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INTRODUCTION 
The accelerated demand for energy in industrial sectors includes a significant impact not only on the business economy 

but also an introduction on the environment. The energy consumption of the world sector will increase by over half-hour 
from 2018 to 2050 [1]. Faced with this increase, it’s necessary to figure more on the energy efficiency (EE) advice. 
Machining may be a process widely utilized in the manufacture of finished products, especially within the automotive, 
aeronautical, medical and other sectors. Machining may be a material removal technique that’s wont to create a 
component from raw materials or to boost the surface quality of a previously produced part by eliminating excess material 
[2]. However, the sustainability of the manufacturing system is also increased by optimizing energy consumption [3]. 
Reducing machine power usage has the potential to considerably enhance both environmental performance and also the 
manufacturing process. In this context, this work deals with energy consumption and energy efficiency within the milling 
process. The link between input and output parameters is modeled using an empirical model determined using response 
surface methodology (RSM) by comparing it with a prediction made using the artificial neural network (ANN). 

LITERATURE REVIEW 
Research on the energy factor remains insufficient within the face of accelerating global energy consumption. Mori 

et al. [4] reported research with a replacement spindle acceleration control approach that reduced power usage. Increased 
cutting conditions for drilling and face/end milling, but within an affordable range of values that don’t compromise tool 
life or surface finish, can help to cut back power consumption for these operations. Oda et al. [5] offer a study on a way 
to reduce the quantity of energy utilized in a mechanical system with multiple units. In keeping with the findings, an 8% 
reduction in energy use is feasible. The cycle time is additionally slashed by 20 %. Altıntaş et al. [6] present a prediction 
model to estimate the theoretical energy consumption involved in milling prismatic parts. The results show that the 
prediction model works with an accuracy of fifty. Blogun et al. [7] analyze the consequences of machine modules, 
auxiliary units, and machine codes on power and energy usage throughout the machining process. Velchev et al. [8] 
describe an approach for optimizing cutting parameters to cut back direct energy consumption during the turning process. 
The result shows that the insert, the feed rate, and also the depth of cut have influences on energy consumption. Thru in-
line optimization of cutting conditions, the research conducted by Tapoglou et al. [9] demonstrates a completely unique 
approach to improving the energy efficiency of machine tools. Tebassi et al. [10] studied the consequences of Inconel 
718 alloy cutting parameters on surface roughness, cutting force components, productivity, and energy consumption. 
Within the study, it had been discovered that surface finish was statistically sensitive to feed and cutting speed, with 
contributions of 43.58 % and 23.85 %, respectively, whereas the depth of cut had the best influence on the evolution of 
the cutting force further because of the consumption of energy. Camposeco-Negrete et al. [11] present the results of an 
experimental investigation on turning cutting parameter optimization. The goal is to lower the machine tool’s energy 
consumption. The work of Bilga et al. [12] focuses on the optimization of the first response factors on energy 
consumption, like energy efficiency, machine active energy consumed and power factor. The energy efficiency (EE) is 
calculated using the subsequent formula: 

 

ABSTRACT – With increased production and productivity in modern industry, particularly in the 
automotive, aeronautical, agro-food, and other sectors, the consumption of manufacturing energy 
is rapidly increasing, posing additional precautions and large investments to industries to reduce 
energy consumption at the manufacturing system level. This research proposes a novel energy 
optimisation using a response surface methodology (RSM) with artificial neural network (ANN) for 
machining processes that saves energy while improving productivity.The feed rate was discovered 
to be the most influential factor in this study, accounting for 84.13 percent of total energy consumed. 
Furthermore, it has been established that as the material removal rate (MRR) increases, energy 
efficiency (EE) declines. This optimization of cutting conditions gives us the optimal values of 
cutting speed Vc = 129.37 m/min, feed rate f = 0.098 mm/rev and depth of cut ap = 0.5 mm. This 
approach will allow us to decrease the total energy consumed (Etc) by 49.74 % and increase the 
energy efficiency (EE) by 13.63 %. 
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𝐸𝐸𝐸𝐸 =
𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (1) 

 
with ACE - active cutting energy and ACE - machine active energy consumed. Li et al. [13] studied specific energy 

consumption to assess energy efficiency. The cutting parameters of energy efficiency and processing time objectives can 
be optimized using a combination of the Taguchi method, the multi-objective particle swarm optimization algorithm 
(PSO), and the response surface method (RSM).  

