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ABSTRACT - Deep rolling (DR) is an effective mechanical surface treatment method to 
improve the fatigue properties of engineering components. In this method, the surface of the 
component was rolled using a roller with a predetermined force to obtain reduced roughness, 
hardness increases and compressive residual stresses in the surface region. These 
alterations allow for increasing the fatigue lives of the components in industrial applications. 
In the current study, DR was applied in tangential and longitudinal directions on specimens 
that were manufactured using EN-AW 6082-T6 aluminum. The resulting roughness, hardness 
and residual stresses were determined experimentally. Fatigue tests were carried out to 
determine the improvements in fatigue properties after DR. It was found that DR-induced 
compressive residual stresses depend on DR direction considerably. Due to this reason, 
fatigue strength improvements were found to be different for different DR direction 
applications. Longitudinal rolling resulted in a 23% fatigue strength increase compared to a 
7% increase for tangential rolling. For both DR direction applications, fatigue cracks were 
shown to initiate at the sub-surface region, whereas the as-turned specimens exhibited 
surface crack initiation. 
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1.0 INTRODUCTION 

Emission demands and regulations for the automotive industry have been tightening in recent decades [1]. Therefore, 
the usage of aluminum alloys in this industry has been increasing. Thanks to their low weight and comparatively high 
strength, they were able to replace steel for various dynamically loaded components in land vehicles, such as wheel 
suspension arms [2]. Kukielka et al. [3] stated that fatigue is the most prominent cause of mechanical failures in modern 
machinery. Since the heat-treatable 6xxx series aluminum alloys are typically used to manufacture dynamically loaded 
components [2], improving the fatigue strength of these alloys is of significant importance for automotive manufacturers.  

Fatigue cracks usually form at the surface of components due to surface irregularities and defects. Purnowidodo et al. 
[4] showed that higher roughness values for pure aluminum fibre-metal laminates might decrease fatigue life. Therefore, 
reducing surface roughness is known to be an effective method to improve fatigue life, as stated in Kirkhope et al. [5]. 
Surface work-hardening is also another effective method to enhance high-cycle fatigue (HCF) life. Since plastic 
deformation is necessary for the crack initiation phase, the work-hardened layer shifts plastic deformation start to higher 
stress levels and hinders crack initiation [6]. Apart from the two mentioned strategies, compressive residual stresses were 
shown to delay crack initiation and micro-crack propagation, which results in significant improvement in high-cycle 
fatigue life, as shown in the work of Ludian and Wagner [7]. 

Deep rolling (DR) is an effective mechanical surface treatment method that improves high-cycle fatigue life as it 
allows work-hardening and induces compressive residual stresses in the surface region. At the same time, additional 
improvement in surface roughness is observed when suitable process parameters are used [8]. In this method, a roller or 
ball is used to deform the component surface with a predetermined force. DR is usually applied in high-end components 
such as jet engine turbine blades [9] because of relatively high process times compared to alternative methods such as 
shot peening. However, shot peening generally reduces fatigue strength while increasing surface roughness [10]. 

DR has been used on various materials, including cast irons, steels, aluminum alloys and titanium alloys [11]. In 
addition to these materials, Kumara et al. [12] applied DR on IS 319-2007 brass and reported up to 75% reduction in 
roughness. In recent literature, DR applications on aluminum alloys have increased. Abdulstaar et al. [13] applied DR on 
6082 aluminum alloy. They reported a hardness increase of up to 21% and a 140% fatigue strength improvement after 
DR. Beghini et al. [14] showed that surface roughness decreased significantly after DR. The post-DR roughness was 
found to be dependent on pre-DR roughness values for 7075 aluminum alloy. They also reported compressive residual 
stresses reaching 1 mm depth after DR. In the work of Bataineh et al. [15], 6061-T6 aluminum alloy’s hardness and 
roughness responses to different parameters were investigated after DR employing ANOVA. Similarly, Barahate et al. 
[16] have performed experiments to investigate the effects of rolling speed, feed rate, and rolling force on hardness and 
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roughness values. Celik et al. [17] investigated the influence of DR force on fatigue strength for the 7075-T6 aluminum 
alloy. They showed that 80 N and 121 N deep rolling forces resulted in significant fatigue strength increase, whereas 242 
N rolling force resulted in lower fatigue life than 80 N and 121 N force cases. The deep rolling tool in their study was 
Yamato SKUV 20-2, 5R80, and the rotating-bending fatigue specimens had a 4 mm gage diameter.  

