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ABSTRACT 

 

A theoretical study is conducted to investigate the thermal radiation effect on boundary 

layer flow of magneto-hydrodynamic (MHD) Jeffrey nanofluid across a moving plate 

with convective boundary condition. More physically acceptable model of passively 

controlled wall nanoparticle concentration is executed. Similarity transformation 

variables are utilised to transform the partial differential equations to non-linear ordinary 

differential equations. An effective Runge-Kutta Fehlberg Fourth-Fifth order (RKF45) 

method is employed to solve the obtained equations numerically. Validation of the 

present results has been made with the existing studies under the limiting cases and the 

results are found to be in a good agreement. Numerical solutions for several pertinent 

parameters are provided graphically over specified distributions. The results indicate that 

the temperature profile intensifies attributable to the increasing thermal radiation 

parameter. Besides, the increase of Brownian motion parameter pronounces negligible 

effect on the temperature profile, whereas nanoparticle concentration profile declines. 

Moreover, increment in the thermophoresis diffusion parameter results in the escalation 

of the temperature and nanoparticle concentration profiles. 

 

Keywords: Passive control of nanoparticles; Jeffrey nanofluid; MHD; moving plate; 

thermal radiation; convective boundary condition.  

  

INTRODUCTION 

 

Fluids which are no longer adequate to be described by the well-known Navier-Stokes 

equations in an appropriate way are termed as non-Newtonian fluids. In contrast to 

viscous fluids, the rheological properties of every non-Newtonian fluids are dissimilar. In 

fact, they are characterised by different models such as Williamson fluid [1], viscoelastic 

fluid [2], Jeffrey fluid [3], nanofluid [4] and micropolar fluid [5]. Among the suggested 

non-Newtonian fluid models, the model of Jeffrey fluid is preferable for its ability of 

describing dual impacts of relaxation and retardation times. This fluid model is 

categorised as a simple and linear model that exploits time derivatives as opposed to 

convected derivatives.  

Nevertheless, there exists a high apprehension over the unsatisfactory thermal 

conductivity of Jeffery fluid. As with the modern development of engineering technology, 

the idea of suspended nanoparticles (nanofluid) has been publicised as a means for 

reinforcing the optical properties of conventional fluids. In nanofluid, Brownian motion 

of nanoparticles is the fundamental aspect that assists in the improvement of thermal 

conductivity. Such improvement is vastly important in heat transfer escalation especially 
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in industrial and metallurgical applications such as air-conditioning, transportation, 

power generation, ventilation, heating and cooling. Dalir et al. [6] considered the Jeffrey 

nanofluid model past a stretching sheet with entropy generation and viscous dissipation 

effects. Later, the fluid flow over a radial sheet in Jeffrey nanofluid was studied by Ashraf 

et al. [7] in the presence of thermal radiation effect. Narayana and Babu [8] addressed the 

effects of thermal radiation and chemical reaction over a stretching sheet in the presence 

of power law form. The solution was then attained numerically via the Runge–Kutta 

fourth order scheme. Very recently, Khan et al. [9] and Zokri et al. [10] investigated the 

Jeffrey nanofluid induced by inclined stretching sheet and moving plate, respectively.  

Nield and Kuznetsov [11] explained that the nanoparticle fraction at the boundary 

can be controlled in equivalent way as the temperature. However, in practice, there is no 

evidence in what manner it could possibly be done. The problem was then reviewed with 

a more physically realistic and acceptable model that accounts both nanofluids 

parameters, i.e. the Brownian motion and the thermophoresis diffusion parameters [12]. 

Here, the condition of zero normal flux at the moving plate was interpreted to dispel 

nanoparticle away from the plate and that the value there alters appropriately. Zaidi and 

Mohyud-Din [13] incorporated the passive control condition of nanoparticles at the 

boundary to scrutinise the laminar wall jet flow of nanofluid past a narrow vertical slit. 

