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ABSTRACT - A nonlinear dynamic model of a 12-degree-of-freedom multi-shaft gear system 
is established, which includes nonlinear factors such as gear backlash, bearing clearance and 
time-varying mesh stiffness. The bifurcation diagrams and the maximum dynamic load 
coefficient diagrams that describe the dynamics of the gear transmission system are simulated 
by using the Runge-Kutta method, combined with three Poincaré mapping. The mutual 
transition of the adjacent period one motion through the grazing bifurcation and saddle-node 
bifurcation form a hysteresis zone where two types of impact motion coexist. The correlation 
between the dynamic response and the gear backlash under the parameter-state space is 
investigated, and it is verified that the extreme parameter conditions lead to abnormal vibration 
phenomena such as jumping, mesh-apart and chaotic motion. The results show that, near the 
critical value of ω = 0.7164 for grazing bifurcation, the meshing gear pair undergoes a jump in 
relative micro-displacement and dynamic load, increasing system impact vibration and a 
decrease in transmission efficiency, which is an undesirable parameter interval. In the initial 
stage of dynamic designing, the backlashes can be selected through the internal 
characteristics and transition mechanism of periodic motions. 
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1.0 INTRODUCTION 
In mechanical equipment, the arrangement of multi-shaft transmission is generally adopted to achieve the functions 

of power and variable-speed transmission. A multi-stage transmission system contains multiple gears, whose nonlinear 
factors such as multi-clearances, time-varying mesh stiffness and comprehensive transmission error interact with one 
another; therefore, the system presents highly dimensional strong nonlinearity. In order to ensure a stable low noise stage 
condition when the multi-shaft transmission runs, it is necessary to study the connection between dynamics characteristics 
and design parameters in the system so that the optimization design scheme for global dynamic performance is obtained. 
Taking nonlinear factors such as external load excitation [1,2], relative damping ratio [3], and time-varying mesh stiffness 
[4,5] during gear meshing as objects, scholars have carried out a lot of research on the nonlinear dynamics of gear systems. 

At present, the analytics method, the numerical simulation method and experimental verification are mainly used to 
solve the dynamics model of a gear transmission system. Kahraman [6] verified the applicability of the analytics method 
and the numerical simulation method in the nonlinear dynamics of gear rotor-bearing system based on comparing the 
agreement between theoretical data and experimental data. Sheng [7] used the Runge-kutta numerical integration method 
to solve the differential equation of planetary gear train motion, analyzed the influence of meshing frequency, meshing 
clearance, bearing clearance and other nonlinear parameters on the bifurcation and chaotic characteristics, and discussed 
the coupling effect of clearance on the nonlinear behavior of the system. Azimi [8] used the Poincare-Lindstedt method 
to study the dynamical parametric response of a one-stage spur gear pair with nonlinear suspension. It was found that 
pitchfork bifurcation and hopf bifurcation occurred around the primary and combination parametrically unstable tongues 
as the control parameters and meshing frequency varied and suggested that the selection of suitable suspension parameters 
could effectively prevent gear mesh-apart. Abruzzo [9] developed a gear lumped parameter model, numerically calculated 
the frequency response function of the tested gears, tested the transmission dynamic phenomena under different 
experimental conditions, and verified the correctness of the model and operations by comparing the numerical results 
with the measured values.  

According to the method of tooth modification approach, Ullah [10] carried out the dynamic simulation of 
transmission error, safety factor and radial acceleration of the gearbox system and proposed the theoretical basis for the 
gear tooth micro-modification. Some research focuses on the dynamic load response of gear pairs under parametric 
excitation. Motahar [11], compares the effect of different optimized gear sets on the nonlinear dynamical behavior of gear 
systems, such as period-doubling bifurcation, by calculating the dynamic load coefficients of transmission gears. Xia [12] 
established a nonlinear dynamics model of a spur gear pair, used bifurcation diagrams, phase diagrams, and dynamic load 
calculations to obtain the motion state and dynamic response of the system, and analyzed the correlation between the 
dynamics parameters and the stability of the system under light and heavy load working conditions. Besides, the 
experimental method is also the key way to verify and correct the theoretical analysis of dynamic characteristics in the 
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gear system. Zhao, Rigaud, Martynenko and their co-workers [13-15] built vibration testing benches for different types 
of gear transmission systems and verified the accuracy and feasibility of system dynamics behavior by the diagrams of 
phase, bifurcation and time domain. With the development of nonlinear dynamics theories, Saghafi, Donmez, Arian, et 
al. [16-18] used the numerical simulation results of the gear system dynamic responses to study how to suppress or 
eliminate chaotic behavior. 

