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REVIEW ARTICLE 

Review of Computational Techniques for Modelling Eco-Safe Driving Behavior 
Neetika Jain and Sangeeta Mittal*   
Department of Computer Science & Engineering and Information Technology, Jaypee Institute of Information Technologies, Noida, Uttar Pradesh-
201309, India 

ABSTRACT - Driving is a complex task involving the perception of the driving event, planning 
response, and action. Safe driving ensures the vehicle’s and its passengers’ safety, whereas 
economical driving brings down fuel consumption. Eventually, eco-safe driving that ensures 
economical as well as safe driving is the best bet. This review paper provides a systematic 
comprehensive analysis across cross-cutting dimensions such as data collection 
mechanisms, features affecting eco-safe driving, computational models for driving behavior 
analysis, driver motivational approaches towards eco-safe driving, exploiting research gaps 
and opportunities for further research in this domain. Driving behavior along with 
environmental context, including weather information, road conditions, traffic flow and time of 
travel, represent the most effective factors for doing eco-safe driving analysis. 82% of 
reviewed papers recommended OBD as a reliable data collection source, along with 
supplementary information from body sensors and cameras. The K-Mean clustering is an 
effective driving profiling technique clubbed with dimensionality reduction techniques based 
on Random Forest regressor, PCA and autoencoders. Deep learning and ensemble learning-
based safety approaches utilizing Recurrent Convolutional Networks (RCN), Convolutional 
Neural Networks (CNN), and Long Short-Term Memory (LSTM) and Decision Tree (DT) have 
achieved impressive accuracies surpassing 99%, followed by Neural Networks (NN), Support 
Vector Machines (SVM) and Random Forest (RF) with accuracy ranging from 91% to 96%. 
Long Short-Term Memory (LSTM) yielded superior Area Under Curve (AUC of 0.836) for fuel 
prediction, in comparison to Support Vector Machines (SVM) and Neural Networks (NN). 
Gated Recurrent Unit (GRU) represents fine-grained accurate fuel-prediction methods with 
accuracy comparable to Long Short-Term Memory (LSTM). Prominent research gaps 
identified during this study are the lack of a comprehensive approach covering all aspects 
related to safety, fuel economy, the scope of improvement in real-time driving risk assessment 
at appropriate granularity level, missing effective and engaging driving feedback, dealing with 
uncertain and incomplete driving events, driver’s personal traits affecting driving safety and 
fuel-economy. The review will help in establishing the readiness of automation of driving 
analysis for reinforcement of eco-safe driving for various kinds of vehicles plug-in hybrid 
vehicles, hybrid electric vehicles, electric vehicles, and self-driving cars. 
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1.0 INTRODUCTION 
The automotive industry is revolutionized with innovation in communication technologies. Nowadays, sensors in 

connected vehicles generate massive driving data in real-time, which can be potentially analyzed and processed to 
generate meaningful inferences or advice for drivers in real-time. The real-time advice may help the driver avoid 
dangerous driving, maintain fuel economy, or assist the driver in maneuvering [1]. Driving behavior can be adapted 
towards safe and economical driving via various mechanisms such as issuing alerts, visual and audio feedback, and using 
gaming and incentives-based schemes. Advanced Driver-Assistance Systems (ADAS) provide a real-time human-
machine interface to assist drivers with vehicle safety and eco- driving and warn the driver if the driver deviates from safe 
or fuel-economical driving behavior [2]. Driving safety and fuel economy are critical aspects of driving [3]. The driving 
practices that help to reduce fuel economy while adhering to safety norms are collectively referred to as eco-safe driving. 
Capturing driving behavior in real-time is critical to identifying dangerous driving and improving fuel efficiency. 
Disastrous situations like crashes can be avoided by controlling driving behavior. The driver profiling information along 
with their driving behavior risk attributes, can be utilized to assist the driver in car-following, lane-changing, and steering 
control scenarios [4-5]. The driver’s physiological features (eye blink, head movement, facial expression, pulse rate, 
electrocardiogram (ECG), electroencephalogram (EEG), Electrooculography (EOG)) help in detecting driver’s states, 
namely fatigue, sleepiness, drunken state, or distracted state [3] [6-7]. The appropriate advice can be issued to alert the 
driver after identification of the driver’s state. The techniques mentioned help in driver profiling based on the usage of 
social characteristics such as age, cognitive abilities, route preferences, and trip characteristics and customize the driving 
assistance according to the driver’s profile [1] [8-10]. The other approaches focus on improving fuel efficiency by 
controlling driving behavior [11-12]. These approaches helped in predicting fuel consumption taking driving style, driving 
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behavior and contextual environment variables as a parameter via machine learning models, deep learning models and 
custom models. Incentive-based or gamification mechanisms maintain continuous user engagement and facilitate eco-
safe driving. Incentive-based or gamification mechanisms maintain continuous user engagement and facilitate eco-safe 
driving. 

In this work, existing approaches concerning the correlation of driving behavior, socio- economic characteristics or 
effect of congestion, and road type with safe driving and eco-driving have been compiled and reviewed. The paper is 
organized as follows. Section 2 details the services, technologies and applications associated with connected cars. Section 
3 evaluates the various parameters such as driving behavior, social, contextual, and physiological parameters for driving 
behavior modelling in the existing state-of-the-art. Section 4 elaborates on state-of-the-art computational models for 
vehicle crash avoidance, driver profiling, driving distraction/fatigue/sleep detection, or avoidance techniques. Section 5 
mentions computational models for fuel prediction based on driving behavior attributes, driving assistance for fuel- 
economical driving, and optimizing vehicle powertrain model to save fuel consumption. Section 6 elucidates approaches 
based on eco-safe driving and driving assistance or motivational approaches. Section 7 mentioned about limitations and 
research gaps of the existing state of the art. Section 8 concludes the review of state- of-the-art. 

2.0 RELATED WORKS 
This part provides a brief overview of applications, services and technologies that can connect a connected car to other 

devices via the Internet of Things (IoT) based on various connectivity mechanisms such as Bluetooth, cellular network, 
and satellite connectivity [12-13]. These can provide multiple applications such as infotainment, remote-diagnostics, 
convenience, parking assistance, roadside assistance and advanced driving assistance as shown in Figure 1. 

 
Figure 1. Connected car architecture 

Connectivity Mechanisms - These cars can receive satellite data from radio stations to provide infotainment services. 
Bluetooth and Wi-Fi connectivity enable users to connect their mobile to the car’s head unit and do simple activities such 
as attending phone calls, connecting to music apps, and navigation. Most of the connected cars also come pre-fitted with 
onboard devices and a built-in embedded sim (e-sim) for cellular communication. The onboard device (OBD) is connected 
to Electronic Control Units (ECU) that control the powertrain, chassis, steering, and vehicular functions via Control Area 
Network (CAN) [12]. The built-in e-sim helps to send data gathered via OBD, vehicle sensors and ECUs to cloud-based 
backend IoT applications.  

Applications - Some convenience features enabled via connected cars include remotely executing the car’s functions 
such as start, stop, lock, unlock, switching AC ON. Communication Mechanisms - Connected cars are enabled via 
different technologies such as vision/camera systems, onboard sensors, vehicle data networks and V2X communication 
where X may represent infrastructure, network, cloud, pedestrian, or vehicle. Depending on the underlying application, 
vehicle-to-cloud (V2C), vehicle-to-infrastructure(V2I), vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P) 
communication takes place [13]. V2X communication is based on either IEEE 802.11p (5.9 GHz) or LTE-based 
communication mechanisms. IEEE 802.11 communication has also become a popular and standardized method for 
broadcast or multicast messages sent by applications meant for traffic regularization, cooperative routing, and 
communication with roadside infrastructure units. Communication of vehicle data to the real world happens via different 
kinds of interfaces based on V2X systems. 

Telematics in the automotive domain is a technology that enables communication from the sensor to vehicle and 
vehicle to infrastructure via wireless or GPS-based communication mechanisms. 

Connectivity 

Communication 

Applications 

OBD 
CAN 
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Table 1. Different types of sensors involved in connected car 
Serial 
number Type of Sensor Description 

S-1 Global Navigation Satellite 
System (GNSS) 

Captures accurate latitude/longitude of the vehicle via Global position 
System (GPS) satellite 

S-2 Wheel odometry sensors Tracks wheel’s speed and distance travelled by the vehicle is reflected 
in the odometer reading. 

S-3 Throttle pressure sensor Monitors the throttle opening rate and its relative position. It is located 
on spindle/shaft to monitor the position of the throttle. 

S-4 IMU - Gyroscope Measures the angular velocity in degrees per second. 
S-5 IMU - Accelerometer Measures vehicle acceleration displacement vector in x, y, and z 

directions 
S-6 IMU - Magnetometer Measures magnetic field strength on each axis to detect heading 
S-9 Fuel level sensor Measures the level of fuel in tank by monitoring the movement of float. 