Ibrahim and Haq [14] considered the zero normal flux condition at the wall of the 

stretched sheet with convective heating and magneto-hydrodynamic (MHD) effects. 

Similar condition was also integrated by Jahan et al. [15] in a nanofluid from a 

stretching/shrinking sheet. Interestingly, they performed stability analysis to determine 

the physically stable and practicable numerical solutions. Halim et al. [16] analysed both 

active and passive control conditions of nanoparticles from a stagnation point flow of 

slipped stretched surface in a Maxwell fluid. More recently, Jahan et al. [17] extended 

their previous work (Jahan et al. [15]) to conduct the stability analysis of a nanofluid flow 

past a moving surface.  

Flow past a moving plate is in the limelight owing to its vital occurrence in 

industrial and engineering disciplines, principally in metal and polymer extrusion, 

calculation of drag for plate at zero incidence, heat-treated materials travelling between a 

feed roll and a wind-up roll, and cooling of metallic sheets or electronic chips. Sakiadis 

[18] reported a classical flow problem on a constant speed moving plate. Following the 

Sakiadi’s theoretical predictions, Tsou et al. [19] conducted a combined analytical and 

experimental study in both laminar and turbulent flow conditions. Ever since, such 

problem has been broadened to various fluids, boundary conditions and effects [20-23]. 

In particular, Mohamed et al. [24] examined the flow problem in a nanofluid with 

frictional heating while Satish and Venkatasubbaiah [25] deliberated the turbulent forced 

convection in a channel flow. In these two studies, the numerical approach was adopted 

where the respective Keller-box method and Runge Kutta Fehlberg method were 

executed. Soon after, Soomro et al. [26] studied the nonlinear thermal radiation past a 

moving surface in a Sisko fluid. The exploration of the thermal management was achieved 

through melting heat transfer, followed by implementation of the Collocation method on 

the resulting ordinary differential equations. Another endeavour in this area was 

documented by Nandeppanavar [27] to investigate the Casson fluid flow past a melting 

sheet moving parallel to a melting stream.  

The aforementioned literatures have evidently revealed that the Jeffrey nanofluid 

model was thoroughly explored from a stretching sheet, while mainly there was one study 

conducted from a moving plate. The passive control of nanoparticles, on the other hand 

was identified to greatly deliberate on the Newtonian fluid (nanofluid) rather than the 
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non-Newtonian fluid model suspended with nanoparticles. Motivated by the realistic 

approach of passively controlled nanoparticles, the present study caters the problem of 

MHD Jeffrey nanofluid passing through a convectively heated moving plate with thermal 

radiation and passive control condition. The knowledge of the radiative heat transfer in 

the system is vital as the quality of the final product is prominently influenced by the heat 

controlling factors. Several recent contributions dealing with the thermal radiation effect 

embrace those of Afridi and Qasim [28], and Narayana and Babu [29]. 

 

MATHEMATICAL FORMULATION 

 

Basic Principle of Fluid Dynamics 

 

The basic principle of computational fluid dynamics lies on the succeeding fundamental 

governing equations: 

 

Continuity equation  

 

The principle of conservation of mass states that mass is conserved; to be precise, the 

difference between the inflow and outflow of matters must be equivalent to the increase 

in fluid mass contained in the control volume. This statement necessitates an 

establishment of the continuity equation to elucidate the relationship between the fluid 

density and fluid velocity at any point [30]. 