 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑀𝑀𝑀𝑀𝑀𝑀 =

∫𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑀𝑀𝑀𝑀𝑀𝑀

 (2) 

 
with SEC - specific energy consumption (J/mm3), Etotal - total electrical energy consumption (J), MRV- material 

removal volume (mm3) and Pint (t) - input power (W). Research by Moreira et al. [14] presents an analysis of the impact 
of machining parameters on energy consumption within the milling process of BS EN24T alloy (AISI 4340). Zhang et 
al. [15] developed an energy-efficient machine control strategy. The results show that the reduction in energy consumption 
with this energy-efficient strategy may be up to 25 %. 

Several researchers have used neural network to solve prediction and optimization problems in mechanical 
manufacturing. Girish and Kuldip [16] used the neural network to predict energy consumption and surface roughness. 
They performed machining experiments to verify the suitability of the proposed model for predicting energy consumption 
and surface roughness. The results predicted by the proposed model indicate a good synchronism between the predicted 
values and the values. The effects of cutting parameters on power, cutting force, surface quality, and material removal 
rate during turning operations were investigated by Zerti et al. [17]. AISI 420 stainless steel was utilized. To simulate the 
output responses, the scientists applied the response surface approach and neural networks. In comparison to the response 
surface approach, the findings demonstrate the high prediction accuracy of the neural network. Artificial intelligence was 
utilized by Imani et al. [18] to forecast cutting forces and surface roughness in milling. The findings demonstrate that the 
cutting force is significant and important influenced by the cutting speed and feed rate. For the modeling of surface 
roughness, two hidden layers containing 9 and 10 neurons allow for an accuracy of 97 percent. 

This paper aims to present a replacement approach in milling cycles to attenuate energy consumption. We will study 
the cycles with and without tool change and with and without spindle speed variation taking into account the cutting 
conditions. To forecast and describe interactions between cutting factors, the response surface methodology (RSM) and 
neural networks (NN) were utilized and compared. Multi-objective optimization has been accustomed determine the 
optimal conditions which give us optimal energy consumption. 

EXPERIMENTAL DATA 
Materials 

Austenitic 304L stainless steel is the material of choice for this investigation. It is a material very used in several 
fields, medicine and especially surgery, aerospace, and many other sectors. High corrosion resistance and toughness are 
the hallmarks of this material (174 HB). Table 1 summarizes the chemical properties. 

Table 1. The material’s chemical characteristics (wt %) [25]. 
C Mn Si P Co Ni Cr N S 

0.014 1.56 0.43 0.035 0.2 8.01 18.06 0.092 0.027 

Procedure and Measure 
Energy efficiency within the manufacturing sector is becoming the most factor that reveals the company’s ability to 

supply with less energy consumption. The work plan is shown in Figure 1. The part used is 41x42x34 mm in size. The 
workpiece is mounted directly within the vice of the machine. The machine used is a 4-axis Réalméca C300H machining 
center. The center generates power between 5.5 kW and 7.5 kW. The tool used is a 100 mm diameter milling cutter with 
five high-strength coated carbide inserts of the R290-90-T308 PPM-WL type (Figure 2). To evaluate the energy consumed 
during milling operations, a Chauvin Arnoux power analyzer was used. The axial cutting width for all tests equals the 
workpiece width of 34 mm. The tool is positioned symmetrically to the workpiece to ensure symmetrical face milling. 
The cutting parameters involved are the cutting speed (m/min), the feed rate (mm/rev), and also the depth of cut (mm). 
Each parameter has three levels (-1, 0, 1). The cutting parameters and levels are mentioned in Table 2. The facility 
consumed during a machining cycle is measured with an influence clamp that was attached to the machine power supply.  

Table 2. The cutting parameters. 

Factors Parameters Levels 
-1 0 1 

A Vc (m/min) 64.68 91.10 129.37 
B f (mm/rev) 0.05 0.075 0.1 
C ap (mm) 0.5 0.75 1 
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Figure 1. Energy plan. 
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Figure 2. Measurement plane. 