Deep rolling-induced residual stresses were shown to be different in different directions in the study of Coules et al. 
[18]. Similarly, Beghini et al. [14] showed that induced residual stresses on a 7075 aluminum flat surface depend on the 
DR direction when a roller-type DR tool is used. Therefore, investigating the effects of DR direction on specimens’ 
fatigue properties is of technological importance. Conventionally, DR direction is chosen as the turning direction, and 
feed is given in the direction parallel to the longitudinal axis of axisymmetric parts [8]. However, the authors believe that 
a configuration in which the rolling is in the longitudinal axis direction and the feed is in the turning direction can improve 
the fatigue properties even further. This configuration exploits the fact that residual stresses are dependent on the DR 
application direction. El-Tayeb et al. [19] used this configuration to investigate the tribological properties of 6061 
aluminum alloy. However, no attempt was presented in their work to investigate residual stresses and fatigue properties. 
In the current study, the fatigue properties of EN-AW 6082-T6 aluminum alloy, which is extensively used in the 
automotive industry, were investigated using different DR directions. 

2.0 MATERIAL AND EXPERIMENTAL METHODS 

2.1 Materials 

The 6082 aluminum alloy rods with 15 mm diameter and 120 mm length were used to manufacture specimens in this 
study. The chemical composition of the alloy is shown in Table 1. The Mg and Si elements in the composition enable 
precipitation hardening after a procedure known as artificial aging [20]. Therefore, solution heat treatment was applied at 
550°C for 90 minutes, followed by an immediate quench. Specimens were transferred to another furnace held at 180°C 
within 1 minute after quenching and artificially aged for 480 minutes, obtaining T6 temper. 

Table 1. Chemical Composition of 6082 Alloy [wt%] 

Mg Si Mn Fe Zn Cu Ti Al 
1.00 0.93 0.53 0.30 0.083 0.015 0.012 Remainder 

 

 
Figure 1. Tensile test specimen geometry (dimensions in mm) 

 
Tensile tests were conducted to determine the mechanical properties of the used alloy according to ISO 6892-1 

standard. Tensile test specimen geometry is shown in Figure 1. Tests were done on three specimens, and relevant data 
were averaged. A strain rate of 1×10-3 was used. Tensile test results of the alloy can be examined in Table 2. 

Table 2. Tensile test results of 6082 aluminum alloy 

Yield strength (MPa) Tensile strength (MPa) Elongation (%) 

280.8 ± 5.9 312.0 ± 9.8 22.3 ± 1.4 

2.2 Experimental method 

Specimens with the geometry shown in Figure 2 were manufactured for roughness, hardness, and fatigue strength 
measurements. A CNC turning machine (Model: SPINNER TC600) was utilized to apply deep rolling on these specimens. 
Yamato SKUV 20-2,5R-80 DR tool was used in this study, similar to the work of Celik et al. [17]. Two different DR 
directions were employed; longitudinal rolling (LR) and tangential rolling (TR), as shown in Figure 3. For both 
applications, rolling speed, rolling force, and feed rate were selected as 10 mm/s, 250 N, and 0.1 mm/pass, respectively. 
Feed was applied continuously by employing constant turret movement during rolling for TR. Whereas for LR, it was 
given discretely after each rolling pass by turning the specimen by an angle of 1.43°, corresponding to 0.1 mm/pass. The 
complete surface of the gage section was deep rolled for each specimen.  

 
Figure 2. Fatigue specimen geometry (dimensions in mm) 
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Roughness measurements of specimens were conducted in compliance with the ISO 4287-1997 standard. A Mitutoyo 
SJ-210 roughness measurement apparatus was employed in the experiments. One specimen from each set was used to 
measure roughness values. Ten readings were taken on each specimen in the direction of the longitudinal axis of the 
specimens, and the data were averaged. Hardness measurements were conducted following the suggestions in the ISO 
6507-1 standard using a Future-Tech FM-700e Vickers hardness tester. A section from one untested fatigue specimen 
was cut using abrasive cutting for both TR and LR. Sectioned specimens were cold-mounted in epoxy resin and ground 
using 240-400-800-1200-2500 grit sandpapers. Afterwards, polishing was performed on these specimens using 6 µm and 
1 µm diamond solutions successively. During hardness tests, a 10 g load and a dwell time of 15 seconds were used to 
appropriately capture the spatial resolution of hardness distribution within the cross-sections of specimens. The fatigue 
test was performed according to ASTM E466-07 standard. Fully-reversed, stress-controlled cycles were used in a servo-
hydraulic axial fatigue testing machine (BESMAK) to obtain fatigue responses up to 2 million cycles. The S-N curves 
were derived using the least-squares regression method. Fractured surfaces of the selected fatigue specimens were 
examined utilizing scanning electron microscopy (SEM) using an FEI Quanta 200 model microscope. An accelerating 
voltage of 15 kV was used in these investigations. 