 

. 0
f

f
t





+ =


V               (1) 

 

where f  is fluid density, t  is time, , ,
x y z

   
 =  

   
 is operator and ( ), ,u v w=V  is 

velocity vector of the flow field. The fluid density is constant for incompressible fluid, 

then Eq. (1) becomes: 

 

. 0 =V              (2) 

 

Momentum equation  

 

The law of conservation of momentum is derived from the Newton’s second law of 

motion which simply states that the resulting force acting on the control volume is equal 

to the rate of change of momentum. This can be symbolised as 

 
m=F a                (3) 

 

where F  implies force exerted on the fluid element, m  denotes mass of the element and 

a  is acceleration of the element. Then, the momentum equation for the Jeffrey fluid can 

be expressed in differential form as [30, 31]: 

 

.f b

D
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V
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where 
D

u v w
Dt t x y z

   
= + + +
   

 denotes material derivative, T  implies Cauchy stress 

tensor for Jeffrey fluid, p  is scalar pressure, I  is identity tensor, S  is extra stress tensor, 

1R  is Rivlin–Ericksen tensor,   is dynamic viscosity and   and 1  are material 

parameters of Jeffrey fluid called as the ratio of relaxation to retardation times and 

retardation time, respectively. Furthermore, the body force ( , , )b bx by bzF F F=F  is 

expressed as: 

 

b = + F g J B                (9) 

 

where ( )= + J E V B  is current density, g  is gravitational acceleration and 

( )x= +
0

B B b  is magnetic force where ( )0( ) 0, ( ),0x B x=
0

B  implies the magnetic field 

and b  denotes induced magnetic field. In the present study, g  and b  are neglected under 

respective consideration of forced convection flow and assumption of small magnetic 

Reynolds number value [32]. In addition, E  disappears everywhere due to the presence  

of electrically insulating boundary around the plate [33].  

 

Energy equation  

 

The derivation of the energy equation originates from the principle of conservation of 

energy (first law of thermodynamics) which states that energy cannot be created nor 

destroyed. As in Buongiorno [34], the energy equation can be expressed as 

 

( ) .p p rf

DT
c h

Dt
 = − +  −q j q           (10) 

 

where ( )
f

c  is heat capacity of the base fluid, T  is fluid temperature and ph  is specific 

enthalpy of the nanoparticle material. Further, q  is energy flux relative to the frame 

moving with the nanofluid velocity, rq  is Rosseland approximation and pj  is diffusion 

mass flux for the nanoparticle, given by: 

 

f p pk T h= −  +q j             (11) 
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Concentration equation  

 

The conservation of mass equation for the nanoparticle can be expressed as follows [34]: 

 

1
. p

p

DC

Dt 
= −  j             (14) 

 

where pj  is defined by Eq. (13). 

 

Governing Equations 

 

A steady, two-dimensional forced convective and laminar flow of Jeffrey nanofluid past 

a flat plate moving with constant velocity, ( )wu x  in an electrically conducting fluid, 

where the magnetic field, 0B  is directed perpendicularly to the plate is deliberated. The 

effects of thermal radiation along with the passive control of nanoparticles are also 

discussed. Furthermore, T , fT  and T  represent the respective boundary layer 

temperature, hot fluid temperature and ambient temperature, respectively, whereas C  and 

C  imply the nanoparticle concentration and ambient nanoparticle concentration, 

respectively. The flow diagram of this study is displayed in Figure 1.  

 

 
 

Figure 1. The flow diagram. 

 

Assuming that the Boussinesq approximation has taken place and that the 

nanoparticle concentration is assumed to dilute, then a steady two-dimensional Eqs. (2), 

(4), (10) and (14) can be expressed as follows [3, 24]: 
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with associated boundary conditions: 

 

( )( ) ,   ,   ,  0  at  0

,   0,   ,    as  

B
w w f f f B
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     (19) 

 

where u  and v  are respective components of velocity in x −  and y −directions,   is 

plate velocity parameter,   is kinematic viscosity, ( )wV x  is velocity of the 

suction/injection, U  is free stream velocity, f  is density of the base fluid, p  is  

particle density, rq  is radiative heat flux, fh  is coefficient of heat transfer,   is electrical 

conductivity, ( )f f
k c =  is thermal diffusivity, ( ) ( )p fc c  =  is ratio of heat 

capacity, where ( ) pc  is heat capacity of the nanoparticle, ( ) fc  is heat capacity of the 

fluid, fk  is thermal conductivity, BD  is Brownian diffusion coefficient and TD  is 

thermophoretic diffusion coefficient. The boundary condition of 0B
B

DC T
D

y T y

 
+ =

 
 

embodies the condition of zero nanoparticle flux [12]. Now, the Rosseland approximation 

is imposed: 
44

3
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


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
, where    and k  are the respective Stefan-Boltzmann 

constant and the mean absorption coefficient, respectively. Using the Rosseland 

approximation [20], Eq. (17) becomes: 
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Let 
34 T

