(k) as in Equation (14)
b) A simple for loop with suitable validation horizon ni is used for future prediction.

c) At each horizon, the controller will predict the future velocity by using Equation (10) by assuming the future input
dynamics in vector U is constant, thus:

yi = HiLu(k) + Fiy(k) + d(k) (20)
where L =[1, 1.,1] T depends on the size of ni and subscript ‘i’ representing the ith row of the respective matrix or vector.
D Ify > Viax Y < Ymin » then:

u(k) = HiLi [Vmax () — Fiy(k) —d] (21)
2) Else, the value of u(k) is retained.
3) Update all the constraint values in Equations (15), (16) and (19) and repeat the algorithm.

For the output constraint, the number of validation horizons is very important to ensure smooth control effort. If it is
too short, the controller will provide a more aggressive input. Conversely, if it is too long, more computation will be used,
and the control effort will be too conservative [11-12]. For an ACC application, the best choice is to select the number
that can cover most of the transient period which is around ni=11, where the algorithm is not usually sensitive to small
changes in this choice.

4.0 HIERARCHICAL PFC

In a hierarchal structure, the vehicle dynamics are separated into two parts, namely: low level and upper level as shown
in Fig. 3. The upper-level system consists of the vehicle kinematic model which is simpler, and the lower level consists
of the nonlinear vehicle longitudinal dynamics. A detailed discussion will be given in the following subsections.

l

e vr D o |
R+ Upper level | ¢ Lower level — — il 2 P ————
— I ,

controller controller v .

Ego car Lead car

Figure 3. Schematic of hierarchical PFC for ACC application [10]

journal.ump.edu.my/ijame 10812



M. Abdullah et al. | International Journal of Automotive and Mechanical Engineering | Vol. 20, Issue 4 (2023)

4.1  Upper-level Control
For hierarchical PFC, the control law will be derived based on the upper-level system by using a simple kinematic
dynamic between acceleration and velocity where the transfer function can be represented as:

v(s) a(s) (22)

~s(ts+ 1)

The input to the system is the acceleration a(s), while the output will be velocity v(s). In Equation (22), an estimated
time constant z is used to compensate a delay that corresponds to powertrain dynamics with regard to gear ratio and other
components [4]. For this work, it is assumed that the car will track the velocity given an acceleration with a delay of 0.5s
[4]. Like the earlier developments, Equation (22) needs to be discretized with a sampling time of 0.1 s, where the discrete
transfer function can be represented as:

(@) 0.009365z1 + 0.008762z2

“u(z) 1-1.819z71 4 0.819z72
The term u represents the acceleration input and the term y is the output velocity. Since the step response of the transfer

function in Equation (23) is nonconverging due to the existence of an independent integrator in the denominator, it needs

to be pre-stabilized before deriving the control law to avoid an ill-posed solution [13]. A simple solution by cascading a
proportional gain, K in the control law is used as shown Fig. 4 [14].

G(2) (23)

R T 1
R pF('w + ]\, u ;( )

[

Figure 4. Inner cascade hierarchical PFC structure [10, 14]

By reducing the block diagram in Fig. 4, the inner loop transfer function T'(z) can be derived and used to compute a

stable prediction and control law as:
_y@ _ G@K
T(2) = x(z)  1+G(@2)K (24)

The term x(z) in Equation (24) represents a modified controlled input. At this stage, the value of K is crudely selected
by utilizing the MATLAB PID tuner which proposes a value of K=1.147 [10]. Since the focus of this paper is on algorithm
development, the effect of this value will not be considered in depth and will be part of future work. Equation (24) also
can be used to construct the n-step ahead prediction at k samples by using the superimposed principle as:

y(k+nlk) =HX +PX,+ QY +d (25)
where:

x(k)

x(k + 1)

X = ,XO:x(k—l),Y=[yy(k)

: k-1

x(k + 1)
The control law is computed by equating Equation (25) with the target trajectory in Equation (11). Since the internal
model is a second order system, according to [13], the number of coincidence horizons needs to be more than 1. A standard

PFC framework assumes that the future input is constant ie. x(k) = x(k+1) = ... = x(k+n) [13]. Thus, the summation of the
n-th row of matrix H, will be h, and the final equality is given as:
hox(k) + P,Xo + Q,Y +d = (1—-A)R + 1"y, (k) (26)
The modified input x is then computed as:
x(k) = hpt[(1 = AR + Ay, (k) — BXo — Q.Y —d] (27)
Since a cascaded structure is used for this controller, by referring to Fig. 4, the actual input can be computed as:
u(k) = K[x(k) = y, (k)] (28)
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4.2  Lower-level Control via Inverse Model

The lower-level controller is responsible for tracking the desired acceleration that is computed by the upper-level
controller by sending a suitable input command to the plant (refer to Fig. 3). In the actual implementation, the input will
be the percentage of the pedal press. However, to keep the simulation simple, only the traction force F: from vehicle
longitudinal dynamics is considered as an input and it can be computed by inversing Equation (1) as:

F,=ma+FE,+F +F, (29)

With this structure, the nonlinear equation can be used directly where it has less sensitivity to the nonlinearities. In
this work, the information such as wind gust and slope angle will remain constant. However, for future work, this value
can be estimated using a suitable sensor and fed directly to update the inverse model for more accurate calculation.