There are multiple types of sensors used in connected cars to gather various types of data related to location, direction 
of movement, lateral/angular speed, lateral/angular acceleration or deceleration, and throttle paddle statistics, as 
mentioned in Table 1. Controller Area Network (CAN) is a high-speed bus protocol to broadcast all the traffic to all nodes 
on a given bus. OBD (Onboard Diagnostics) is a device that connects to the car’s OBD-II connector and gets access to 
values from Electronic Control Units (ECUs) and different sensors such as Global Position System (GPS), General Packet 
Radio Service (GPRS) via Controller Area Network (CAN). CAN bus helps to broadcast sensor-measured values for the 
vehicle’s location, speed, engine RPM, fuel level to ECUs and OBD logger. Initially, the use of OBD devices was limited 
to the vehicle’s health diagnosis and reporting any malfunction indicator. OBDs retrieve raw data gathered by electronic 
control units by connecting to CAN. The following are different in-vehicle sensors that may be installed in a connected 
vehicle; and can be referred to in Figure 2. 

i. GNSS provides accurate vehicle location via GPS satellite. The accuracy of location mentioned by the GNSS 
system may get affected by signals being obstructed by monumental buildings and mountains. If the GPS signal 
is unavailable, then the previous location, acceleration, and direction value are utilized to compute the estimated 
current vehicle’s location.  

ii. Wheel odometry sensors track the wheel’s speed, and the distance travelled by vehicle is reflected in an odometer 
reading. 

iii. Throttle pressure sensor measures the throttle opening rate and its relative position. The position of the 
accelerometer pedal is sent to the engine control unit for controlling the power supplied to it.  

iv. Inertial Measurement Unit (IMU) - accelerometer, gyroscope, magnetometer combines multiple outputs from 
accelerometer, gyroscope and magnetometer and tracks the movement and angular orientation of the vehicle. 
The accelerometer embedded in IMU, measures vehicle acceleration displacement vector in x, y, and z 
directions. The gyroscope measures angular velocity in degrees per second. The magnetometer measures 
magnetic field strength on each axis and helps to detect heading. 

v. Fuel level sensor measures fuel-level in the fuel tank by combining the value received from fuel level sensor 
with GPS values and helps to calibrate fuel consumed within each sampling time. 

 
Figure 2. In-vehicle sensor placement 

Electric and hybrid vehicles are gaining popularity due to several advantages over traditional internal combustion 
engine (ICE) vehicles. These include environmental benefits with lower emissions, improved energy efficiency, reduced 
dependence on fossil fuels, potential cost savings, technological advancements, and government incentives [24],[36]. An 
electric vehicle (EV) relies on electric motors or traction motors for propulsion, utilizing regenerative braking to capture 
and utilize lost kinetic energy during braking. Through regenerative braking, the EV’s electric motor acts as a generator, 
absorbing the vehicle’s motion energy and converting it into electrical energy during deceleration or when the vehicle 
slows down. This energy is then stored in the vehicle’s batteries. In contrast, mechanical braking in traditional vehicles 
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converts motion energy into heat and friction. The implementation of regenerative braking in EVs improves energy 
efficiency and contributes to an extended driving range by harnessing and utilizing energy that would otherwise be wasted 
during braking. 

Hybrid Electric Vehicles (HEVs) combine both gasoline/diesel engine and electric batteries for power. Similar to EVs, 
HEVs also utilize regenerative braking to capture and store energy during braking. However, HEVs cannot be charged 
directly from external battery charging devices. On the other hand, Plug-in Hybrid Vehicles (PHEVs) can be connected 
to an electric grid to recharge their batteries, similar to EVs. This allows PHEVs to draw power from the grid to charge 
their batteries in addition to utilizing regenerative braking. 

3.0 DATA PREPARATION TECHNIQUES FOR MODELLING ECO-SAFE DRIVING 
Various steps of data processing of vehicle data can be briefly explained in Figure 3. The vehicle data for GPS, 

accelerometer, velocity, and fuel level is sensed via different sensors. Values received from vehicles are broadcasted by 
CAN to various ECUs and vice-versa. Information received is used to detect driving behavior events, and contextual 
conditions. Contextually mapped information is used to develop various computational models for safe and fuel-
economical driving. The first step for modelling driving behavior includes suitable parameter extraction from data. 
Extracted parameters are then taken as input to computation models for real-time driving modelling. In this section, 
parameters selection and modelling techniques proposed for this domain have been reviewed.  

 
Figure 3. Process flow for data processing 

3.1 Parameters used for Modelling Fuel-Economical and Safe Driving Behavior 

Driving is an abstract phenomenon. Capturing driving behavior includes the extraction of suitable attributes from raw 
driving data. Extracted parameters are then utilized for developing computational models for real-time driving modelling. 
Table 2 summarizes various input attributes and factors considered in the literature for the abstraction of safe and eco-
driving. Attributes in various publications can be categorized into different types. Vehicle attributes help to consider 
vehicle-specific attributes such as engine rpm and torque that affect power and fuel consumption. Socio-economical 
attributes consider multiple parameters such as age, cognitive skills, gender, and economic state [17],[32]. Few 
approaches discussed the driving behavior of old drivers, their cognitive skills, and route familiarity [10],[17]. One of the 
approaches suggested that socio-economic characteristics affect driving behavior during off-peak hours [17]. These 
approaches offered older adults feedback mechanisms to help them improve their driving abilities and decisions. Few 
approaches used trip attributes such as frequency, length, and duration of trips for driver characteristics profiling. These 
approaches helped to reflect the driver personality or preferences for travelling. 

Many approaches considered environmental contextual attributes such as road type (road surface type, number of 
lanes, road curvature, road gradient, presence of speed bumps and portholes, road conditions as wet, dry or snowy) 
weather conditions (clear, sunny, foggy, rainy, snow, windy thunderstorm), time of travel (day, night) and road congestion 
to refine the computational model [4],[7-8],[10-11],[15]. Factors such as weather conditions, road surface conditions (e.g., 
wet, icy, or uneven surfaces), visibility, traffic congestion, and the presence of pedestrians or obstacles can significantly 
impact the safe speed and acceleration limits on the road. For example, driving at a certain speed on a dry and straight 
road may be considered safe, but the same speed could be dangerous on a wet or icy road due to reduced traction. Adhering 
to local traffic laws and regulations is also essential for safe driving practices in different road conditions. Speed limits 
are established based on various factors, including road design, traffic flow, and the surrounding environment, to ensure 
the safety of all road users. Similarly, rapid acceleration in heavy traffic or crowded areas may pose a higher risk of 
accidents compared to open highways with minimal traffic.  
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Table 2. Study of attributes for the abstraction of safe and eco-driving. 

 V
eh

ic
le

 at
tri

bu
te

s 

So
ci

o-
ec

on
om

ic
al

 
at

tri
bu

te
s 

Tr
ip

 a
ttr

ib
ut

es
 

En
vi

ro
nm

en
ta

l 
c o

nt
ex

t 

D
riv

in
g 

be
ha

vi
or

 

Ph
ys

io
lo

gi
ca

l 
at

tri
bu

te
s 

R
ef

er
en

ce
 

Pu
rp

os
e o

f m
od

el
 - 

Sa
fe

/e
co

 d
riv

in
g 

Fu
el

 c
on

su
m

ed
 

En
gi

ne
 sp

ee
d 

or
 to

rq
ue

 

A
ge

/g
en

de
r/c

og
ni

tiv
e 

sk
ill

s 

Tr
ip

 le
ng

th
 

# 
of

 tr
ip

s 

Ti
m

e 
of

 tr
av

el
 

R
oa

d 
in

fo
rm

at
io

n 

Tr
af

fic
 fl

ow
 

W
ea

th
er

 in
fo

rm
at

io
n 

H
ar

sh
/fr

eq
ue

nt
 p

ad
dl

e 

D
riv

in
g 

sp
ee

d 

Id
lin

g 
tim

e 

C
ru

is
in

g 
tim

e 

Tu
rn

 b
eh

av
io

r 

Ey
e 

bl
in

k/
cl

os
ur

e 

EC
G

/E
EG

/E
O

G
 

[1] SAFE √ √        √ √      
[2] ECO √         √ √ √  √   
[4] SAFE        √  √ √   √  √ 
[6] SAFE   √      √ √ √ √  √  √ 
[7] SAFE        √  √ √   √ √ √ 
[8] SAFE       √   √ √ √  √   
[9] SAFE    √ √ √    √ √   √   
[10] SAFE   √ √ √ √ √  √ √ √      
[11] ECO √ √  √   √ √  √ √ √     
[12] ECO √ √        √  √     
[14] ECO √ √   √     √ √ √     
[17] SAFE   √ √ √ √ √   √    √   
[19] SAFE      √ √ √  √ √   √  √ 
[20] SAFE      √ √        √ √ 
[21] ECO √       √  √ √ √ √    
[22] SAFE  √        √ √ √  √   
[24] ECO √ √        √ √ √     
[25] ECO √          √      
[26] SAFE      √ √        √ √ 
[27] SAFE          √  √     
[27] SAFE          √  √  √   
[28] SAFE          √ √ √ √ √   
[30] ECO √ √        √ √ √  √   
[31] ECO √       √  √ √  √    
[32] ECO √  √ √ √ √  √  √ √  √   √ 
[33] SAFE          √ √ √  √  √ 
[34] ECO √ √     √   √ √ √     
[35] ECO √ √  √ √ √ √ √  √ √ √     
[36] ECO √         √ √ √ √    
[37] ECO √ √        √ √ √  √   
[38] ECO √      √   √ √ √     
[39] ECO √         √ √ √     
[40] ECO √ √        √ √ √     
[41] ECO √ √        √ √ √  √   
[43] SAFE      √ √   √    √  √ 
[44] SAFE        √  √ √      