To determine the influences of cutting parameters on the energy consumption and energy efficiency of such a machine, 
response surface designs were used as an experimental design. The designs used to allow the screening of factors and 
sometimes lead to simple but sufficient models. However, there are numerous instances where accurate modeling of the 
phenomena under investigation is required, necessitating the use of second-degree mathematical models. These designs 
use quadratic polynomial models. The results obtained and the Response Surface Graphs are obtained with the Minitab 
17.0 and Design Expert 10.0 software. The combinations between cutting parameters and the results of the experiments 
are mentioned in Table 3. 

 
 
 

Multi-response energy optimization 

Selected model 

Optimal cutting parameters 

Model comparison 

Energy Models 

RSM 

Milling Machine 

R
ec

on
fig

ur
at

io
n 

an
d 

up
gr

ad
e 

ANN 

Power Consumption 
Measurement 

0 20 40 60 80 100
0

200

400

600

800

Time (s)

P
o

w
er

 (
W

)

p 0
: 

N
o

-l
o

ad
p

o
w

e
r

pcc + pf

Machining

First cycle Second cycle

∆ti ∆ti

Spindle acceleration

0 20 40 60 80 100
0

200

400

600

800

Time (s)

P
o

w
e

r 
(W

)

p
0

: 
N

o
-l

o
a

d
p

o
w

e
r

Machining

Spindle acceleration

pcc + pf

Second cycleFirst cycle

Spindle deceleration
∆ti ∆ti

Tool: Ø100 



K. Bousnina et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 19, Issue 3 (2022) 

9931   journal.ump.edu.my/ijame ◄ 

Table 3. Experimental results. 
N° A B C ptc (W) pcc (W) Ecc (KJ) Etc (KJ) SEtc (J/mm3) SEcc (J/mm3) EE% 
1 -1 -1 -1 486 148 25.01 82.13 18.19 5.54 30.45 
2 -1 -1 0 524 186 31.43 88.55 13.25 4.70 35.50 
3 -1 0 1 467 129 145.3 52.61 6.01 1.66 27.62 
4 0 0 -1 493 155 124 39.44 9.09 2.86 31.44 
5 0 1 0 455 117 7.02 27.30 4.25 1.09 25.71 
6 0 1 1 468 130 7.80 28.08 3.34 0.93 27.78 
7 1 -1 -1 755 417 35.23 63.79 15.33 8.47 55.23 
8 1 -1 0 987 649 54.84 83.40 13.55 8.91 65.75 
9 1 0 1 711 373 21.01 40.05 4.98 2.61 52.46 
10 -1 0 -1 512 174 19.60 57.68 14.47 4.92 33.98 
11 -1 1 0 531 193 16.30 44.86 7.62 2.77 36.35 
12 -1 1 1 370 32 2.70 31.26 4.06 0.35 8.65 
13 0 -1 -1 512 174 20.88 61.44 16.13 5.48 33.98 
14 0 -1 0 642 304 36.48 77.04 13.70 6.48 47.35 
15 0 0 1 497 159 12.72 39.76 5.41 1.73 31.99 

ENERGY MODELING 
In this part, the study consists of determining the energy model of the machining process with two different cases. 

The first case consists of carrying out n cycles without changing the spindle speed or changing the tool. The second case 
consists of carrying out cycles with the spindle speed change and with the tool change. Figure 3 represents the pattern of 
power consumption for the two cases.  

 
  

Figure 3. (a) Cycle without spindle speed change or tool change; (b) Cycle with spindle speed change and tool change. 

First Case 
The power measured is that of the total power consumed by the machine during a well-defined cycle. According to 

the proposed graph, this power is indeed the sum of the spindle acceleration power (psa), the no-load power (p0) for a 
given speed, the cutting power consumed (pcc), the feed power (pf), and finally deceleration power (psd) (Eq. (3)). 