4.3  Hierarchical PFC Constraint Handling Formulation

For constraint handling, the implementation of the Hierarchical PFC is a bit different from the Centralized PFC since
the internal model is simpler. The safe distancing constraints Equation (19) will be imposed as output constraints by using
almost a similar algorithm as before:

Algorithm 2: At each sample time:
a) Compute the unconstrained input u(k) as in Equation (27)
b) A simple for loop with suitable validation horizon n; is used for future prediction.
c) Ateach horizon, predict the future velocity by using Equation (25)
d Iy > yoax 'V < Vmin, then:
x(k) = hi *[Ymax (0 — PU, — QY —d] (30)
e) Else, the value of x(k) is retained.
f)  Update all the constraint values in Equation (19) and repeat the algorithm for the next horizon.

As for the constraints in the passenger comfort Eq. (15) and (16), it will be formulated as an input constraint since the
input to the upper-level system is the acceleration. According to PFC literature [11,12,15] a simple clipping strategy is
sufficient, such that if x < y(k) + u,n /K, then:

X(k) = }’(k) + umin/K (31)
Similarly, if x > y(k) + U4, /K, then:

x(k) = y(k) + Upax /K (32)
Finally, once the compensated input value x(k) is finalized, the actual input should be calculated as in Equation (28).

5.0 SIMULATION RESULTS

This section presents the simulation results to compare the performance between the two PFC control structures. The
two control algorithms are applied to the vehicle plant, consisting of the nonlinear longitudinal dynamic described in
Equation (1). Standard performance parameters are used for the analysis, such as root mean square error and settling time,
except for the case when all the constraints are activated. The PFC with a hierarchical structure is denoted as PFCH, and
the PFC with a centralized structure is denoted as PFCC.

5.1  Tracking Desired Speed

Both controllers are set with the initial speed of 20 m/s and tuned to track the desired speed of 30 m/s from 0 — 50 s
and 14 m/s from 50 — 100 s. No constraints are considered in this stage, and both controllers are set to have a CLTR of
15 s to reach the steady state value. Fig. 5 shows the closed-loop responses of both controllers. It can be observed that
PFCH (red solid line) managed to track the desired speed more accurately compared to PFCC (blue dotted line) in both
set points. The reason is that PFCC uses the linearized internal model, where it can only produce accurate tracking when
the set point is near the nominal operating point (refer to Table 2, the nominal velocity is 14 m/s). As the set point becomes
far from the operating point, for example, in the case of tracking 30 m/s desired speed, it takes longer to settle in the
steady state region due to the plant model mismatch. Of course, several solutions exist to improve the issue, such as
introducing gain scheduling, but this would require more testing and accurate data to design a suitable mapping table.
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Figure 5. Performance index of PFCH and PFCC in tracking the desired set-point

Table 3 provides the standard performance criteria for both controllers. The PFCH produces a lower root mean squared
error and faster settling time than PFCC. Nevertheless, it should be noted that the accuracy of PFCH comes with a hefty
price as more aggressive input excitation is needed, as shown in Fig. 5. This is because the accuracy of PFCH prediction
forces the response to converge faster than the PFCC controller. In return, a higher traction force is needed to satisfy the
control objective. In return, this high over-actuation in acceleration may provide an uncomfortable ride for the passenger
and consume more fuel than necessary. As mentioned earlier, a constraint on acceleration needs to be implemented to
overcome the issue.

Table 3. Performance index of PFCH and PFCC in tracking the desired set-point

journal.ump.edu.my/ijame

Performance Index PFCH PFCC

Settling time, s 67.0778 69.6655
Rise time, s 9.2838 11.0593
RMSE 2.9459 2.9970
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5.2  Acceleration Constraints

In this subsection, the acceleration and deceleration of both cars are constrained to consider passenger comfort. The
constrained PFCC is implemented by using Algorithm 1 and PFCH by using Algorithm 2. Fig. 6 shows the constrained
performance of both controllers, where it is noted that both controllers managed to satisfy the implemented constraints
(amax = 2 m/s? and amin= -3 m/s?). However, as can be observed, PFCH provides better control performance, where it
retains the accuracy in tracking the desired speed with some delay in the settling time due to the constraint implementation.
Conversely, PFCC produces a longer settling time to track the desired velocity, especially when the set point is far away
from the nominal value.
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Figure 6. Constrained closed-loop performance in tracking the set-point