Weather conditions can have a significant impact on safe driving [6],[22],[47],[18]. Different weather conditions 
present unique challenges and hazards that drivers need to be aware of and adapt to, such as maintaining a safe distance 
from other vehicles, being attentive, and anticipating potential hazard: 

i. Rain; rainfall reduces road traction, making the road surface slippery. Reduced visibility and the need for 
windshield wipers also add to the challenges. It is important to drive at a reduced speed, increase the following 
distance, and use headlights in the rain to improve visibility. 

ii. Snow and ice; snow and ice create extremely slippery road surfaces. Traction is greatly reduced, leading to 
longer stopping distances and difficulties in maintaining control. It is also crucial to leave ample headway space 
between vehicles and brake gently to prevent skidding. 

iii. Fog; fog reduces visibility and makes it challenging to see other vehicles, pedestrians, or road signs. Drivers 
should use fog lights or low beam headlights, maintain a safe distance from the vehicle ahead, and drive at 
reduced speeds to have enough time to react to hazards. 
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Most of the approaches used negative driving behavior attributes, namely harsh acceleration/deceleration, overspeed, 
engine idling, sharp turn behavior, and steering angle as parameters. Cruising has been identified as recommended driving 
to improve fuel economy [31-32]. Driving assistance approaches consider multiple attributes such as lane-keeping, 
longitudinal/lateral lead distance from the preceding vehicle, time headway and relative speed between vehicles. Driver’s 
response time and the mechanical capability of vehicle dictate recommended lead distance and vehicle speed. The use of 
physiological attributes is being used to detect sleep, mind-wandering, or driving stress, fatigue, nausea, headache [32-
33],[43]. The driver is alerted after detecting the driver’s abnormal driving behavior or driving state. 

Vehicle data for GPS, accelerometer, velocity, and fuel level is sensed via different sensors. Values received from 
vehicles are broadcasted by CAN to various ECUs and vice-versa. OBD-II gathers information from the OBD-II port and 
transmits the same to the cloud via a cellular connection or Wi-Fi connection. Raw sensor signals are converted to actual 
attribute values by applying sensor fusion and pre-processing techniques by OEM. The processed attributes received from 
OEM are analyzed to extract attributes corresponding to driving behavior, and environmental context and mapped 
together. Contextually mapped attributes are processed via different computational models to predict fuel consumption, 
assess driving risk, identify anomalies, and provide driver assistance to plan further driving actions. Table 3 elaborates 
on various features extracted from the datasets and their mapping to respective sensor sources. 

Table 3. Mapping of features to their source of sensor 
Serial number  Feature name Source sensor 
1.  Trips by driver Distance covered between two subsequent data samples GNSS, wheel odometry, TPS, 

APS IMU 
Duration between two subsequent data samples Timestamp 
Speed of vehicle between two subsequent data samples GNSS, wheel odometry, TPS, 

APS 
2.  Vehicle 

parameters 
Mileage observed between two subsequent data samples Fuel level sensor 

3.  Environmental 
context 
parameters 

Road information for a particular sample GIS, Camera 
Weather conditions for a particular sample Weather database from local 

weather authorities 
Traffic congestion for a particular sample Heremap API 
Travel time for a particular sample Timestamp difference 

4.  Driving behavior 
parameters 

Distance and duration for harsh acceleration or 
deceleration 

Throttle pressure sensor, IMU 

Overspeed distance and duration Wheel odometry, Here map API 
Sharp turn distance and duration Angular velocity using steering 

sensor and gyroscope 

Different attributes mentioned above affect driving safety and fuel economy. The quality of gathered attributes also 
depends on the data collection mechanism. Section 3.2 discusses different mechanisms for data collection. 

3.2 Mechanisms for Capturing Raw Driving Data 

Real-time driving information is retrieved via drives on test routes or routes under naturalistic conditions. Test drives 
on known routes by real drivers are referred to as Real-time Test Driving (RTD). Data collection under naturalistic 
conditions is labelled as Real-Time Naturalistic Driving (RND). RND helps in capturing real-time naturalistic driving 
behavior with natural road and traffic maneuvering without being obtrusive. Real-time data collection for driving 
attributes can be done through in-vehicle sensors on OBD devices, smartphone-based sensors, cameras, or body sensors 
to monitor driving, contextual, vehicular, trip, and physiological features. As shown in Figure 4, driving simulators have 
a steering wheel, an engine simulator with control over acceleration or deceleration paddle, a camera to study the driver’s 
facial features or eye movement, body sensors to study psychological attributes, and a driving console to visualize the 
trajectory [22]. 

The simulator enables driving scene visualization and simulates traffic. The driver can visualize the trajectory via a 
monitor display. The use of the simulator may cause simulator sickness to participants and may result in fatigue, headache, 
dizziness, blurred vision, or nausea, directly affecting the participant’s attention span and response time. Furthermore, the 
results based on the simulator cannot be equivalent to those resulting under naturalistic conditions representing real-time 
road manoeuvres, traffic, and weather conditions. Other types of simulators include feeding standard driving cycles to 
chassis dynamometers to study various vehicle-related parameters. The driving simulator can be fed with captured driving 
cycles generated on test drives referred to as simulator-based test drive (STD) [23],[25]. Real-time driving data fed to the 
simulator is labelled as simulator-based naturalistic driving (SND) and has been utilized in [32], [36-37].  
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Figure 4. An example of a driving simulator [48] 

Real-time data collection under naturalistic conditions (RND) is an ideal way to get unbiased data for applying 
machine learning based computational model. Real-time test drive data (RTD) provides a mechanism to standardize test 
drive routes for easy comparison of different algorithms. Simulator-based naturalistic driving (SND) and simulator-based 
test drive (STD) provide a mechanism to simulate real-time driving conditions under a simulated environment. The 
following are various kinds of data collection modes, their sources, and other statistics of data used in existing studies (as 
given in Table 4). 

i. Data Collection via OBD Sensors helps to gather telematics data from various sensors and Controller Area 
Network (CAN) embedded in vehicles. OBD captures the vehicle’s location, speed, engine RPM and fuel level 
via OBD-II port of the car. 

ii. Data collection via smartphones is done using in-built smartphone sensors such as accelerometers, 
magnetometers, gyroscopes, and GPS [36],[43]. Though smartphones are easier and fast, smartphone-based data 
may be erroneous due to frequent orientation changes, low sampling rate, filtering mechanism, positioning, 
battery life, and internet connectivity. 

iii. Data Collection via camera or body sensors helps to capture physiological features such as eye movement, facial 
expression, head movement, ECG, EEG, EOG, so that the driver’s state of mind can be determined [30],[36]. 

iv. Data collection via OBD is more reliable than data collected via smartphone sensors as it is firmly fitted within 
vehicle. Due to this, it does not lead to noisy data and allows data to be captured seamlessly. Data collection via 
camera or body sensors might be intrusive to drivers due to privacy concerns. 

Table 4. Driving data collection mechanisms 
Reference Purpose 

of study 
Driving data # of 

drivers 
Source of 
data 

Availability of 
dataset 

Real-Time Naturalistic Driving (RND)  
Abdennour 
et al., 2021 
[1] 

SAFE 46 km (round-trip) of 23 hours duration between 
Korea University and SANGAM World Cup 
Stadium for multiple trips 

10 OBD Publicly available 

Marzet et 
al., 2021 [11] 

ECO Normal driving - 3,573 kms Eco- Driving -
3190 kms 

11 OBD, 
smartphone 
sensors 

Madrid Spain dataset, 
not available publicly 

Baetz et al., 
2020 [14] 

ECO Real-time driving data of 495 drivers 495 OBD Not available 

Yao et al., 
2020 [21] 

ECO 15 days driving data of 20 drivers 20 OBD, 
smartphone 
sensors 

Available on request 

Liu et al., 
2020 [30] 

SAFE 485 video clips of the driving stop event with 
causes of traffic light (stop4light), pedestrian 
(stop4ped), stop sign (stop4sign), and congestion 
(stop4cong). 

NA Camera, 
body 
sensors 

Honda Research 
Institute driving 
dataset, available on 
request 

Osman et 
al., 2019 [22] 

SAFE 200 driving events for 373 drivers, 
divided as 95 drivers calling, 96 drivers texting, 
84 drivers engaging in conversation with the 
adjacent passenger, and 98 drivers not engaged 
in any secondary task. 

373 OBD SHRP2 NDS 
database, available 
on request 

Video Monitor 

Steering Wheel 

Brake 

Accelerator 



Jain and Mittal│ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 2 (2023) 

ijame.ump.edu.my  10429 

Payyanada et 
al., 2019 [17] 

SAFE Driving data of drivers aged 65 years and older 29 Smartphon
e sensors 

Not available 

Bian et al., 
2018 [9] 

SAFE 198 driving observations containing 8 behavior-
related features and 1 risk-level label. 

198 OBD China Insurance 
Company data – not 
available 

Yin et al., 
2017 [15] 

SAFE Three rounds, each lasting 10 min, total of 
1,800 driving moments (1500 training/84 test) 

1 OBD Not available 

Yu et al., 
2017 [28] 

SAFE 6 months of driving data 20 Smartphon
e sensors 

Not available 

Real-time Test Drive (RTD)  
Abukhalil et 
al., 2020 [12] 

ECO Test drive of 3 sedan vehicles, each on 66 km 
hilly route for 40 minutes 

3 OBD Not available 

Hoffman et 
al., 2019 [38] 

ECO Test trip data of 7332 driving cycles on 21 
routes. 