 

𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 = 𝑝𝑝𝑠𝑠𝑠𝑠(𝑡𝑡) + 𝑝𝑝0(𝑡𝑡) + ��𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) + 𝑝𝑝𝑓𝑓𝑓𝑓(𝑡𝑡)�
𝑛𝑛

𝑖𝑖=1

+ 𝑝𝑝𝑠𝑠𝑠𝑠(𝑡𝑡) (3) 

 
Where n number of machining cycles and i increment per cycle. The cutting power consumed pcc is the power supplied 

by the action of the tool on the part during machining time tci. The action of the tool on the part generates forces called 
cutting forces. The cutting power consumed can be estimated by Eq. (4) [17].  

 

𝑝𝑝𝑐𝑐𝑐𝑐(𝑡𝑡) = 𝐹𝐹𝑐𝑐(𝑡𝑡) ×
𝑣𝑣𝑐𝑐(𝑡𝑡)

60  (4) 

                                                             
The cutting speed is given by Eq. (5). 
 

𝑣𝑣𝑐𝑐(𝑡𝑡) =
𝜋𝜋𝜋𝜋

1000 × 𝑁𝑁(𝑡𝑡) (5) 
 
The cutting force can be modeled by Eq. (6) [26]. 
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𝐹𝐹𝑐𝑐(𝑡𝑡) = 𝐶𝐶0𝑣𝑣𝑐𝑐𝛼𝛼(𝑡𝑡)𝑓𝑓𝛽𝛽(𝑡𝑡)𝑎𝑎𝑝𝑝
𝛾𝛾 (6) 

The total energy consumed for a cycle is the integration of power over time. The total energy is given by Eq. (7). 
 

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 = �𝑝𝑝𝑠𝑠𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑 + �𝑝𝑝0(𝑡𝑡)𝑑𝑑𝑑𝑑 + ���𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) + 𝑝𝑝𝑓𝑓𝑓𝑓(𝑡𝑡)� 𝑑𝑑𝑑𝑑 + �𝑝𝑝𝑠𝑠𝑠𝑠(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

𝑑𝑑𝑑𝑑 (7) 

Second Case 
Concerning the second case where there is a tool change with a change in the spindle speed at each new cycle, the 

total power consumed is estimated from Figure 3(b) by Eq. (8).  
                    

𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = �𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

+ �𝑝𝑝0𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

+ �(𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) + 𝑝𝑝𝑓𝑓𝑓𝑓(𝑡𝑡))
𝑛𝑛

𝑖𝑖=1

+ �𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

 (8) 

 
The total energy consumed for a cycle is the integration of power over time. The total energy is given by Eq. (9).  
 

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = ��𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑛𝑛

𝑖𝑖=1

+ ��𝑝𝑝0𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑛𝑛

𝑖𝑖=1

+ ���𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) + 𝑝𝑝𝑓𝑓𝑓𝑓(𝑡𝑡)� 𝑑𝑑𝑑𝑑 +
𝑛𝑛

𝑖𝑖=1

��𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑛𝑛

𝑖𝑖=1

 (9) 

Comparative analysis 
To make the comparison between the two models proposed for the two cases, we are going to make some assumptions 

to respect the same conditions of execution:  
i. For both cases, we limit ourselves to 2 cycles; 

ii. For the spindle speed of the first case is 500 rev/min; 
iii. The two speeds of the second case are 500 and 700 rev/min; 
iv. For both cases, we chose the same feed rate and depth of cut; 
v. The power is assumed to be stable without disturbance; 

vi. ∆t = 10 s between two successive cycles. 
vii. The acceleration and decoration of the spindle are done in a second. 

viii. We will not consider the feed power in this calculation. 

To determine the energy consumed for each case study, Table 4 contains the values of the various parameters presented 
in Eq. (7) and (9) that have been illustrated. These parameters are defined by the two graphs in Figure 3. 