The above nonlinear dynamics studies of gear systems are mainly based on the one-parameter bifurcation simulation 
analysis. However, carrying out multi-parameter and multi-performance co-simulation analysis can better reveal the non-
smooth dynamic behavior formation mechanism of the gear transmission from the system level and guide the global 
dynamic performance matching design; some scholars have successively made exploratory studies on this. Farshidianfar 
[19] used nonlinear dynamic parameters such as backlash, load excitation, and time-varying stiffness as control 
parameters and explored the threshold surfaces for the bifurcation feature of the gear system in the control parameter 
space. Mason, and Gou [20,21] analyzed the global dynamic behavior of the gear single-stage model, constructed the 
collision mapping of gear meshing, and calculated the attraction basin, one-parameter and two-parameter bifurcation 
diagrams of the system. 

The multi-parameter co-simulation of gear transmission is mostly carried out on single-stage gear, and the 
identification of meshing impact characteristics in the two-parameter plane is still unclear. Therefore, taking the gearbox 
of a type of locomotive, a dynamic model of a multi-shaft gear system is established based on the consideration of 
nonlinear factors such as radical clearance of rolling bearing, gear backlash, and time-varying mesh stiffness. Pattern 
types and transition mechanism of periodic impact motion groups in the system are resolved using the numerical 
integration method. The effects of jump behavior on the time-varying load of the meshing gear pair were investigated in 
this study. The periodic meshing impact of gear pair caused by the variations of backlash and diversity of the meshing 
state, including its evolution, are emphatically analyzed in parameter-state space. 

2.0 METHODOLOGY 
2.1 Model Description 

The proposed dynamical model of the multi-shaft gear system shown in Figure 1 is derived from a specific locomotive 
gearbox. This model has the structure of a gear pairs transmission, consisting of an input gear 1, two output gears 2 and 
3 and a fan transmission gear4, shafts and bearings. In the model, the friction during the meshing is not considered. The 
angular displacements of the input gear, the output gears and the fan transmission gear are respectively represented by θ1, 
θ2, θ3 and θ4. A rolling bearing that supports a gear is equivalent to a linear spring and linear damping, supporting stiffness 
coefficients in X and Y coordinates are represented by Kix, Kiy, (i=1,2,3,4), supporting damping coefficients are represented 
by Cix, Ciy, (i=1,2,3,4). Respectively, Mi , Ii , Rbi , (i=1,2,3,4) represent the mass, moment of inertia and base radius of each 
gear. The loads on the gear system in X and Y coordinates are represented by Fix, Fiy, (i=1,2,3,4), respectively.  