Nr
k k

 




=  be the radiation parameter. Then, Eq. (20) results in: 
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Introducing the set of similarity transformation variables [21], 

 

( )
1/2

1/2
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From Eq. (22),  ,   and   are similarity variables, dimensionless fluid temperature and 

nanoparticle concentration, respectively. One can discover that Eq. (15) is trivially 

satisfied when stream function,   defined by u y=    and v x= −   are applied. 

Taking into account Eq. (22), Eqs. (16), (17) and (21) with boundary conditions (19) yield 

the following equation: 
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Equations (23) to (26) comprises of eight parameters 2 ,  ,  ,  Pr,  ,  ,  M Nb Le Nt Bi  and wf  

named Deborah number, magnetic parameter, Brownian motion parameter, Prandtl 

number, Lewis number, thermophoresis parameter, Biot number and mass 

suction/injection, respectively, that can be denoted as: 
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where 0wf   is mass suction while 0wf   is mass injection. The local skin friction 

coefficient 
fC  and the local Nusselt number xNu  can be written as: 
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where the surface shear stress ,w  the surface heat flux wq  and the surface mass flux wj  

are defined as: 
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with v =  signifying the dynamic viscosity. Imposing Eq. (22) into Eq. (28) yields: 
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provided that the Reynold number, Re .x

U x


=  It is worth mentioning that the Sherwood 

number, Shr  becomes zero resulting from the passive control condition of nanoparticles 

[12]. 

 

NUMERICAL PROCEDURE 

 

Runge-Kutta Fehlberg Fourth-Fifth Order (RKF45) Method  

 

The numerical solutions of boundary value problem of Eqs. (23)-(26) are obtained via a 

well-tested method for its accuracy and robustness, namely the RKF45 method. This 

method is basically programmed in the Maple software using a built-in function, dsolve 

command. The idea of this method lies on the appropriate selection of the step size, h  

during the computation in order to acquire a good estimation of the expected error, .R  At 

every step, the computation and comparison between two dissimilar approximations are 

conducted. If R  is larger than the error tolerance ,  the step size has to be decreased and 

the present step needs to be recalculated. Alternatively, if R  is lesser than ,  the present 

step has to be maintained and the step size needs to be enlarged for the subsequent step. 

The formula for the RKF45 method along with its numerical algorithm can be delineated 

as the following [35, 36]: 

 

( )1 ,  ,i ik hf x y=  
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4 4
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4 1 2 3
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The approximation of the fourth and fifth orders to the previous six steps are: 

 

1 1 3 4 5
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,
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i iy y k k k k+ = + + + −  

 

1 1 3 4 5 6

16 6656 28561 9 2
,

135 12825 56430 50 55
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with optimal step size, 

1/4

0.84
R




 
=  

 
 where 

1 1

1
i iR z y

h
+ += − . 

 

From the flow chart in Figure 2, 0 0,  x y  are initial values, 
fx  is final value, 0h  is 

initial guess of the step size, maxn  is maximum number of iteration and minh  and maxh  are  

minimum and maximum step sizes, respectively. 

 

Validation of the Code 

 

The tabular and graphical results generated throughout this study are first validated with 

the formerly published studies to certify the validity of the present numerical code. The 

numerical values of (0) 2−  are computed for dissimilar Pr  values for the limiting 

cases of 2 0,wNb Nt Le M Nr Bi f  = = = = = = = = = =  as exhibited in Table 1. It is 

evident that the values generated by Maple code and those tabulated by Bataller [20], 

Roşca and Pop [23] and Mohamed et al. [24], who implemented the respective Runge–

Kutta method of fourth-order, bvp4c function and Keller-box method are in a good 

reconciliation, thus confirming the reliability and accuracy of the present codes. 
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Figure 2. The numerical algorithm for the RKF45 method. 