Table 4. Experimental values. 
 psa1 (W) p0 (W) ∆ti (s) tc1 (s) tc2 (s) pcc1 (W) psa2 (W) pcc2 (W) 
First case 670 338 10 80 60 155 - 117 
Second case 670 338 10 120 84.5 174 710 417 

 
           𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 = 𝑝𝑝𝑠𝑠𝑠𝑠1. 𝑡𝑡 + 338. (∆𝑡𝑡1 + 𝑡𝑡𝑐𝑐1 + ∆𝑡𝑡2 + 𝑡𝑡𝑐𝑐2) + 𝑝𝑝𝑐𝑐𝑐𝑐1. 𝑡𝑡𝑐𝑐1 + 𝑝𝑝𝑐𝑐𝑐𝑐2. (𝑡𝑡𝑐𝑐2 + 1) (10) 

  
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 = 670 + 338 × (10 + 80 + 60 + 10) + 155 ×  80 + 117 × (60 + 1) = 74287𝐽𝐽 (11) 

 
According to Eq. (1) we obtain the energy efficiency: 
 

𝐸𝐸𝐸𝐸1 =
155 ×  80 + 117 ×  60

74287 = 0.2614 = 26.14% (12) 

 
For the second case, and according to Eq. (9), we obtain: 
 

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = 𝑝𝑝𝑠𝑠𝑠𝑠1. 𝑡𝑡 + 338. (∆𝑡𝑡1 + 𝑡𝑡𝑐𝑐1 + ∆𝑡𝑡2 + 𝑡𝑡𝑐𝑐2) + 𝑝𝑝𝑐𝑐𝑐𝑐1. (𝑡𝑡𝑐𝑐1 + 1) + 𝑝𝑝𝑠𝑠𝑠𝑠2. 𝑡𝑡 + 𝑝𝑝𝑐𝑐𝑐𝑐2. (𝑡𝑡𝑐𝑐2 + 1) (13) 
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = 670 + 338 × (10 + 120 + 10 + 84.5) + 174 × (120 + 1) + 710 + 417 × (84.5 + 1) = 127208,5𝐽𝐽 (14) 

 
According to Eq. (1) we obtain the energy efficiency: 
 

𝐸𝐸𝐸𝐸1 =
174 . 120 + 417 . 84.5

127208,5 = 0.4411 = 44.11% (15) 
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We can conclude that the energy consumed in the first case 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 = 74287 𝐽𝐽 is lower than the second case 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 =
127208.5 𝐽𝐽. Changing spindle speeds requires more energy than without changing speeds. The energy efficiency of the 
second case is greater than that of the first case, with a value of 44.11%. For the second case, better energy efficiency but 
with high energy consumption, unlike the first case, low energy consumption but with poor energy efficiency compared 
to the second. 

The objective of the second part is to do an energy study with optimization to minimize energy consumption and 
increase energy efficiency in a machining process. The total power consumed is obtained by summing the no-load power 
p0, the cutting power pc, and the feed power pf, Eq. (16). 

 
𝑝𝑝𝑡𝑡𝑡𝑡 = 𝑝𝑝0(𝑡𝑡) + 𝑝𝑝𝑐𝑐(𝑡𝑡) + 𝑝𝑝𝑓𝑓(𝑡𝑡) (16) 

 
According to Eq. (16), the total energy consumed is equal: 
 

𝐸𝐸𝑡𝑡𝑡𝑡 = �𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑 (17) 

 
The total specific cutting energy SEtc is the ratio of the cutting power consumed ptc by the material removal rate MRR.  
 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 =
𝑝𝑝𝑡𝑡𝑡𝑡
𝑀𝑀𝑀𝑀𝑀𝑀 (18) 

 
The energy efficiency (EE) is the ratio of the cutting energy consumed (Ecc) by the total energy consumed (Etc). Over 

time, the material removal rate (MRR) during the milling process is primarily aimed at productivity. Indeed, maximizing 
this parameter can have positive effects on the machining process, especially in roughing operations. The material removal 
rate is calculated from Eq. (19) [17]. 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑣𝑣𝑐𝑐 × 𝑓𝑓 × 𝑎𝑎𝑝𝑝 × 1000

60  (19) 

RESULTS AND DISCUSSION 
Energy study 

Figure 4 represents the variation of the total power consumed as a function of the cutting speed for a feed speed of 
0.05 mm/rev. This variation shows that the total power consumed increases with increasing cutting speed and also with 
cutting depth. The cutting parameter included in Eq. (4) is the cutting speed. So an increase in the cutting power consumed 
necessarily means an increase in the cutting speed.  

 

 
Figure 4. ptc as a function of cutting speed (mm/min). 