 
Figure 1. Dynamic model of the multi-shaft gear system 

The multi-shaft gear system shown in Figure 1 under the input torque T1, impedance torque T2, T3 and T4, its bending-
torsion coupling differential equations are represented as following Eq. (1): 
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⎪
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⎪
⎪
⎧𝑀𝑀1𝑋𝑋1̈ + 𝐶𝐶1𝑥𝑥𝑋𝑋1̇ + 𝐾𝐾1𝑥𝑥𝑓𝑓1(𝑋𝑋1,𝐵𝐵1) = −𝐹𝐹2𝑥𝑥 − 𝐹𝐹3𝑥𝑥 − 𝐹𝐹4𝑥𝑥
𝑀𝑀1𝑌𝑌1̈ + 𝐶𝐶1𝑦𝑦𝑌𝑌1̇ + 𝐾𝐾1𝑦𝑦𝑓𝑓1(𝑌𝑌1,𝐵𝐵1) = −𝐹𝐹2𝑦𝑦 − 𝐹𝐹3𝑦𝑦 − 𝐹𝐹4𝑦𝑦
𝐼𝐼1𝜃𝜃1̈ = 𝑇𝑇1 − 𝐹𝐹2𝑦𝑦𝑅𝑅𝑏𝑏1 − 𝐹𝐹3𝑦𝑦𝑅𝑅𝑏𝑏1 − 𝐹𝐹4𝑦𝑦𝑅𝑅𝑏𝑏1
𝑀𝑀2𝑋𝑋2̈ + 𝐶𝐶2𝑥𝑥𝑋𝑋2̇ + 𝐾𝐾2𝑥𝑥𝑓𝑓2(𝑋𝑋2,𝐵𝐵2) = 𝐹𝐹2𝑥𝑥
𝑀𝑀2𝑌𝑌2̈ + 𝐶𝐶2𝑦𝑦𝑌𝑌2̇ + 𝐾𝐾2𝑦𝑦𝑓𝑓2(𝑌𝑌2,𝐵𝐵2) = 𝐹𝐹2𝑦𝑦
𝐼𝐼2𝜃𝜃2̈ = −𝑇𝑇2 + 𝐹𝐹2𝑦𝑦𝑅𝑅𝑏𝑏2
𝑀𝑀3𝑋𝑋3̈ + 𝐶𝐶3𝑥𝑥𝑋𝑋3̇ + 𝐾𝐾3𝑥𝑥𝑓𝑓3(𝑋𝑋3,𝐵𝐵3) = 𝐹𝐹3𝑥𝑥
𝑀𝑀3𝑌𝑌3̈ + 𝐶𝐶3𝑦𝑦𝑌𝑌3̇ + 𝐾𝐾3𝑦𝑦𝑓𝑓3(𝑌𝑌3,𝐵𝐵3) = 𝐹𝐹3𝑦𝑦
𝐼𝐼3𝜃𝜃3̈ = −𝑇𝑇3 + 𝐹𝐹3𝑦𝑦𝑅𝑅𝑏𝑏3
𝑀𝑀4𝑋𝑋4̈ + 𝐶𝐶4𝑥𝑥𝑋𝑋4̇ + 𝐾𝐾4𝑥𝑥𝑓𝑓4(𝑋𝑋4,𝐵𝐵4) = 𝐹𝐹4𝑥𝑥
𝑀𝑀4𝑌𝑌4̈ + 𝐶𝐶4𝑦𝑦𝑌𝑌4̇ + 𝐾𝐾4𝑦𝑦𝑓𝑓4(𝑌𝑌4,𝐵𝐵4) = 𝐹𝐹4𝑦𝑦
𝐼𝐼4𝜃𝜃4̈ = −𝑇𝑇4 + 𝐹𝐹4𝑦𝑦𝑅𝑅𝑏𝑏4

 (1) 

The system has twelve degrees of freedom; the linear displacement degrees of freedom along the x and y coordinate 
axes are represented by Xi, Yi (i=1,2,3,4), and rotational degrees of freedom are represented by θi (i=1,2,3,4). Their 
generalized coordinates can be expressed as(X1,Y1,θ1,X2,Y2,θ2,X3,Y3,θ3,X4,Y4,θ4)T.  

Radical clearance of the rolling bearing is decomposed in X and Y coordinate directions, which can be expressed by 
the nonlinear clearance function of Eq. (2): 

𝑓𝑓𝑖𝑖(𝑋𝑋𝑖𝑖 ,𝐵𝐵𝑖𝑖) = �
𝑋𝑋𝑖𝑖 − 𝐵𝐵𝑖𝑖 , (𝑋𝑋𝑖𝑖 > 𝐵𝐵𝑖𝑖)
0, (−𝐵𝐵𝑖𝑖 ≤ 𝑋𝑋𝑖𝑖 ≤ 𝐵𝐵𝑖𝑖)
𝑋𝑋𝑖𝑖 + 𝐵𝐵𝑖𝑖 , (𝑋𝑋𝑖𝑖 < −𝐵𝐵𝑖𝑖)

,   𝑓𝑓𝑖𝑖(𝑌𝑌𝑖𝑖,𝐵𝐵𝑖𝑖) = �
𝑌𝑌𝑖𝑖 − 𝐵𝐵𝑖𝑖 , (𝑌𝑌𝑖𝑖 > 𝐵𝐵𝑖𝑖)
0, (−𝐵𝐵𝑖𝑖 ≤ 𝑌𝑌𝑖𝑖 ≤ 𝐵𝐵𝑖𝑖), (𝑖𝑖 = 1,2,3,4)
𝑌𝑌𝑖𝑖 + 𝐵𝐵𝑖𝑖 , (𝑌𝑌𝑖𝑖 < −𝐵𝐵𝑖𝑖)

 (2) 

where, Bi represents half of the bearing radial clearance. 

Relative micro-displacement of gear pairs 12, 13 and 14 at the meshing position along the meshing line direction due 
to the transmission errors and vibration are X12, X13 and X14, respectively, and their expressions are as follows. 