331 OBD Not available 

Pekkanen et 
al., 2018 [4] 

SAFE Test driving data for car-following driving 
scenarios, 40 Real Car + 37 Simulator 

40 OBD Publicly a vailable 
https://zenodo.or 
g/record/1341081#.Y
e-crPjhU2w 

Ferreira et 
al., 2017 [8] 

SAFE 4 trips of duration 13 mins on test drives 2 Smartphon
e Sensors 

Not available 

Hsu et al., 
2017 [40] 

ECO Total 30 routes of 45 km on various road types 1 OBD Not available 

Simulator-based Naturalistic Driving (SND)  
Ozkan et 
al., 2021 [25] 

ECO 45 minutes of data segmented into three parts 
(NGSIM - US Highway 101 Dataset) 

9 OBD NGSIM US-101 
dataset, a vailable 

Guo et al., 
2021 [24] 

ECO Past standard drive cycles fed to a simulator for 
urban and highway 

NA OBD Not available 

Zhang et al., 
2020 [21] 

ECO Driving behavior, demographic attributes of 66 
drivers 

66 OBD Available on request 

Gadde et 
al., 2019 [37] 

ECO 6000 km driving data of urban and highway 
driving in 20 shifts 

NA OBD Not available 

Branislav et 
al., 2019 [34] 

ECO Real-time driving cycles (WLTP) with vehicle 
driving time of 600 seconds. 

NA OBD Not available 

Barua et al.,  
2018 [26] 

SAFE 540 drives on 6 routes 30 OBD Not available 

Simulator-based Test Drive (STD)  
Filippos et 
al., 2021 [31] 

ECO Data of 4156 trips taken by 100 drivers. 100 OBD Proprietary to 
OSeven Telematics, 
London, UK 

Mubarak et 
al., 2020 [35] 

ECO 1100 km drive by 2 drivers on a fixed highway 
route 

2 OBD Not available 

Ping et al., 
2019 [2] 

ECO 30 passenger cars driven by 202 drivers on a 
predefined route 

202 OBD Experimental data, 
not available 

Lasocki et 
al., 2019 [39] 

ECO 12 driving cycles across - Vehicle 1, Vehicle 2 2 OBD https://www.anl.gov/, 
Proprietary 

Darji et al., 
2018 [6] 

SAFE 45 mins of driving data for day and night on urban 
and highway roads 

21 OBD Included within 
manuscript 

Jacobé et al., 
2018 [23] 

SAFE driving data of 110 minutes 20 Camera, 
body 
sensors 

Not available 

Kumada et 
al., 2018 [27] 

SAFE 25mins of car-following driving 40 OBD Publicly available 

Hu et al., 
2017 [33] 

SAFE 36 vehicle test data samples provided 
by Ford with 1080 km per sample 

NA OBD Not available 

3.3 Feature Engineering 

Feature engineering transforms and maps raw data to a form that provides meaningful interpretation and makes it 
simple for processing by machine learning models. Some of the advantages of feature engineering are listed below:  

i. feature engineering helps in reduction of dimensionality and reduces overfitting, 
ii. models using processed features are less complex and faster to train, 

iii. better features result in more accurate models, 
iv. it also helps in noise removal or reduction. 

Feature engineering can be classified broadly as Filter method, Wrapper method, and Embedded method. Filter 
methods help to select features independent of machine learning algorithm by applying statistical tests that correlate 
feature with output. There are different ways of correlation methods, such as Pearson correlation, linear discriminant 
analysis, analysis of variance (ANOVA), and chi-square for continuous or categorical features.  

https://www.anl.gov/
https://www.anl.gov/
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i. Pearson correlation method measures linear dependence between two continuous variables, and its value ranges 
from -1 to 1, 

ii. linear discriminant analysis helps to find the linear combination of categorical features that helps in segregation 
of different classes, 

iii. ANOVA correlates categorical independent features with one continuous dependent feature,   
iv. chi-square evaluates correlation among categorical features based on their frequency distribution.   

Correlation and scatter diagrams were used to correlate driving behavior parameters with fuel consumption in 
[14],[18],[31]. Few approaches used Pearson correlation coefficient (PCC) to determine correlation of vehicles and 
driving behavior parameters with fuel consumption [2],[21]. Other approaches used PCC to determine the relationship 
between driving behavior and driving risk parameters [8],[12]. Though the filter method acts as a simple pre-processing 
step, but is unable to remove multicollinearity. Wrapper method identifies the subset of features and evaluates their 
efficacy for training a machine learning model. Based on the iterative evaluation, a final subset of features is selected for 
a computational model. There are three methods for iterative feature selection. 

i. Forward selection iteratively adds the best features one by one until the addition of any more features does not 
lead to performance improvement. 

ii. Backward elimination starts with all features and iteratively removes the least significant feature until the 
performance of model no longer improves by eliminating more features. 

iii. Recursive feature elimination repeatedly creates different models by eliminating different features and ranks 
different features based on the model’s performance. Best-ranked features are shortlisted as part of this 
technique. 

Stepwise forward feature selection is used to shortlist features out of 60 features based on the threshold significance 
level of 0.005 in [6]. Exploring all possible combinations iteratively makes this approach computationally intensive. 
Embedded methods combine the advantages of filter and wrapper methods to identify the best features. They also apply 
regularization techniques to reduce overfitting. Some examples of these methods include LASSO regression, RIDGE 
regression, and Random Forest Regressor. Random Forest Regressor was used to shortlisted features for the car-following 
model based on relative importance of feature to predict speed of the preceding car [25]. Random Forest Regressor is an 
ensemble technique that helps to identify relative feature importance by averaging values of different decision trees and 
thereby producing more generalized result. Filter methods use statistical methods to shortlist features, whereas wrapper 
method use cross validation on actual ML model. Due to this reason, filter methods are faster in comparison to wrapper 
methods as they need not train ML model. On the other hand, wrapper methods are computationally intensive. Wrapper 
methods may be prone to model overfitting as these are trained on ML model. Embedded methods balance the advantages 
of filter and wrapper methods and avoid model overfitting by applying the regularization technique.  

Few dimensionality reduction techniques used principal component analysis (PCA) to shortlist important principal 
components [1],[22]. One of the approaches applied a fast Fourier transform along with PCA to reduce 15 principal 
components for driver identification based on his driving behavior [1]. The other approach used PCA to find out 10 
principal components that helped to classify driers’ engagement in secondary tasks [22]. PCA-based techniques reduce 
dimensionality by linear transformation of features. PCA-based techniques are not suitable for feature compression in the 
case of non-linear data. Autoencoder is an effective dimensionality reduction technique for non-linear data that helps to 
retain only the most salient features due to its inherent architecture [46]. 

4.0 COMPUTATIONAL MODELS FOR SAFE DRIVING 
Driving risk assessment is the first step towards crash avoidance and safe driving. Aspects affecting safe driving 

include driver’s state detection related to fatigue, sleep, distraction, and identification of harsh and frequent negative 
driving behavior. Adapting driving according to the environmental context and improving the driver’s personal driving 
style can go a long way in the direction of safe driving. In the existing literature, data from connected cars have been 
utilized to propose ML-based computational models as detailed in Table 5. 

Table 5. Computational models for safe driving 
Reference  Purpose of study Computational model 

for analytics 
Evaluation metrics 

Shallow Machine Learning based approaches 
Darji et al., 2018 
[6] 

To find about driver’s hazardous state using driving 
style, physiological state, and vehicle movement 
statistics 

Logistic regression, 
SVM, ensemble 
boosted DT 

Accuracy rate 
alert vs drowsy - 98.8%,  
cell phone use - 82.3%,  
dense vs light traffic -91.4%,  
snowy vs clear - 71.5% 

Osman et al., 
2019 [22] 

Detect secondary task involvement, and find the type 
of secondary task (calling, texting, talking, driving) 

Hierarchical 
classification 
DT – Level 1 
RF – Level 2 

Accuracy rate 

Bian et al., 2018 
[9] 

To develop vehicle insurance, pricing model using 
driving behavior 

SVM, NN, bagging Accuracy rate, Kappa score, 
MAE, RMSE 
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Gwakl et al., 
2018 [7] 

Detection of driver’s drowsiness Logistic regression, 
SVM, KNN, RF. 