 
Figure 3. Deep rolling process: (a) longitudinal rolling; (b) tangential rolling 

 
The hole-drilling method was employed to study the residual stress distribution in depth direction after deep rolling. 

Details of this method are explained in the ASTM E837-08 standard. In this method, a specifically designed strain-gage 
rosette is used on the surface, and a hole is drilled incrementally. After each increment, the drilling process is stopped, 
and strain-gage readings are recorded. At the end of the entire process, recorded strain readings are used to calculate 
corresponding residual stresses employing calibration matrices that were determined using finite element simulations, as 
explained in the work of Schajer [21]. High-speed drilling (up to 300,000 rpm) procedures using air turbines are generally 
recommended by the ASTM E837-08 standard for the hole drilling method to minimize residual stresses arising from the 
drilling process. However, the use of conventional CNC milling machines for the hole-drilling technique was employed 
by Nobre et al. [22] for carbon-epoxy laminate composite and by Alinaghian et al. [23] for Al/Cu bimetal specimens with 
satisfactory results. Therefore, a conventional CNC milling machine (Model: SPINNER VC560) was used to drill a hole 
in the specimens for the strain gage measurements in the current study. A single deep-rolled flat specimen was used in 
the measurements. ASTM E837-Type-A 031-RE strain gages were utilized. The hole diameter for this strain gage type is 
1 mm. A turning speed of 25000 rpm and a feed rate of 1 μm/s were used for drilling to minimize the effects of the drilling 
process on residual stresses. Figures 4(a) and 4(b) display the schematic drawing of the strain gage and its application on 
a flat surface, respectively. The experimental setup can be examined in Figure 4(c). In this setup, two perpendicular 
cameras were employed to accurately position the specimen in such a way that misalignments between the strain-gage 
center and the drilled hole could be minimized. Measurements were carried out up to 350 μm depth using six increments.  

      
 (a) schematic of a strain-gage rosette,   (b) strain-gage application on surface, and 
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(c) experimental setup for residual stress measurements 

Figure 4. Hole drilling method application using conventional CNC milling machine 

3.0 RESULTS AND DISCUSSION 

Figure 5 displays the mean roughness values (Ra) and mean roughness depths (Rz) for as-turned (AT), TR, and LR 
specimens. Error bars represent standard deviations. It can be seen that Ra and Rz values decreased drastically after deep 
rolling. A two-tailed t-test was performed on the measurement data sets of TR and LR using a two-sample unequal 
variance approach. The respective p-values for Ra and Rz were 0.0575 and 0.246, both of which were higher than p=0.05. 
Therefore, a meaningful difference in the roughness values was not present between the TR and LR cases. Ra values were 
reduced from approximately 0.7 μm to 0.1 μm, whereas Rz values were reduced from 2.7 μm to 0.5 μm. Moreover, scatter 
within roughness readings was also reduced considerably, which indicates sufficient reproducibility. These results suggest 
that both rolling directions can be used to improve surface quality. 

 
Figure 5. Roughness measurement results 

 
Work-hardening in the surface region is a significant aspect of deep-rolled components. Figure 6 displays hardness 

readings obtained after both TR and LR. The specimens’ bulk material hardness was 123 HV. Both TR and LR resulted 
in a considerable hardness increase in the surface region. Additionally, there was no significant difference between the 
hardness values for the investigated rolling direction applications. TR and LR yielded an approximately 10% hardness 
increase near the surface, and work-hardened regions up to approximately 1 mm depth were observed. Since work-
hardening hinders slip in crystals, fatigue crack initiation can be expected to be delayed after both deep rolling 
applications. 

 
Figure 6. Hardness distribution after deep rolling 
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Figure 7 shows deep rolling-induced residual stresses for a flat surface. Obtained residual stresses were below the 
yield strength of the alloy, indicating that the measurements were suitable. Significant differences in residual stress 
profiles were observed in two perpendicular directions. The compressive residual stress values near the surface were 
higher in the rolling direction than in the feed direction. Most of the fatigue life is spent during the crack initiation phase 
for HCF, and fatigue cracks usually form at component surface. Therefore, HCF strength can be expected to reach higher 
levels compared to the feed direction when external loading is in the same direction as the rolling direction. Tensile 
residual stresses are expected after some depth to balance the compressive ones. However, the measurement range was 
not sufficient to capture those stresses. 