 

RESULTS AND DISCUSSION 

 

This section discusses the responses of imperative physical parameters on the specified 

distributions with the purpose of understanding the insight of the problem. As a whole, 

the succeeding default parameters are used, unless mentioned otherwise: 

20.1,  0.2,  0.7,  Pr 7,  0.5,  0.3wNb M Nt Le Bi f  = = = = = = = = = =  and Nr = 1.0.   

 

Effect of Parameters on Temperature Profile 

 

Deborah number, 2  

 

Figure 3 (a) discloses the upshot of the Deborah number, 2  on the temperature profile. 

It is perceived that the profile for temperature is a declining function of 2.  Theoretically, 

a small Deborah number corresponds to situation where the material is in relaxed state 

and performs in a viscous manner, while a larger Deborah number corresponds to 

situation where the material acts relatively elastically. Since 2  is directly associated with 

the relaxation time, increasing 2  has reinforced the retardation time. Such reinforcement 
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brings about reductions in the temperature accompanied with the thermal boundary layer 

thickness.  

 

Magnetic parameter, M  

 

Figure 3(b) displays the enhancement of the temperature profile in response to the 

increasing magnetic parameter, M  along the y − axis. Here, parameter M  implicates the 

manifestation of electrically conducting fluid that modifies the temperature profile 

through the polarisation of the fluid. Accordingly, a resistive nature of magnetic force 

named Lorentz force that has a propensity to retard the fluid flow and captivate 

nanoparticle to the surface is induced. As M  rises, the Lorentz force comes to be stronger, 

this means enhancing the fluid friction. This enhancement is correspondingly accountable 

to higher temperature of hydromagnetic flow, 0M   compared to the hydrodynamic 

flow, 0.M =  Hence, increment in the thermal boundary layer flow is foreseeable. 

 

 
(a) 

 

 
(b) 

 
(c)  

 
(d) 
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(e) 

 
(f)  

Figure 3. Temperature profile ( )   for diverse values of (a) 2. (b) M (c) Nr (d) Nb (e) 

Nt and; (f) Bi. 

 

Radiation parameter, Nr  

 

In Figure 3(c), the temperature profile is inspected over varied values of the radiation 

parameter, .Nr  It is evident from the figure that Nr  exhibits an increasing impact on the 

temperature profile. This outcome is expected as the presence of Nr  tends to deliver 

more heat to the surface, thereby thickening the thermal boundary layer. The temperature 

also varies significantly at the surface, 0 =  by reason of the convectively heated moving 

plate. Also, a progressive deterioration of the temperature in the direction of the 

freestream can also be seen when   increases. 

 

Brownian motion, Nb  

 

Figure 3(d) displays the impact of Brownian motion, Nb  on the temperature profile. 

Physically, Nb  is defined as random motion of nanoparticles inside the base fluid. A rise 

in Nb  implies recurring collision between the nanoparticles and this leads to the rapid 

transfer of inertial forces. By this definition, the temperature profile is likely to enhance 

owing to the longer engagement of heat in the flow before conveying it to the surrounding 

[16]. Nevertheless, it is clear from the figure that the increase of Nb  shows negligible 

changes on the temperature profile. Such circumstance is closely linked to the zero 

nanoparticle flux condition at the boundary, where temperature turns out to be 

independent over the Brownian motion [15]. For that reason, it can be understood that the 

random motion of suspended nanoparticles pronounces insignificant impacts on the 

temperature.  