Accuracy rate, p recision 
rate, and recall rate 

Barua et al., 
2018 [26] 

To detect the state of driver sleepiness based 
on contextual and physiological information 

KNN, SVM, RF, 
and case-based 
reasoning 

Accuracy rate, precision rate, 
recall rate 

Kumada et al., 
2018 [27] 

To detect mind wandering for driver SVM, KNN, decision 
tree, ensemble 
learning, Naïve Bayes 

Accuracy rate, precision 
rate, recall rate, Kappa, 
Friedman 

Deep learning based approaches 
Abdennour et 
al., 2021 [1] 

Detect driving signature via pattern identification Neural network Accuracy rate, precision rate, 
recall rate, F1 score, Kappa 
score, AUC score 

Jacobé et al., 
2018 [23] 

Prediction and detection of driver drowsiness on 
simulated road types and traffic flows 

Adaptive artificial 
neural networks 
(Ad-ANN) 

RMSE 

Ferreira et al., 
2017 [8] 

Derivation of driving behavior attributes and 
driver profiling 

BN, ANN – Multi-
Layer Perceptron, 
RF, SVM 

Area Under Curve (AUC) 

Yu et al., 2017 
[28] 

Derive six types of fine-grained driving behavior 
using acceleration/orientation patterns 

SVM, NN. Accuracy rate, precision rate, 
recall rate, false positive rate 

Liu et al., 2020 
[30] 

Predict driving behavior by learning human causal 
reasons 

3DResnet-TRB Average precision 

Hu et al., 2017 
[33] 

Detect three typical abnormal driving 
conditions, fatigue/drunk, recklessness, and use 
of phone while driving 

Cerebellar Model 
Articulation 
Controller (CMAC) – 
NN 

Coefficient of variation 
(CV) 

Miscellaneous approaches 
Payyanadan et 
al., 2019 [17] 

Study the effect of age, cognitive abilities, and 
route familiarity for driving behavior profiling 

Bayes conditional 
probability, 
generalized linear 
mixed-effects 
regression model 

Standard error, t- value, 
confidence interval 

Pekkanen et al., 
2018 [4] 

To design a car-following model taking driver’s 
attention span, event’s uncertainty, perception 
response, acceleration control as inputs 

Cognitive modelling 
and state transition 
model 

Spearman correlation – p-
value 

Yin et al., 
2018 [15] 

Detection of dangerous driving behavior using 
driver, vehicle, and lane attributes 

Fuzzy PSO model MAE, MSE 

4.1 Shallow Machine Learning-based Approaches 

ML-based approaches applied for modelling safety-related aspects have been discussed in this section. Few 
approaches applied machine learning classification algorithms to detect driver’s distraction due to secondary tasks 
[22],[27]. Osman et al. proposed a bi-level hierarchical classification methodology based on Decision Tree (DT) and 
Random Forest (RF) [22]. Decision trees were recommended for detection of distraction at the first level, whereas random 
forest was found to be optimal for identifying secondary tasks. In [27], the author compared various supervised ML 
algorithms such as support vector machines, k-nearest neighbour classifier, ensemble learning, Naïve Bayes, decision tree 
and recommended building a participant-specific mind wandering detection model. 

Multiple approaches detected driver’s sleepy state or drowsiness by analyzing driving behavior [15],[26]. To detect 
reasons for unsafe driving, Darzi et al. studied parameters related to driver’s style, physiological characteristics, weather 
conditions and vehicle movement statistics on the simulator, WYOSIM [6]. The reason for dangerous driving was either 
due to intrinsic factors(sleep deprivation) or extrinsic factors(adverse weather conditions). As per author, weather 
conditions such as snowy, foggy can affect visibility and road friction differently hence affecting driving safety. The DT 
came out to be most accurate while identifying alert vs drowsy state, whereas Logistic Regression helped in classification 
such as phone usage and driving on a congested route. SVM could accurately identify weather conditions such as snowy 
vs clear. Authors in [15] compared logistic regression, SVM, k-nearest neighbour (KNN), and RF to detect driver’s 
drowsiness and RF achieved the maximum accuracy based on vehicle data, driving data, road type, weather information 
and traffic flow. In [26], Support Vector Machine(SVM) was recommended for binary classification (with 93% accuracy) 
as follows. 

i. Driver profiling for safe driving - Machine learning models based on SVM, Bayesian approaches, and neural 
networks for driver profiling using smartphone sensors have been discussed by Bian et al. [9]. Knoefel et al. 
suggested a naturalistic driving framework that focused on the fact that age-related cognitive disorder affects 
driving ability and choices made by the driver [10]. The study also included how drivers adapted their behavior 
as per weather or seasons and road conditions(wet, ice, snow). 

ii. Change in driver behavior due to adverse weather conditions – Das et al. applied a logistic regression model to 
study the effect of adverse weather conditions on drivers’ lane changing behavior under naturalistic conditions 
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[47]. Drivers demonstrated poorer lane-keeping abilities under low visibility conditions of adverse weather, 
making standard deviation of lane position (SDLP) 1.37 times as in normal scenarios.  

4.2 Deep Learning-Based Approaches 

Abdennour et al. proposed a deep learning Residual Convolutional network (DL-RCN) for driver identification and 
profiling [1]. Liu et al. suggested the Temporal Reasoning Block model(TRB) based on Convolutional Neural 
Networks(CNN) that could predict accurate driving behavior by learning human causal reasons [30]. A neural network-
based model to detect three types of abnormal driving behavior, namely reckless driving, use of phone while driving, and 
fatigue/drunk driving has been proposed in an approach by Hu et al. [33]. This model uses real-world test data and analyses 
it using a numerical model and considers three driving style classifications under city and highways roads; it does not 
consider traffic congestion and travel time. It considered ‘stopping’ a critical unsafe driving behavior considering various 
causes such as traffic lights, pedestrians, and congestion. TRB with 3DResNet demonstrated the highest accuracy of 
86.3% as per numerical and visual evaluations. Ferreira et al. applied driver profiling and derived a driving safety score 
by applying machine learning to driver behavior attributes [8].  

Few deep learning approaches helped in the identification of abnormal driving behavior [12],[28]. Jacob et al. 
proposed an adaptive artificial neural networks (Ad-ANN) approach to detect drivers’ drowsiness under various road 
types and traffic flow simulations [23]. RMSE was used to evaluate the Ad-ANN Model for accurate measurement. 
Bagging-based learning approach was more accurate than other approaches such as Naïve Bayes, SVM and NN for fine-
grained driving pattern identification such as fast U-turns, weaving, sideslipping, turning with a wide radius, swerving, 
and sudden braking [28]. Though this approach warns users of fine-grained negative driving behavior, it does not predict 
driving crashes depending on negative driving behavior. 

4.3 Miscellaneous Approaches 

Traditional car insurance schemes assess risks only based on the type of car, mileage and usage and completely ignore 
how the driver is driving the car [9]. It was suggested to use Pay As You Drive (PAYD) over usage-based insurance 
(UBI). Behavior-centric insurance pricing based on driver behavior profiling has been proposed using attributes such as 
total mileage, driving duration in hours per month for night or weekday driving, average speed, overspeed, acceleration, 
deceleration, and sharp turn. But while assessing the driving data approach, however did not consider contextual 
information such as weather, road, and traffic conditions. 

In Payyanadan et al., the driving behavior of old drivers affecting their choice of route depending on route familiarity 
and traffic congestion [17]. As per this study, familiarity with routes leads to decreased driver’s attention span. Due to 
this, the driver tends to over-speed, resulting in vehicle crashes, especially in adverse conditions such as congestion and 
at intersections. For collecting training data, drivers maintained a manual trip diary to record their observations regarding 
various trips taken by drivers. Diary-based data collection can be error-prone, especially for older drivers with cognitive 
issues. Moreover, the author considered driving risk based only on route characteristics such as distance and manoeuvres 
such as left and right turns. Studying the effect of route familiarity on risky driving events is limited to older drivers using 
simulated driving to provide navigational assistance to them. 

In Yin et al. a fuzzy particle swarm optimization model was suggested that took vehicle and road type as inputs to 
estimate the intensity of dangerous driving [15]. Using SenseFleet approach, the driving score is calculated based on harsh 
acceleration/deceleration, over-speeding, and steering action within the context of current weather and time of day using 
smartphone-based sensors [22]. This paper does not consider road conditions and traffic congestion in the driving context. 
Moreover, route familiarity and driving habits include taking long trips/short speeds, vehicle speed, taking familiar routes 
or avoiding highway routes and linking it with driving behavior. Pekkanen et al. suggested a state-transition model for 
the car-following scenario and computed a safe distance according to the difference in acceleration of leading and 
following vehicles [4]. It is challenging to estimate the acceleration of leading and following vehicles in real-time under 
naturalistic driving conditions. The deceleration-based surrogate safety measure (DSSM) estimated the leading vehicle’s 
speed and maintained a safe distance from the leading vehicle [44]. A threshold for safe distance is decided based on the 
leading vehicle speed, the driving pattern for acceleration, and vehicle’s mechanical capability. It used the Next 
Generation Simulation (NGSIM) trajectory data. Chen et al. studied the effects of different weather conditions on traffic 
flow for a car-following model [18]. The study generated driving behavior data under different weather conditions using 
a driving simulator and fed this to traffic simulator. Observations indicated that different weather conditions have a 
significant impact on driving behavior and road capacity. Here are the key findings: 

i. Heavy rain and fog; under heavy rain and fog, the average speed of vehicles decreased by approximately 7.6% to 
27.5%, and there is an observed reduction in road capacity of around 11.1% to 20.5%. Reduced visibility and the 
need for cautious driving contribute to slower speeds during these weather conditions. 

ii. Snowy weather; in snowy weather, the average speed reduction is even more significant, ranging from 19.2% to 
45.6%. The road capacity reduction is also higher (43.7~71.1%) under snowy weather. This is attributed to both 
reduced visibility and the necessity of driving at slower speeds due to slippery road conditions. Drivers need to 
maintain larger headways to avoid collisions, resulting in lower traffic density. 
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These observations highlighted the impact of adverse weather conditions on driving patterns, including decreased 
average speeds, lower traffic density, and reduced road capacity. Drivers tend to adjust their behavior to ensure safety 
under challenging weather conditions, leading to slower and more cautious driving. It is crucial for drivers to be aware of 
these effects and adjust their driving accordingly to maintain safety on the road. 

4.4 Safe Driving Approaches – Observations and Discussion 

Few approaches focused only on driver profiling instead of driving risk analysis [1],[8],[17],[28],[30],[33]. DL 
approaches based on Residual Convolutional network (RCN) outperformed ML approaches such as SVM, and DT on 
accuracy evaluation in the same problem domain. RF, SVM, and DT have been popular approaches for driver’s 
physiological state detection for stress and fatigue. On the other hand, DL methods such as Ad-ANN and ensemble 
techniques such as bagging, Naïve Bayes, boosted DT are also becoming prevalent nowadays for abnormal driving 
behavior and pattern identification. 