𝑋𝑋12= − (𝑋𝑋1 − 𝑋𝑋2)sin𝛼𝛼𝑛𝑛 + (𝑌𝑌1 − 𝑌𝑌2) cos𝛼𝛼𝑛𝑛 + (𝜃𝜃1𝑅𝑅𝑏𝑏1 − 𝜃𝜃2𝑅𝑅𝑏𝑏2) cos𝛼𝛼𝑛𝑛 − 𝑒𝑒12 (𝑡𝑡) (3) 
  

𝑋𝑋13=(𝑋𝑋1 − 𝑋𝑋3)sin𝛼𝛼𝑛𝑛 − (𝑌𝑌1 − 𝑌𝑌3) cos𝛼𝛼𝑛𝑛 − (𝜃𝜃1𝑅𝑅𝑏𝑏1 − 𝜃𝜃3𝑅𝑅𝑏𝑏3) cos𝛼𝛼𝑛𝑛 − 𝑒𝑒13 (𝑡𝑡) (4) 
  

𝑋𝑋14= − (𝑋𝑋1 − 𝑋𝑋4)sin𝛼𝛼𝑛𝑛 − (𝑌𝑌1 − 𝑌𝑌4) cos𝛼𝛼𝑛𝑛 − (𝜃𝜃1𝑅𝑅𝑏𝑏1 − 𝜃𝜃4𝑅𝑅𝑏𝑏4) cos𝛼𝛼𝑛𝑛 − 𝑒𝑒13 (𝑡𝑡) (5) 

where, αn is normal pressure angle. e1j(t) (j=2,3,4) is the comprehensive transfer error of gear pair, and can be expressed 
by the equation 𝑒𝑒1𝑗𝑗(𝑡𝑡)=𝐸𝐸1𝑗𝑗 cos(𝛺𝛺𝑡𝑡 + 𝛹𝛹0). In the equation, E1j represents the amplitude of transfer error, Ω represents the 
meshing angle frequency, Ψ0represents the initial phase, and t represents the time. In Eq. (6), the time-varying meshing 
force on the gear teeth of gear 2, 3 and 4 is expressed as follows, along the X and Y coordinate directions. 

�
𝐹𝐹2𝑥𝑥 = −𝐹𝐹12(𝑡𝑡) sin𝛼𝛼𝑛𝑛
𝐹𝐹2𝑦𝑦 = 𝐹𝐹12(𝑡𝑡) cos𝛼𝛼𝑛𝑛

,  �
𝐹𝐹3𝑥𝑥 = 𝐹𝐹13(𝑡𝑡) sin𝛼𝛼𝑛𝑛
𝐹𝐹3𝑦𝑦 = −𝐹𝐹13(𝑡𝑡) cos𝛼𝛼𝑛𝑛

, �
𝐹𝐹4𝑥𝑥 = 𝐹𝐹14(𝑡𝑡) sin𝛼𝛼𝑛𝑛
𝐹𝐹4𝑦𝑦 = −𝐹𝐹14(𝑡𝑡) cos𝛼𝛼𝑛𝑛

 (6) 

where, F12(t), F13(t) and F14(t) are the time-varying dynamic loads during meshing, which can be expressed by the 
following Eq. (7): 

𝐹𝐹1𝑗𝑗(𝑡𝑡)=𝐾𝐾1𝑗𝑗(𝑡𝑡)𝑓𝑓(𝑋𝑋1𝑗𝑗 ,𝐵𝐵) + 𝐶𝐶1𝑗𝑗�̈�𝑋1𝑗𝑗 , (j=2,3,4) (7) 

In Eq. (7), the function of gear backlash is represented by f (X1j,B) as the following equation: 

𝑓𝑓�𝑋𝑋1𝑗𝑗 ,𝐵𝐵� = �
𝑋𝑋1𝑗𝑗 − 𝐵𝐵, (𝑋𝑋1𝑗𝑗 > 𝐵𝐵)
0, (−𝐵𝐵 ≤ 𝑋𝑋1𝑗𝑗 ≤ 𝐵𝐵)
𝑋𝑋1𝑗𝑗 + 𝐵𝐵, (𝑋𝑋1𝑗𝑗 < −𝐵𝐵)

, (j=2,3,4) (8) 