 
Figure 7. Residual stress distribution on flat surface after deep rolling 

 
Fatigue strength improvement is the main reason to apply deep rolling to components. Figure 8 shows the results of 

the fatigue experiments in the current study. It is seen that the HCF lives of specimens increased after deep rolling. This 
increase was more pronounced in the LR specimens than in the TR ones. Fatigue strength at 106 cycles was determined 
to be 136 MPa for the as-turned (AT) condition. Fatigue strengths of 145 MPa after TR and 167 MPa after LR were 
obtained, corresponding to 7% and 23% fatigue strength improvements, respectively. Since roughness and hardness 
results were not significantly affected by changing the deep rolling direction, differences between the fatigue results of 
TR and LR can be explained by the residual stress changes. Higher compressive residual stresses in the rolling direction 
may improve fatigue strength when external loading is in the same direction, which was the case for the LR fatigue 
specimens. For the TR application, the fatigue load was applied in the lower compressive residual stress direction, which 
resulted in less fatigue strength than the LR application. Differences in fatigue strengths between TR and LR show that 
the direction dependency of residual stresses plays a crucial role in the deep rolling process and the resulting fatigue 
behavior. Furthermore, scatters of fatigue data were significantly lower for both TR and LR compared to AT. The 
correlation coefficient (R2) for the S-N curve of AT was 0.58, whereas this value was 0.73 for TR and 0.87 for LR. The 
scatter of fatigue data, especially at the HCF regime, is a major design factor and is therefore of high technological 
importance [24]. 

 
Figure 8. Fatigue test results and corresponding S-N diagrams 

 
Figures 9 to 11 show the SEM images of the AT, TR, and LR specimens, respectively. For the AT specimen, crack 

initiation took place at the surface, as seen in Figure 9(b). Surface crack initiation was expected since fatigue cracks 
usually start at the free surface, where irregularities and defects are present. Figure 9(c) shows the fatigue striations close 
to the crack initiation site. These striations show the crack fronts after each cycle during crack propagation [24]. After a 
certain crack length, the specimen could not resist the load and fractured from the remaining material, as seen in Figure 
9(d). 
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Figures 10(b) and 11(b) show sub-surface crack initiation regions for TR and LR specimens, respectively. Near crack 
initiation sites, a wave-like texture was present in both cases. This type of topography was not present in the AT specimen. 
This texture is believed to be the result of shear deformation pile-ups and deepened persistent slip bands during crack 
initiation. The presence of this texture and the fact that crack initiation occurred in the sub-surface region indicate that 
crack initiation was hindered for a significant amount of time, which resulted in higher fatigue lives. Therefore, it can be 
said that surface region properties after deep rolling allow for delaying the crack initiation phase, which results in 
improved fatigue life. 

 
Figure 9. SEM images of AT specimen fractured under σa=160 MPa; (a) general view, (b) crack initiation zone,  

(c) fatigue striations close to crack initiation zone and (d) sudden fracture zone 
 

 
Figure 10. SEM images of TR specimen fractured under σa=160 MPa; (a) general view, (b) crack initiation zone,  

(c) fatigue striations close to crack initiation zone and (d) sudden fracture zone 
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Figure 11. SEM images of LR specimen fractured under σa=160 MPa; (a) general view, (b) crack initiation zone, 

(c) fatigue striations close to crack initiation zone and (d) sudden fracture zone 

4.0 CONCLUSIONS 

Deep rolling on EN-AW 6082 aluminum alloy was investigated by employing different rolling directions. For the 
investigated processing conditions, the surface roughness decreased after deep rolling. There was no significant difference 
between the roughness values after deep rolling in the tangential and longitudinal directions. Similarly, hardness increases 
in the surface region after both TR and LR were similar, and an approximately 10% increase in hardness was present at 
the surface for both cases. Contrary to roughness and hardness, residual stresses generated after deep rolling depended 
significantly on the deep rolling direction. Measurements on a deep-rolled flat surface showed that compressive residual 
stresses in the rolling direction were considerably larger near the surface compared to the feed direction. 

Fatigue strength improvements were possible after TR and LR. However, improvement in fatigue strength was more 
pronounced for LR than for TR. Fatigue strength improvements of 7% and 23% were possible for TR and LR, 
respectively. This difference can be justified when the dissimilarities in the residual stresses between TR and LR are 
considered. Compressive residual stresses of higher magnitude develop in the rolling direction compared to the feed 
direction. Since the rolling direction is the same as the fatigue loading direction for LR, higher fatigue strength values can 
be expected for LR compared to TR. SEM images showed that fatigue cracks initiated at the surface for the AT specimen, 
whereas sub-surface crack initiation was observed for both the TR and LR specimens. Therefore, both deep rolling 
applications resulted in a delayed crack initiation phase and increased HCF life. 
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