Table 5 presents the analysis of the variation of the responses of outputs ptc, Etc, SEtc, and EE. It’s the goal of ANOVA 
to spot the magnitude of every component of the target operation and to reduce the error [19]. ANOVA is to find the most 
effective components from lots of various options [20]. From this table, the total energy consumed model incorporates a 
value of p = 0.0002, which is less than 0.05. This verification allows us to conclude that this model is important, with a 
contribution of 97.89 %. We also note that the foremost influential parameter of the full energy consumed is the feed rate, 
with a contribution of 84.13 %. The factors and interactions that have a significant effect on the model of the total energy 
consumed are Vc, f, apxf, Vc 2, ap

2, and f2. The other parameters, ap, Vcxf, and Vc*ap, are insignificant. Figure 4 shows that 
when the feed speed decreases, the full energy consumed increases, this is often because of the rise within the cutting 
time tc. The results are validated by comparison with Guo et al. [21] and Velchev et al. [8]. The analysis of the variance 
of the whole specific energy consumed SEtc (Table 5) shows that the model is important, with p-value < 0.0001 and a 
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contribution of 98.93 %. Similarly for SEtc, the foremost influential factor is the feed rate, with a contribution of 76.80 
%. The second factor influencing SEtc is that the depth of cut with a contribution of 16.75 %. From Figure 5, it may be 
noted that the minimum values of SEtc and Etc are obtained for the utmost values of feed rates and cutting speeds. The 
analysis of the variance of the energy efficiency EE (Table 5) shows that the model is critical (p-value = 0.0078 < 0.05), 
with a contribution of 92.25 %.The cutting speed is the most influential, with a contribution of 58.38 %, and then we 
discover the feed speed with a contribution of 15.57 %. Figure 6 depicts the change in energy efficiency EE and total 
specific energy consumption SEtc as a function of the fabric removal rate MRR. It is shown that when the fabric removal 
rate MRR grows, so does the energy efficiency EE, but the full specific energy spent SEtc declines. Comparisons with 
Camposeco-Negrete et al. [11] and Neugebauer [22, 23] corroborate the findings. 

The correlation (R2), which shows the efficiency of the chosen regression model, usually identifies the functional link 
between the input parameters and output parameters. The Etc and EE results were analyzed employing a quadratic 
regression model. 

 
𝐸𝐸𝑡𝑡𝑡𝑡 = 168637− 1797𝑣𝑣𝑐𝑐 − 1637478𝑓𝑓 + 193257𝑎𝑎𝑝𝑝 + 7.63𝑣𝑣𝑐𝑐2 + 6910983𝑓𝑓2 − 155181𝑎𝑎𝑝𝑝2 − 3852𝑣𝑣𝑐𝑐𝑓𝑓 + 490𝑣𝑣𝑐𝑐𝑎𝑎𝑝𝑝 (20) 

 
R2 = 97.89%  ; R2 (adj) = 95.08%   
 

𝐸𝐸𝐸𝐸 = −70.1− 0.89𝑣𝑣𝑐𝑐 + 1566𝑓𝑓 + 180𝑎𝑎𝑝𝑝 + 0.00355𝑣𝑣𝑐𝑐2 − 7987𝑓𝑓2 − 156.91𝑎𝑎𝑝𝑝2 − 7.37𝑣𝑣𝑐𝑐𝑓𝑓 + 0.6𝑣𝑣𝑐𝑐𝑎𝑎𝑝𝑝 (21) 
 
R2 = 92.25%  ; R2 (adj) = 81.91%   
 

 
 

 
 

Figure 5. Surface plots of (a) SEtc and (b) Etc. 

 
Figure 6. SEtc and EE function of the material removal rate. 
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Table 5. Analysis of variance. 
 ptc Etc SEtc EE 

Source PC % p-value PC % p-value PC % p-value PC % p-value 
Model 96.15 0.0010 97.89 0.0002 98.93 < 0.0001 92.25 0.0078 

Vc 62.41 0.0128 0.02 0.0301 0.08 0.0053 58.38 0.0325 
f 10.16 0.0099 84.13 0.0002 76.80 < 0.0001 15.57 0.0588 

ap 0.17 0.2466 0.13 0.4002 16.75 0.0019 0.02 0.8127 
Vc×f 2.18 0.0343 0.01 0.4684 0.11 0.0228 0.18 0.2902 