In Eq. (7), the time-varying meshing stiffness is represented by K1j(t), (j=2,3,4). It can be expressed as the equation 
𝐾𝐾1𝑗𝑗(𝑡𝑡)=𝐾𝐾𝑚𝑚𝑗𝑗 + 𝐾𝐾𝑎𝑎 cos(𝛺𝛺𝑡𝑡 + 𝛹𝛹0), where Kmj is the average meshing stiffness, and Ka is the amplitude of time-varying 
meshing stiffness. C1j(t), (j=2,3,4) represents the meshing damping and its expression is 𝐶𝐶1𝑗𝑗=2𝐶𝐶𝑚𝑚𝑗𝑗�𝐾𝐾𝑚𝑚𝑗𝑗𝑀𝑀1𝑗𝑗, where Cmj 
is the relative damping ratio of meshing gear pair, and M1j (j=2,3,4) is the equivalent mass of the gear pair, 
𝑀𝑀1𝑗𝑗=𝑀𝑀1𝑀𝑀𝑗𝑗/(𝑀𝑀1+𝑀𝑀𝑗𝑗) = 𝐼𝐼1𝐼𝐼𝑗𝑗/(𝐼𝐼1𝑅𝑅𝑏𝑏𝑗𝑗2 + 𝐼𝐼𝑗𝑗𝑅𝑅𝑏𝑏12 ).  

Without loss of generality, the nominal dimension is defined as bc, the inherent frequency as 𝜔𝜔𝑛𝑛=�𝐾𝐾𝑚𝑚/𝑀𝑀12. 
Dimensionless parameters 𝑥𝑥𝑖𝑖=𝑋𝑋𝑖𝑖 𝑏𝑏𝑐𝑐⁄ , 𝑦𝑦𝑖𝑖=𝑌𝑌𝑖𝑖 𝑏𝑏𝑐𝑐⁄ , 𝑏𝑏𝑖𝑖=𝐵𝐵𝑖𝑖 𝑏𝑏𝑐𝑐⁄ , 𝑏𝑏=𝐵𝐵 𝑏𝑏𝑐𝑐⁄ , 𝜏𝜏=𝜔𝜔𝑛𝑛𝑡𝑡, 𝜔𝜔=Ω 𝜔𝜔𝑛𝑛⁄ , 𝑒𝑒12(𝜏𝜏)= 𝑒𝑒12(𝑡𝑡) 𝑏𝑏𝑐𝑐⁄ , 
𝑒𝑒13(𝜏𝜏)= 𝑒𝑒13(𝑡𝑡) 𝑏𝑏𝑐𝑐⁄ , 𝑒𝑒14(𝜏𝜏)= 𝑒𝑒14(𝑡𝑡) 𝑏𝑏𝑐𝑐⁄ , 𝑥𝑥12=𝑋𝑋12 𝑏𝑏𝑐𝑐⁄ , 𝑥𝑥13=𝑋𝑋13 𝑏𝑏𝑐𝑐⁄ , 𝑥𝑥14=𝑋𝑋14 𝑏𝑏𝑐𝑐⁄ , (i=1,2,3,4) are introduced, where τ is the 
dimensionless time, and ω is the dimensionless meshing frequency.  

The function of the dimensionless gear backlash is represented as the following equation: 
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𝑓𝑓�𝑥𝑥1𝑗𝑗 , 𝑏𝑏� = �
𝑥𝑥1𝑗𝑗 − 𝑏𝑏, (𝑥𝑥1𝑗𝑗 > 𝑏𝑏)
0, (−𝑏𝑏 ≤ 𝑥𝑥1𝑗𝑗 ≤ 𝑏𝑏)
𝑥𝑥1𝑗𝑗 + 𝑏𝑏, (𝑥𝑥 < −𝑏𝑏)

, (j=2,3,4) (9) 

The function of the dimensionless radial clearance of the bearing is expressed as the following equation. 

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑏𝑏𝑖𝑖) = �
𝑥𝑥𝑖𝑖 − 𝑏𝑏𝑖𝑖 , (𝑥𝑥𝑖𝑖 > 𝑏𝑏𝑖𝑖)
0, (−𝑏𝑏𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖)
𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑖𝑖 , (𝑥𝑥𝑖𝑖 < −𝑏𝑏𝑖𝑖)

,   𝑓𝑓𝑖𝑖(𝑦𝑦𝑖𝑖 ,𝐵𝐵𝑖𝑖) = �
𝑦𝑦𝑖𝑖 − 𝑏𝑏𝑖𝑖 , (𝑦𝑦𝑖𝑖 > 𝑏𝑏𝑖𝑖)
0, (−𝑏𝑏𝑖𝑖 ≤ 𝑦𝑦𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖)
𝑦𝑦𝑖𝑖 + 𝑏𝑏𝑖𝑖 , (𝑦𝑦𝑖𝑖 < −𝑏𝑏𝑖𝑖)

, (i=1,2,3,4) (10) 

The above equations of dimensionless parameters are plugged into Eq. (1), and the following differential Eq. (11) of 
dimensionless motion of the system is obtained.  