 

Thermophoresis diffusion parameter, Nt  

 

Plot of the temperature profile for the thermophoresis diffusion parameter Nt  is disclosed 

in Figure 3(e). The fluid temperature and its related thickness of thermal boundary layer 

are augmented in consequence of the rising value of .Nt  As stated by Zaidi and Mohyud-
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Din [13], higher Nt  values basically assist in the enhancement of the nanoparticle’s 

momentum on the hotter side. More kinetic energy is produced and conveyed towards a 

cooler side by reason of larger temperature gradient as well as temperature difference. 

The transferred kinetic energy warms up the fluid on the cooler side continuously, thereby 

increasing the temperature.  

 

Biot number, Bi  

 

Figure 3(f) is sketched to examine the convective heating impact named Biot number, Bi  

on the temperature profile. According to Ibrahim and Haq [14], Bi  explains the 

relationship between the convection at the surface to the conduction inside the surface of 

a body. As such, improvement of the temperature is related with stronger convection at 

the surface that promotes deeper penetration of the thermal effect into the fluid. 

Accordingly, the thermal boundary layer escalates together with the ongoing 

degeneration of the profile towards the freestream. 

 

Effect of Parameters on Concentration Profile 

 

Brownian motion, Nb  

 

Figure 4(a) examines the response of increasing Nb  values towards the concentration 

profile. Noticeably, the concentration profile gives negative values when 0. =  This 

behaviour, which is caused by the curbed nanoparticle flux, has found to be similar as the 

existing findings disclosed by Kuznetsov and Nield [12], Jahan et al. [17] and Halim et 

al. [16]. When 0 0.2,   the concentration profile overshoots and a larger Nb  value, 

3Nb =  is identified to be closer to zero. When 0.2 5,   the graph reverses and the 

reduction of nanoparticle concentrations can be explained from the decremented 

displacement among the nanoparticles following the recurring random collision. This 

subsequently gives rise to the deprivation of the nanoparticle concentration along with 

the concentration boundary layer thickness.  

 

Thermophoresis diffusion parameter, Nt  

 

Figure 4(b) illustrates a resemblance flipping behaviour of Figure 4(a) but in the opposite 

manner. It is apparent that the concentration profile is nearly zero in the interval 

0 0.2   when 0.1.Nt =  This is due to the passive control condition where 

nanoparticle flux is being suppressed and transported to the surrounding to prevent 

nanoparticle deposition [16]. As for the interval 0.2 5,   the concentration profile is 

higher when 1.3Nt =  but lower when 0.1.Nt =  Analogous to Figure 3(e), an increase in 

the temperature difference also prevails upon the dispersion of the nanoparticles towards 

the cooler environment, hence intensifying the nanoparticle concentration. 

 

Biot number, Bi  

 

Figure 4(c) also displays a significant outcome of zero nanoparticle flux condition where 

the nanoparticle concentration shrinkages near the surface before it flips over to intensify 

in a similar manner as parameter Nt  in Figure 4(b). Since temperature is one of the factor 
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that drives the nanoparticle concentration, predictably, a larger Bi  would as well 

stimulate a deeper penetration of the concentration into the fluid. This prediction is in fact 

visualized in the specified interval of 0.2 5   for the larger value of .Bi  

 

 
(a) 

 

 
(b) 

 
(c) 

 

Figure 4. Nanoparticle concentration ( )   for diverse values of (a) Nb, (b) Nt and;  

(c) Bi 

 

Effect of Parameters of Engineering Interests 

 

Variations of the reduced skin friction coefficient 
frC  and Nusselt number Nur  for 

physical parameters 2 ,  ,  ,  ,  M Nr Nb Nt  and Bi  are provided in Table 2. 