Vc×ap 2.61 0.0899 0.64 0.2263 2.30 0.0114 2.16 0.2435 
ap×f - 0.0240 - 0.0197 - 0.1455 - 0.0468 
Vc

2 8.91 0.1613 4.36 0.0441 1.29 0.6137 4.52 0.3898 
f2 0.75 0.0761 3.89 0.0039 1.51 0.1082 0.01 0.2665 

ap
2 8.96 0.0010 4.70 0.0002 0.09 < 0.0001 11.42 0.0078 

Energy Study with ANN Modeling 
ANNs are a category of statistical learning models inspired by biological neural networks that are wont to optimize 

input parameters. A system of feed-forward artificial neural networks with back-propagation is employed within the 
model. The training of the neural network was developed according to the Levenberg-Marquardt algorithm [24]. The 
dataset was divided into three distinct parts: training, testing, and validation. 70% of the total trials were used for the 
training phase, 15% for the testing phase, and finally, 15% of the total trials for validation. The ANN model was developed 
using the Neural Network Toolbox of the MATLAB software package. Cutting speed, feed rate, and depth of cut are the 
three input variables (Figure 7). The entire energy consumed (Etc) and, therefore the energy efficiency (EE) are the 
outputs. At a minimum mean square error (MSE), the best number of neurons within the hidden layer is found. The square 
error is provided by Eq. (11). 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = �
1
𝑛𝑛  �𝑒𝑒𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

 (11) 

 
The number of trials is n, and the difference between the actual and projected values is ei.  
 

  
Figure 7. Output neural network design. 

The neural structure used in this study is a 3-14-1 structure for Etc output and a 3-10-1 structure for EE output (Figure 
8). The minimum squared errors of the two outputs are presented in Table 6. On the other hand, for these structures, the 
total consumed energy has a total correlation coefficient of R = 0.99, and for the energy efficiency, R = 0 .97. 

 

  
Figure 8. Output neural network design. 

Table 6. The mean square error. 

Structures NN MSE 
Etc EE 

3 – 10 – 1 - 8.62526e-2 
3 – 14 – 1 1.94041e-25 - 
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Tables 7 and 8 present the experimental and predicted values of Etc ,and EE by the two methods (RSM and ANN). It 
can be found that errors from the ANN neural structure are less than those from the Response Surface Methodology 
(RSM). This shows us that the use of neural networks can give us more accurate results and can improve energy 
consumption and productivity in industrial sectors. 

Table 7. Error between measured and predicted values (Etc).  

N° 
Etc (KJ) 

Measured ANN 
3_14_1 MSR Erreur ANN Erreur MSR 

1 82.134 82,134 80,938 -5,684e-14 1.196 
2 88.550 88,550 88,676 -1,278e-13 -0.126 
3 52.616 52,615 51,447 1,705e-13 1.169 
4 39.440 39,440 38,125 -7,105e-15 1.315 
5 27.300 27,859 29,622 -0,559 -2.322 
6 28.080 28,079 21,196 1,140e-12 6.884 
7 63.797 63,797 63,826 -9,947e-14 -0.029 
8 83.401 83,401 79,481 -1,847e-13 3.92 
9 40.050 32,821 43,941 7,228 -3.891 
10 57.687 57,687 55,370 0 2.317 
11 44.869 44,869 46,178 -4,689e-13 -1.309 
12 31.265 31,264 34,517 7,105e-13 -3.252 
13 61.440 67,011 66,237 -5,571 -4.797 
14 77.040 73,290 77,208 3,749 -0.168 
15 39.76 39,76 40,669 -1,278e-13 -0.909 

Table 8. Error between measured and predicted values (EE). 