Figure 5 shows comparative accuracy evaluation for various approaches based on ML and deep learning as claimed 
by the authors in their work. DL approaches based on RCN, CNN and LSTM achieved accuracy of more than 99%. 
Ensemble learning boosted DT algorithm also performed close to 99% accuracy, whereas NN achieved 96%. SVM 
achieved 93%-95% accuracy, whereas RF achieved an accuracy of 91% to 92%. Deep learning-based approaches in 
general outperform ML approaches as they can learn useful representations of input data and automatically extract 
features. ML approaches need to be retrained every time features are changed. 

 
Figure 5. Accuracy evaluation for classification approaches 

Some proposed methods that monitor drivers’ physiological conditions via body sensors during driving are obtrusive 
in nature, and people may not refrain from doing so [7],[18],[23-25]. Driver profiling approaches are too coarse-grained 
and broadly classify drivers into three categories [8-10],[30]. Coarse-grained classification does not help in monitoring 
real-time driving risk. Some works are constrained and monitor driving risk for only car-following scenarios and help to 
assist drivers only in speed correction [4],[44]. Approaches in [9],[15],[42-44] help to assess dangerous driving behavior, 
but these approaches consider just one or two environmental conditions. There are others that are limited to driving pattern 
identification but do not correlate driving patterns to driving risk [28],[33]. Most of these approaches do broad-level 
driving risk classification but do not take any lead for crash prediction. A comprehensive approach that considers driving 
behavior, the driver’s personality style, and all environmental conditions to assess driving risk at appropriate granularity 
are lacking. 

5.0 COMPUTATIONAL MODELS FOR FUEL-ECONOMICAL DRIVING 
Eco-driving is a set of driving practices that reduce fuel consumption, such as maintaining steady-state speed and 

avoiding harsh acceleration or deceleration. Eco-driving helps in resource conservation of limited fuel resources and 
reduces the resulting vehicular emission of carbon and air pollutants. In this section, different shallow machine learning 
and deep learning approaches were explored and addressed for fuel consumption prediction or driver profiling based on 
their driving practices and fuel consumption. 

Table 6. Computational models for eco-driving 

Reference Purpose of study Computational model 
for analytics Evaluation metrics 

Shallow Machine Learning based approaches 
Marzet, 2021 
[11] 

To study the reduction of fuel consumption post-
eco-driving training 

VSP  model, K-Means 
Clustering 

t-statistics 
comparison for pre 
and post-training 

Abukhalil, 2020 
[12] 

To predict fuel consumption using Engine RPM and 
Throttle position as predictor variables 

SVM, Polynomial 
Regression Model 

RMSE, R-squared 

Filippos, 2021 
[31] 

To study the effect of driving behavior profiles on 
fuel-pollutant reduction 

K Means Clustering t-value 
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Mubarak, 2020 
[35] 

To predict engine power and fuel consumption by 
analyzing driving behavior 

Classification Model Precision rate 

Rios-Torres, 
2019 [36] 

To predict fuel economy using driving behavior 
using regression 

Linear regression model R Square, TI, VIF, 
RMSE, MAPE 

Branislav, 
2019 [34] 

To predict fuel consumption using Engine RPM and 
Throttle position as predictor variables 

3D regression model. R-square value, error 
rate 

Gadde, 2019 [37]  To frame the fuel prediction model using Driving 
behavior data 

Machine learning-based 
OLS Linear model. 

The root-mean-square 
error (RMSE) 

Hoffman, 
2019 [38] 

To define regression model to predict fuel economy 
using driving behavior 

Non-linear regression Average relative 
ranking change 

Hsu, 2017 [40] To model ODI index to measure and improve fuel 
efficiency for a trip 

Model tree based on 
M5’ algorithm 

MAPE, relative 
error, MAE 

Deep learning based approaches 
Ping, 2019 [2] Apply long-term historical data to learn short-term 

data for the prediction of fuel consumption 
Long Short-Term 
Memory (LSTM) based 
model 

Accuracy rate, area 
under curve 

Guo, 2021 [24] To optimize fuel consumption for Plug-In Hybrid 
vehicle 

C/GMRES for fuel and 
battery optimization 

Cost reduction 
percentage 

Ozkan, 2021 
[25] 

To minimize fuel consumption using the speed profile 
of the preceding vehicle. 

Gated recurrent unit 
non-linear model 
predictive control 
(GRU-NMPC) 

Percentage efficiency 
gain, RMSE 

Feedback based approaches 
Payyanadan et 
al., 2019 [17] 

Study the effect of age, cognitive abilities, route 
familiarity for driving behavior profiling 

Bayes conditional 
probability, Generalized 
linear mixed-effects 
regression model 

Standard error, t- 
value, confidence 
interval 

Pekkanen et al., 
2018 [4] 

To design a car-following model taking driver’s 
attention span, event uncertainty, perception response, 
and acceleration control as inputs 

Cognitive modelling 
and state transition 
model 

Spearman correlation 
– p-value 

Yin et al., 2018 
[15] 

Detection of dangerous driving behavior using 
driver, vehicle, and lane attributes 

Fuzzy PSO model MAE, MSE 

5.1 Shallow machine learning-based approaches 

Driver profiling for eco-driving - Many approaches established a correlation between fuel consumption and driving 
behavior for driver profiling[11],[31],[35]. Boggio-Marzet applied k-means clustering on driving data and analyzed the 
impact of traffic congestion, road type, and driving behavior on fuel consumption [11]. Adamidis et al. applied k-means 
clustering to categorize driving profiles into three different categories from an eco-driving point of view [31]. Mubarak 
and Al-Samari estimated power requirements of vehicle based on the vehicle’s longitudinal movement and derived fuel 
consumption on an advanced vehicle simulator [35]. The speed profile for the luxury vehicle “Chrysler 300” had a smooth 
acceleration profile leading to a reduction of 12.8% in fuel consumption, unlike speed profile for Dodge Charger model 
that had a great acceleration and speed variance. 

Rios-Torres et al. predicted the fuel consumption as per their driving style, vehicle dynamics, and powertrain and 
suggested fuel reduction techniques using linear regression [36]. The study examined three distinct driving styles, normal, 
calm, and volatile, in both urban and highway driving scenarios. The aim was to compare the fuel consumption of 
conventional vehicles with that of Hybrid Electric Vehicles (HEVs). The findings revealed that employing effective power 
distribution optimization strategies can lead to significant improvements in fuel consumption. In urban driving conditions, 
fuel consumption could be enhanced by up to 12%, while in highway driving, a 4% improvement was observed. These 
results highlight the potential benefits of optimizing power distribution strategies to achieve better fuel efficiency in both 
urban and highway driving settings. Gadde et al. developed the OLS Linear model to predict fuel economy using engine 
RPM and average speed; principal components were selected if their variance was within 95% [37]. As a result, engine 
RPM and average speed were identified as major principal components. The limitation of this study is that the effect of 
environmental conditions is not identified. Hoffman et al. evaluated the impact of route, payload, and driver behavior on 
fuel economy [38]. It suggested compensating effects of route inclination and payload on fuel consumption. The variation 
in fuel economy significantly decreased after compensating effects of route inclination and payload. Sarkan et al. 
developed a 3D regression model for fuel-consumption prediction using throttle position and engine speed and 
demonstrated stronger dependence of engine speed and throttle position on engine RPM [34]. The engine idle time was 
removed before applying the 3D regression model, and the model could achieve better accuracy as compared to linear 
regression model by manually revising the model by excel based tools. Manual formulation of model on specific dataset 
may not lead to generalized effective model development for other datasets. 

Abukhalil et al. studied the correlation of fuel consumption with engine speed and throttle position using SVM and 
found it to be more effective as compared to regression-based methods or neural networks-based methods [12]. The 
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approach referred to by Yao et al. compared fuel consumption prediction models such as support vector regression (SVR), 
backpropagation (BP) neural network, and random forest [21]. They recommended the Random forest (RF) model for 
fuel consumption prediction as it demonstrated the highest accuracy among all other approaches. Hsu et al. proposed a 
weka-based M5’ model tree to measure the Overall Driving Effectiveness (ODE) index as the measure of efficiency for 
eco-driving [40]. Model tree exhibited comparable performance to the artificial neural network, but it required expert 
knowledge to be able to document all possible rules efficiently.  

5.2 Deep Learning-Based Approaches 

Ping et al. suggested a macroscopic model that relates driving behavior with fuel economy and a subscopic model 
related to driving behavior and environment [2]. LSTM approach when compared to SVM and NN gave better AUC (area 
under the curve) results. Guo et al. proposed Continuation/Generalized Minimal Residual Algorithm (C/GMRES) 
combined predicted velocity and state-of-charge (SOC) reference generator for optimal use of battery and fuel for the 
plug-in hybrid vehicle [24]. Expected engine power demand is estimated while minimizing the cost of fuel consumption, 
battery charging and battery degradation in real-time. Ozkan et al. used Gated Recurrent Unit (GRU) network to estimate 
the speed profile of the preceding vehicle and applied non-linear model predictive control (NMPC) [25]. GRU- NMPC 
gave better fuel efficiency gain than the constant distance/time headway approach. The LSTM approach by Ping et al. [2] 
did help to figure out instantaneous fuel consumption but the approach was not extended to provide feedback for reporting 
real-time driving behavior resulting in excessive fuel consumption. 