 

 

 

Reduced skin friction coefficient, frC  
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From the table, it is obvious that the 
frC  decelerates with increasing values of 2  and 

.M  The finding signifies that the fluid friction becomes progressively ineffective 

following the augmentation of the combined viscous and elastic properties of materials 

and the magnetic strength. Further, parameters ,  ,  Nr Nb Nt  and Bi  exhibit no variations 

on the 
frC  owing to the decoupled boundary layer Eqs. (23) to (25). These parameters 

can be simply interpreted as independent of the 
frC  and can be evidently proven by the 

existance of a unique solution for the ,frC  i.e. 0.196880.f − =   

 

Table 1. Comparative values of (0) 2−  for dissimilar values of Pr  when Bi →

2 0.wNb Nt Le M Nr f  = = = = = = = = =  

 

Pr   Bataller [20] Roşca and Pop [23] Mohamed et al. [24] Present 

0.7 0.29268 0.29268 0.292680 0.292778 

0.8 - 0.30691 0.306917 0.307005 

1 - 0.33205 0.332057 0.332140 

5 0.57669 0.57668 0.576689 0.576683 

10 0.72814 0.72814 0.728141 0.728140 

 

Table 2. Variations of 
frC  and Nur  for diverse values of 2,  ,  ,  ,  M N    and 0  

when 0.1,  Pr 7,  0.5,  0.1Le = = = =  and  0.3.wf =  

 

2  M  Nr  Nb  Nt  Bi  frC  Nur  

0.2 0.7 1.0 0.1 0.5 0.5 -0.116064 0.326909 

0.6 0.7 1.0 0.1 0.5 0.5 -0.119346 0.327570 

0.8 0.7 1.0 0.1 0.5 0.5 -0.121123 0.327837 

0.8 1.0 1.0 0.1 0.5 0.5 -0.158311 0.323621 

0.8 1.5 1.0 0.1 0.5 0.5 -0.196880 0.320499 

0.8 1.5 1.5 0.1 0.5 0.5 -0.196880 0.294131 

0.8 1.5 2.0 0.1 0.5 0.5 -0.196880 0.273836 

0.8 1.5 2.0 0.5 0.5 0.5 -0.196880 0.273836 

0.8 1.5 2.0 1.0 0.5 0.5 -0.196880 0.273836 

0.8 1.5 2.0 1.0 1.0 0.5 -0.196880 0.256585 

0.8 1.5 2.0 1.0 1.5 0.5 -0.196880 0.237603 

0.8 1.5 2.0 1.0 1.5 1.0 -0.196880 0.282986 

0.8 1.5 2.0 1.0 1.5 1.5 -0.196880 0.298536 

 

Reduced Nusselt number, Nur  

 

An increasing impact of parameters 2  and Bi  is detected on the ,Nur  whereas 

increasing parameters ,  M Nr  and Nt  act reversely. It is suggested here that the increased 

values of 2  and Bi  denote a better heat transfer performance for Jeffrey nanofluid when 

compared with the Newtonian fluid and vice versa for parameters ,  M Nr  and .Nt  As for 

increasing Nb  values, the result is found to be highly relevant with Figure 3(d), where 
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the rate of heat transfer continues stagnant by virtue of zero nanoparticle flux condition 

at the wall and that the nanoparticle concentration there modifies accordingly.  

 

CONCLUSION 

 

In this work, the flow of Jeffrey nanofluid past a moving plate with the effect of thermal 

radiation and convective boundary condition is discussed. More physically realistic of 

passively controlled condition of nanoparticles is incorporated to assume zero 

nanoparticle flux at the surface. The following conclusions are the main findings of this 

study: 

 

i. Temperature profile accelerates with the increase of ,  ,  M Nr Nt  and Bi  values 

while decreases with the increasing 2  values. 

ii. Nanoparticle concentration is the increasing function of Nt  and Bi  and 

decreasing function of .Nb  

iii. Temperature profile and heat transfer rate are independent of Nb  values due to 

the zero nanoparticle flux condition at the boundary. 

iv. Parameters ,  ,  Nr Nb Nt  and Bi  exhibit no variations on the skin friction 

coefficient due to the decoupled boundary layer Eqs. (23) to (25). Therefore, there 

exists a unique value of the skin friction coefficient, i.e. 0.196880.f − =  
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