N° 
EE (%) 

Exp ANN 
3_10_1 MSR  

Erreur 
ANN 

Erreur 
MSR 

1 30.45 30,549 30.708 -0,099 -0.258 
2 35.5 40,200 36.359 -4,700 -0.859 
3 27.62 26,010 24.665 1,609 2.955 
4 31.44 31,933 33.294 -0,493 -1.854 
5 25.71 25,735 30.317 -0,025 -4.607 
6 27.78 27,565 20.322 0,214 7.458 
7 55.23 54,870 52.219 0,359 3.011 
8 65.75 67,339 67.571 -1,589 -1.821 
9 52.46 52,499 53.657 -0,039 -1.197 
10 33.98 33,920 32.971 0,059 1.009 
11 36.35 35,958 30.901 0,391 5.449 
12 8.65 8,3779 16.944 0,272 -8.294 
13 33.98 33,459 35.900 0,520 -1.92 
14 47.35 47,223 45.513 0,126 1.837 
15 31.99 41,965 32.912 -9,975 -0.922 

Table 9. Constraints for machining parameter optimization. 
Condition Goal Lower limit Upper limit 
Vc (m/min) In range 64.68 129.37 
f (mm/rev) In range 0.05 0.1 
ap (mm) In range 0.5 1 
ptc (W) Minimize 
pcc (W) Minimize 
Etc (J) Minimize 
Ecc (J) Minimize 
SEtc (J/mm3) Minimize 
SEcc (J/mm3) Minimize 
EE% Minimize 
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Table 10. Optimal values. 

N° Input Output 
vc f ap ptc pcc Etc Ecc SEtc SEcc EE Des. 

1 129.37 0.098 0.50 511.84 173.84 27389.21 8021.4 0.67 0.35 42.1 0.847 
2 129.36 0.097 0.502 511.89 173.89 27350.25 7992.4 0.66 0.35 42.06 0.847 
3 129.36 0.097 0.505 511.96 173.96 27305.57 7959.3 0.63 0.35 42.02 0.847 
4 129.36 0.098 0.500 511.77 173.77 27461.71 8064.4 0.73 0.33 42.13 0.846 
5 129.33 0.097 0.507 511.98 173.98 27263.60 7931.0 0.61 0.35 41.97 0.846 
6 129.02 0.098 0.507 511.54 173.54 27301.27 7983.2 0.61 0.35 41.93 0.846 

Multi-objective Optimization using the Desirability Function 
Multi-objective optimization is that takes into account several factors at the same time [25]. Also, several iterations 

of cutting parameter combinations are performed to achieve multiple goals. In our case, the main objective is to maximize 
EE energy efficiency and minimize energies and powers using the desirability function. Table 9 summarizes these 
objectives. According to Table 10 the optimal solution is solution 1 with a cutting speed Vc = 129.37 m/min, a feed rate f 
= 0.098 mm/rev and a depth of cut ap= 0.5 mm. These values give us an energy efficiency of 42.01 % and the total energy 
consumed by 27389.21 J. These values give us a reduction in total energy consumed Etc of 49.74 % and an increase in 
energy efficiency EE of 13.63 % (Figure 9).  

 

 
Figure 9. Energy optimization. 

CONCLUSION 
Product demand is increasing as a result of growth, which necessitates an enormous amount of energy. Industrial 

sectors are increasingly concerned with lowering their energy consumption. This text presents a replacement approach to 
machining energy consumption as a function of tool-part cutting power. Two cases are studied, the primary without tool 
change or spindle speed change, and therefore the second with tool change and spindle speed change. It can be deduced 
from this experimental study that, first of all, the cycles without spindle speed change consume less energy than with 
spindle speed change but with less energy efficiency. That the right choice of machining strategy, as well as the right 
choice of cutting tool to mitigate tool changes during a machining cycle, can minimize energy consumption. We also 
observe that the feeding rate, which represents 84.13% of the total energy consumed, proves to be the most influential 
element during this study. Energy efficiency decreases with increasing material removal rate MRR. 

In our case study, the use of an artificial neural network (ANN) gives better results compared to the results given by 
the response surface methodology (RSM). The optimization of the cutting conditions gives us the optimal values of the 
cutting speed Vc = 129.37 m/min, the feed f = 0.098 mm/revolution; and therefore, the depth of cut ap = 0.5 mm allows 
us to conclude that this approach will allow us to mitigate the total energy consumed Etc by 49.74% and to increase the 
energy efficiency EE by 13.63%. The objective of the future work is to make a prediction and an optimization of the 
experimental results regarding the energy consumption, the machining cost, and the quality of an automotive part using 
an artificial neural network. 
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