5.3 Miscellaneous Approaches 

Bätz et al. framed a Comprehensive Factor Model (CFM) to study the effect of providing eco-feedback on driving and 
indicated that eco-feedback helped reduce hard acceleration [14]. Hsu et al. used ODI as a measure of eco-driving and it 
provided quantitative feedback to drivers for reviewing their long-term driving behavior. Similarly, another approach 
used a driving style indicator as a measure of driving aggressiveness and indicated a strong correlation with fuel economy 
[40]. The above methods provided feedback for long-term driving aspects and lack providing real-time feedback. 

5.4 Fuel-Economical Driving Approaches – Observations and Discussion 

The k-means clustering is a preferred approach for driver profiling along with some custom advanced vehicle 
simulator based model [35]. Although k-means clustering is simple to implement and scales easily according to dataset 
size, outliers and varying density data cannot be effectively clustered. As the number of dimensions increases, k-means 
becomes less effective in categorising underlying data. It must be combined with other dimensionality reduction 
techniques, such as PCA. Profiling-based methods are coarse-grained and not very useful for providing real-time 
feedback. 

Most fuel prediction approaches are based on linear regression, and polynomial regression [12],[32],[34]. The 
drawback of these approaches is that they assumed a linear relationship between predictor and response variable fuel 
consumption. Custom approaches [39-41] based on CFM, DSI, Model Tree, and fuzzy rule model also correlated driving 
behavior with fuel economy, but these require expert knowledge base for building an effective model. Few other 
approaches are specific to vehicle-specific powertrain models based on the vehicle’s longitudinal or lateral movement 
and involve a lot of computational effort [30],[35]. Other approaches, such as SVR, and RF are better than linear 
regression approaches due to their non-linear transformation. The disadvantage of the above shallow machine learning 
approaches is that they support either linear or require labelled data, but ML algorithms are computationally intensive for 
temporal data processing. 

Deep learning approaches GRU-NMPC, C/GMRES and LSTM are suitable for processing historical time series data 
to learn and predict fuel economy due to underlying structure and learning mechanism [24-25]. Though these approaches 
are better than regression-based approaches for univariate time series data processing, they are not effective for correlating 
multi-variate temporal input sequence with fuel economy. 

6.0 MOTIVATING DRIVERS FOR ECO-SAFE DRIVING 
Safe driving is of utmost important, and it includes driving practices that do not include the application of harsh or 

frequent negative driving behavior and maintaining proper lead distance with other vehicles. On the other hand, eco-
driving practices include driving styles such as maintaining steady speed, avoiding harsh brakes, and avoiding overspeed. 
An efficient driver must take care of both aspects of safety and fuel economy. Computational approaches discussed in 
Sections 2.4 and 2.5 either discuss safe or fuel-economical computational approaches. The approaches considering both 
critical driving aspects together need to be enhanced. Challenges in maintaining eco-safe driving include drivers’ 
unawareness about good driving practices, reactive or excessive feedback mechanisms, and inadequate trade-off of 
driving behavior to balance safety and fuel economy. 

Drivers can be engaged towards eco-safe driving via various ways such as training, and real-time driving visual/audio 
feedback [10],[15],[42]. Knoefel et al. offered older adults feedback mechanisms to help them improve their driving 
abilities and decisions [10]. Yin et al. issued warnings and feedback to a driver regarding driving safety [15]. Feedback 
based approaches are reactive approaches post-observation of any negative driving behavior. Table 7 summarizes 
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proactive eco-safe driving approaches for driving engagement. Bian et al. classified drivers into a driving category based 
on their driving and framed insurance pricing premium based on driving category [9]. State-transition-based models or 
fuzzy Particle Swarm Optimisation(PSO) models do attempt to model the driver’s perception, response, and psychological 
aspects, but these approaches are more intuitive and are not based on facts[4],[28]. The car-following model suggested 
by Pekkanen et al. adjusts its speed according to a safe distance from leading vehicles [4]. It is tough to judge the driving 
actions of the leading vehicle and estimate the leading vehicle’s speed. Driving does involve interaction with fellow 
drivers that need to be taken care of along with self-driving aspects. Information about fellow drivers is not available in 
real scenarios, drivers estimate the aggressiveness and actions of fellow drivers before planning responses. 

Game theory helps to control the driver’s response proactively by evaluating the benefits of choosing any outcome as 
a strategic response against the actions of fellow drivers. Few game theory based approaches helped drivers proactively 
in lane changing, interaction with cyclists, and trajectory routing[19-20]. Michieli et al. proposed a Bayesian gaming 
model and provided controlled feedback to assist the driver during their interaction with cyclists [19]. Meanwhile, Li et 
al. defined a 2-level controller for predicting the optimal trajectory and required driving manoeuvring under different 
traffic conditions [20]. Gaming approaches for driver-to-driver interaction where information about other driver’s 
aggressiveness and actions is not known; need to be further enhanced. 

Table 7. Comparative study of proactive eco-safe approaches 

Reference  Purpose of study Computational model for 
analytics Evaluation metrics 

Bian et al., 
2018 [9] 

To develop Vehicle Insurance Pricing model 
using driving behavior 

SVM, NN, bagging Accuracy rate, 
kappa score, 
MAE, RMSE 

Yin et al., 
2018 [15] 

To detect dangerous behavior based on 
driver, vehicle, and lane attributes. 

A fuzzy PSO model Dangerous 
driving intensity 
(DDI) 

Pekkanen et 
al., 2018 [4] 

To design a car-following model taking 
driver’s attention span, event uncertainty, 
perception response, a n d  acceleration 
control as inputs 

Cognitive modelling and 
state transition model 

Spearman 
correlation – p-
value 

Michieli et 
al., 2018 [19] 

To model for interaction between a cyclist 
and a vehicle 

Simultaneous Bayesian 
game with the concept of 
Nash Equilibria (NE) 

number of 
accidents Payoff 

Drivers can be engaged towards eco-safe driving via various ways such as training, real-time driving visual/audio 
feedback, and haptic acceleration paddle. Bellotti et al. suggested different pervasive games for drivers and passengers 
[16]. Michieli et al. proposed Nash Equilibria(NE) based Bayesian gaming approach to assist the driver and develop an 
autonomous model by providing controlled feedback inside vehicles [19]. Li et al. defined a 2-level controller for 
predicting the path and required driver’s action corresponding to various traffic conditions [20]. Knoefel et al. offered 
older adults feedback mechanisms to help them improve their driving abilities and decisions [10]. Yin et al. ensured 
driving safety by issuing warnings and feedback to the driver[15]. Lin et al. proposed a Social Vehicle Route Selection 
(SVRS) algorithm based on the gaming strategy of Nash equilibrium that helped in reducing traffic congestion [29]. 
Magaña and Organero framed a gamification tool to generate a relative score and leader- board ranking [41]. As per 
Jamson et al., haptic force or stiffness feedback performed better than visual feedback under high traffic congestion [3]. 
Ji et al. developed a game-based control framework to assist driver steering control via feedback [45]. It had been observed 
that training or immediate feedback sometimes might not result in long-term driving behavior re-enforcement. 
Motivational incentive-based schemes or gaming-based approaches help continuously engage drivers and motivate them 
towards positive driving behavior retention. 

7.0 DISCUSSION AND RESEARCH GAPS 
Data collection is an important step for developing computational models for eco-safe driving. Approaches mentioned 

in the literature fall under one of the below categories:  

i. Smartphone sensors include using built-in GPS, magnetometer, gyroscope, and accelerometer sensors. However, 
smartphone-based data may be erroneous due to frequent orientation changes and may get interrupted due to calls 
or low battery. 

ii. Data collection via cameras for capturing the movement of face, eye, and head. Installation of body sensors to 
capture ECG, EEG, and EOG under different driving conditions. 

iii. More recently, data is being captured from onboard diagnostics(OBD) devices that many cars come re-fitted with, 
and others can be retrofitted for the same. OBD is plugged into OBD-II port of the car to capture data from built-
in GPS, GPRS, accelerometer sensors, fuel sensors etc. Data collection via OBD is more reliable and allows data 
to be captured seamlessly. 
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Table 8 elaborates on different percentages of data attributes being consumed in eco-driving and safe-driving 
approaches. Driving behavior is the most used data attribute being used in both approaches. An environmental contextual 
attribute is the second most used feature especially for safe driving approaches, followed by vehicle attributes and trip 
attributes. Some of driving approaches also use driver’s attributes and physiological attributes. Though many of these 
features have been utilized in existing approaches, these approaches fail to study the combined effects of these attributes.  

Table 9 elaborates on driving safety approaches based on ML techniques. Driver risk has been identified as events 
related to driver’s distraction, drowsiness or risky driving pattern. SVM, DT, and RF have been popular ML techniques 
in this domain. Table 10 describes DL techniques pertaining to driving safety approaches. Driver risk has been identified 
as events related to a driver’s drowsiness or risky driving pattern. NN, ANN, and CNN have been popular DL techniques 
in this domain. Even though driving safety approaches elaborated in Table 9 and Table 10 discuss the identification of 
driving risk, however, approaches relating driving risk to crash prediction are lacking. Furthermore, driver profiling 
approaches are coarse-grained and do not lead to any real-time alerts. 