There is also some interesting remark: although both controllers are implemented with a validation horizon of 1 for
acceleration limits, referring to Table 4, PFCH is approximately two times faster than PFCC in satisfying the acceleration
limits. The maximum elapsed time is recorded using MATLAB's tic and toc functions. The main difference between the
two algorithms is how the constraints are implemented. The PFCC considers the acceleration limit as an output constraint;
thus, the controller needs to solve more mathematical equations as given in Algorithm 2 since output prediction is
necessary to check and satisfy the constraints. Conversely, the PFCH treats the acceleration limit as an input constraint,
which can be implemented directly as given in Equations (31) and (32). Since the future input prediction in PFC is
assumed to be constant, only the first sample is needed to check and satisfy the constraints.
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Table 4. Computation time for implementing acceleration constraints
Performance Index PFCH PFCC
Computation time, s 0.000302 0.000642

5.3  Safe distancing

With regards to safe distancing, both controllers need to consider it as an output constraint. Fig. 7 shows the
performance of both controllers for a car following application when all the constraints are implemented. As can be
observed from the velocity and acceleration graphs, initially both controllers try to track the desired velocity of 30 m/s,
however approximately around 10s, a possible violation of the safe distance constraints is predicted (refer Fig. 8). Thus,
the supplied traction force is reduced to retain the safe distancing.

32 I’\l T T ’V T T 7N T
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20 1 1 1 1 1 1 1 1 1
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Time (s)
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-
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Figure 7. Constrained closed-loop performance PFCH and PFCC in the car following application

Once the lead vehicle speed is increasing, both controllers resume their original goal, which is to track the desired
speed of 30 m/s while satisfying all the constraints. However, a similar observation as in the previous case is found where
PFCC takes a longer time to reach the desired velocity due to the usage of a linearized model. Another issue that is worth
discussing is the selection of the validation horizon. As the constraints-checking algorithm becomes more complicated, a
longer validation horizon is required. Thus, both controllers need validation horizons of at least 13 for a smooth control
effort. Table 5 shows the required computation time to execute the constraint implementation. The difference is not quite
significant since both controllers are using almost the same algorithm. There is also a delay noticeable in PFCC, where it
detects the violation one step behind PFCH, as shown in Fig. 8. Nevertheless, both controllers managed to satisfy the safe

journal.ump.edu.my/ijame 10817



M. Abdullah et al. | International Journal of Automotive and Mechanical Engineering | Vol. 20, Issue 4 (2023)

distancing. Note that the safe distance for both controllers is different as its formulation in Equation (17) depends on the
current speed of a vehicle.

Table 5. Computation time for implementing all the constraints

Performance Index PFCH PFCC
Computation time, s 0.003800 0.004095
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Figure 8. Safe distancing for PFCH and PFCC in the car following application

5.4  Disturbance and Uncertainties

For this test, several input disturbances are inserted into the system by increasing the slope of the road from 0 to 10
degrees after 40 s and wind gusts from 0 to 4 m/s after 140 s. Fig. 9 shows the response of both controllers. In this case,
it is obvious that PFCH is better than PFCC in handling disturbances. The PFCC becomes more sensitive to the
disturbance and in return, the control performance becomes more conservative. This is very undesirable since in the actual
implementation, any delay in response will make the traffic become worse since the vehicle from the next lane can cut
in. This scenario could lead to a phantom traffic issue.
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Figure 9. Constrained closed-loop performance PFCH and PFCC in the car following application in the presence of
disturbances
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Figure 9. (cont.)

Conversely, since PFCH is developed based on two level structures, it can cope with the modeling uncertainty better
than PFCC. The inverse nonlinear model used in lower-level control managed to compensate for the nonlinearities effect
even when some of the parameters are assumed constant. If these parameters are updated online, a better control action
may be expected. Nevertheless, this issue will be investigated later in future work. Fig. 10 shows that the safe distancing
is retained for both controllers, yet the lead vehicle has left the PFCC vehicle far ahead by observing the relative distance.
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Figure 10. Safe distancing for PFCH and PFCC in the car following application in the presence of disturbance

6.0 CONCLUSIONS

In summary, this paper has compared the control performance of PFC between the centralized and hierarchical
structures. Based on the simulation results, it is found that the PFCH provides a more accurate response with a better
RMSE of 2.9459 and a quicker settling time of 67.0778 s compared to PFCC with RMSE of 2.9970 and settling time of
69.6655 s in tracking the desired speed. The computation time of 0.000302 s for PFCH is also approximately two times
faster compared to PFCC, 0.000642 s, in satisfying the acceleration constraints. However, when satisfying the constraint
on safe distancing, the computation time between the two controllers is minimal, where 0.003800 s for PFCH and
0.004095 s for PFCC since almost a similar approach is used in this case. Overall, it is proven that PFCH provides better
results in handling the nonlinear effect and disturbance due to the use of separate level control architecture. Thus, the
hierarchical structure is more suitable to be implemented with PFC, especially for the ACC application. Future work will
consider a more detailed analysis by including the full vehicle longitudinal dynamics, which consists of powertrain and
braking dynamics, to assess the controller performance and the effect of updating other model parameters in the lower-
level control.
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