Table 8. Comparative study of data attributes considered in the models 
 Reference Considered attributes for safe-

driving 
Considered attributes 
for eco-driving  Safe driving Eco-driving 

Vehicle 
attributes 

[1],[6],[22] [2],[11-12], 
[14],[21],[24], 

[30-32],[34-41] 

Fuel consumed-5% 
Engine speed-16% 

Fuel consumed-100% 
Engine speed-61% 

Driver 
attributes 

[6],[10],[17] [32] Age/gender-16% Age/gender-5% 

Trip 
attributes 

[1],[9-10],[17] [11],[32],[34-35] Trip length-16% 
Number of trips-16 % 

Trip length-16% 
Number of trips-11% 

Environment 
context 

[4],[7-10],[17], [19-
20],[26],[43-44] 

[11],[21],[31-
32],[34-35] 

Time of travel-37% 
Road type-42% 
Traffic flow-21% 

Time of travel-11% 
Road type-22% 
Traffic flow-28% 

Physiological 
attributes 

[4],[6-7],[19-20], 
[26],[33],[43] 

[32] Eye blink/facial expression-
16% 
ECG/EEG/EOG-42% 

ECG/EEG/EOG-5.5% 

Table 9. Comparative study of ML approaches - safe driving 
References  Purpose of study Computational 

model for analytics 
Evaluation metrics 

Gwakl et al. 2018 [7], 
Barua et al., 2018 [26] 

Driver’s drowsiness detection KNN, SVM, RF, LR Accuracy, precision 
rate, recall rate 

Darji [6], 2018, 
Bian[9], 2018 

Driver’s risky driving detection SVM, LR, DT 
  

Accuracy, MAE, 
RMSE 

Osman et al., 2019 [22] Driver’s distraction identification DT, RF Accuracy 

Table 10. Comparative study of DL approaches - safe driving 
References  Purpose of study Computational model 

for analytics 
Evaluation metrics 

Abdennour et al., 2021 [1], 
Ferreira et al., 2017 [8], 
Yu, 2017 [28]   

Driving pattern identification and 
driver profiling 

NN, RF, SVM Accuracy, precision, 
recall rate, FPR, 
AUC 

de Naurois et al., 2018 [23] Driver’s drowsiness detection ANN RMSE 
Liu et al., 2020 [30] Risky driving behavior detection CNN Average precision  

Table 11 elaborates ML-based driving fuel economic approaches to make fuel predictions or study the effect of 
training on fuel consumption optimization. SVM, K-Means clustering, and RF have been popular ML techniques in this 
domain. Table 12 describes DL techniques pertaining to driving fuel economic approaches. Fuel-economical driving 
approaches either optimize fuel economy by adjusting speed or predict instantaneous fuel economy. GRU and LSTM 
represent popular DL techniques for fuel-efficient driving. Many fuel consumption prediction approaches elaborated in 
Table 10 are coarse-grained and consider average values of velocity or acceleration parameters. Approaches specified in 
Table 11 do not use multi-variate data for fuel consumption prediction.  

Table 11. Comparative study of ML approaches - fuel economical driving 
Reference  Purpose of study Computational model 

for analytics 
Evaluation 
metrics 

Boggio-Marzet et al., 2021 [11] To study effect of training 
on fuel consumption 

K-Means Clustering t-statistics 

Abukhalil et al., 2020 [12],Yao et al., 
2020 [21], Hsu et al., 2017 [40] 

To predict fuel consumption SVM, regression, RF, 
model tree  

RMSE, MAPE, 
R-squared 
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Table 12. Comparative study of DL approaches - fuel economical driving 
References  Purpose of study Computational model for 

analytics 
Evaluation metrics 

Ping et al., 2019 [2] To predict fuel consumption based on 
timeseries data LSTM Accuracy 

Ozkan et al., 2021 [25] To optimize fuel economy based on 
speed of preceding vehicle GRU % efficiency gain, 

RMSE 

Table 13 describes approaches to engage drivers by applying game theory based techniques such as Nash equilibrium 
or Stackelberg algorithms. GLM or fuzzy PSO models have also been used in selective approaches. Many of these 
approaches are not robust to address incomplete information about fellow drivers and don’t provide effective feedback. 
Furthermore, many of these approaches consider only partial aspects either for safety or fuel economy. There is scope for 
developing robust approaches that can cater to safety, fuel economy, comfort etc. and deal with incomplete information 
about fellow drivers.  

Table 13. Comparative sudy of game theory based approaches - fuel economical driving 

Reference Purpose of study Computational model for 
analytics Evaluation metrics 

Michieli et al., 2018 [19] 
Li et al., 2020 [20] 

To model traffic interaction 
 

Nash and Stackelberg  
 

Accuracy, reduced # of 
risk occurrences  

Xuewu et al., 2018 [45] To develop cooperative 
steering systems  

Nash and Stackelberg  Box and whisker plot  

Yin et al., 2018 [15] 
Payyanadan et al., 2018 
[17] 

Study the effect of driver’s 
attributes on driving 
behavior risk analysis and 
profiling 

Generalized linear mixed-
effects regression model & 
Fuzzy PSO model 

Standard error, t-value, 
MAE, MSE 

Limitations of existing approaches can be exploited to enhance research in the connected car domain. 

i. Lack of appropriate data abstraction; the driving behavior of a driver should be assessed in alignment with 
contextual features. It has been observed that many of the approaches either considered partial contextual 
features or lacked considering them. Models for driver profiling considered average or maximum coarse-grained 
values, whereas models considering every second’s data were computationally intensive. A balanced approach 
is an approach where driving and contextual features are considered at an appropriate granularity level that not 
only leads to accurate estimates but is also not computationally intensive. 

ii. Lack of real-time driving risk assessment; existing approaches for driver’s state detection or driving abnormal 
pattern detection can be associated with driving risk and crash prediction. 

iii. Lack of comprehensive approach; a comprehensive approach that considers all aspects of driving utility, such as 
comfort, safety, and fuel economy is lacking. There is a need to develop reliable soft computational methods for 
maintaining eco-safe driving. 

iv. Need for developing instantaneous detection of anomalous conditions; any non-optimal driving behavior should 
be notified to the driver in real-time; however, it must be ensured that feedback must be given only for 
appropriate anomalous conditions. There is a need to develop computational models that can accurately detect 
anomalies. 

v. Effective feedback; methods for reactive feedback help to only rectify driver’s behavior post any event. 
Secondly, repetitive and excessive feedback may be non-obtrusive to the driver. Driver’s actions can be 
controlled by providing proactive and effective feedback.  

vi. Need to deal with incomplete information about a fellow driver; there is a lack of computational models that can 
deal with incomplete information about fellow drivers. Driving safety depends not only on self-behavior but also 
depends on how driver responds to fellow driver’s actions in a driving event. 

8.0 CONCLUSIONS 
Driving behavior is an important factor that impacts fuel economy and driving safety. Eco-safe driving is a driving 

practice to reduce fuel consumption while maintaining driving safety. As part of our analysis, it is recommended to use 
random forest, decision tree, SVM, or neural networks based supervised classification method. Deep learning models like 
LSTM, DeepRCN, and 3Dresnet are suitable for classifying time series based data. Ensemble learning approaches such 
as bagging, and ADABoost are also widely used. Accuracy rate, precision rate, and recall rate are the standard metrics 
used for classification. 

It has been observed from the studied literature that many authors focused only on the driving pattern, style, or driving 
profile detection without correlating the same with driving crash risk. Secondly, driving behavior of a driver is not 
assessed at appropriate granularity according to contextual conditions. Regression-based methods are not sufficient to 
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model non-linear data and are not sufficient to address issues in driving risk analysis and fuel economy prediction alone. 
Existing deep learning approaches do not learn long term temporal dependencies appropriately for multi-variate data 
processing in real-time. Existing approaches are either giving excessive feedback, which disengages drivers or not giving 
timely feedback. There is a need to separate anomalous driving behavior from acceptable deviation so that the driver 
remains engaged in economical and safe driving without being distracted or disengaged. A comprehensive approach that 
provides relevant driving feedback and considers all aspects of driving utility, such as comfort, safety, and fuel economy, 
is lacking. Furthermore, driving safety and fuel economy gets affected not only due to drivers’ own actions but also gets 
affected due to the actions of neighbouring drivers. The information about neighbouring drivers is often missing and 
incomplete; existing approaches do not provide generic mechanisms to deal with missing information. Identified research 
areas and opportunities can be further exploited to optimize power distribution for electric and hybrid vehicles for a 
cleaner and more sustainable transportation solution, contributing to air quality improvement and combating climate 
change while providing potential long-term cost savings and advancements in technology. 

Furthermore, a large amount of driving data along with driver’s characteristics gives data monetization opportunities 
in terms of providing roadside assistance, micro-insurance, or alliances with third parties for various offers based on the 
current location of customers, such as providing value-added services such as food, travel, service coupons. V2V 
communication via the exchange of information between vehicles can help in enhancing overall safety and convenience. 
Cooperative strategies can be employed for joint driving decisions, thereby reducing operational costs and increasing 
traffic efficiency. There can be different cooperation strategies, centralized or decentralized. Cooperative perception helps 
exchange information about road conditions such as potholes, speedbumps, and accident spots, enabling drivers to opt 
for optimal routes. It also helps in smooth traffic management and optimal routing by exchanging congestion information. 
Existing work on driving behavior would be a fundamental base on which further research on the above areas can be 
conducted. 
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