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧
�̈�𝑥1 + 2𝜉𝜉1𝑥𝑥�̇�𝑥1 + 𝑘𝑘1𝑥𝑥𝑓𝑓1(𝑥𝑥1, 𝑏𝑏1) − 2𝑎𝑎1𝜉𝜉21�̇�𝑥12 − 𝑎𝑎1𝑘𝑘21𝑓𝑓(𝑥𝑥12,𝑏𝑏) + 2𝑎𝑎1𝜉𝜉31�̇�𝑥13 +
    𝑎𝑎1𝑘𝑘31𝑓𝑓(𝑥𝑥13, 𝑏𝑏) + 2𝑎𝑎1𝜉𝜉41�̇�𝑥14 + 𝑎𝑎1𝑘𝑘41𝑓𝑓(𝑥𝑥14, 𝑏𝑏) = 0
�̈�𝑦1 + 2𝜉𝜉1𝑦𝑦�̇�𝑦1 + 𝑘𝑘1𝑦𝑦𝑓𝑓1(𝑦𝑦1, 𝑏𝑏1) + 2𝑎𝑎2𝜉𝜉21�̇�𝑥12 + 𝑎𝑎2𝑘𝑘21𝑓𝑓(𝑥𝑥12, 𝑏𝑏) − 2𝑎𝑎2𝜉𝜉31�̇�𝑥13 −
    𝑎𝑎2𝑘𝑘31𝑓𝑓(𝑥𝑥13, 𝑏𝑏) − 2𝑎𝑎2𝜉𝜉41�̇�𝑥14 − 𝑎𝑎2𝑘𝑘41𝑓𝑓(𝑥𝑥14, 𝑏𝑏) = 0
�̈�𝑥2 + 2𝜉𝜉2𝑥𝑥�̇�𝑥2 + 𝑘𝑘2𝑥𝑥𝑓𝑓2(𝑥𝑥2, 𝑏𝑏2) + 2𝑎𝑎1𝜉𝜉12�̇�𝑥12 + 𝑎𝑎1𝑘𝑘12𝑓𝑓(𝑥𝑥12, 𝑏𝑏) = 0
�̈�𝑦2 + 2𝜉𝜉2𝑦𝑦𝑦𝑦2 + 𝑘𝑘2𝑦𝑦𝑓𝑓2(𝑦𝑦2, 𝑏𝑏2) − 2𝑎𝑎2𝜉𝜉12�̇�𝑥12 − 𝑎𝑎2𝑘𝑘12𝑓𝑓(𝑥𝑥12, 𝑏𝑏) = 0
�̈�𝑥3 + 2𝜉𝜉3𝑥𝑥�̇�𝑥3 + 𝑘𝑘3𝑥𝑥𝑓𝑓3(𝑥𝑥3, 𝑏𝑏3) − 2𝑎𝑎1𝜉𝜉13�̇�𝑥13 − 𝑎𝑎1𝑘𝑘13𝑓𝑓(𝑥𝑥13, 𝑏𝑏) = 0
�̈�𝑦3 + 2𝜉𝜉3𝑦𝑦�̇�𝑦3 + 𝑘𝑘3𝑦𝑦𝑓𝑓3(𝑦𝑦3, 𝑏𝑏3) + 2𝑎𝑎2𝜉𝜉13�̇�𝑥13 + 𝑎𝑎2𝑘𝑘13𝑓𝑓(𝑥𝑥13, 𝑏𝑏) = 0
�̈�𝑥4 + 2𝜉𝜉4𝑥𝑥�̇�𝑥4 + 𝑘𝑘4𝑥𝑥𝑓𝑓4(𝑥𝑥4, 𝑏𝑏4) − 2𝑎𝑎1𝜉𝜉14�̇�𝑥14 − 𝑎𝑎1𝑘𝑘14𝑓𝑓(𝑥𝑥14, 𝑏𝑏) = 0
�̈�𝑦4 + 2𝜉𝜉4𝑦𝑦�̇�𝑦4 + 𝑘𝑘4𝑦𝑦𝑓𝑓4(𝑦𝑦4, 𝑏𝑏4) + 2𝑎𝑎2𝜉𝜉14�̇�𝑥14 + 𝑎𝑎2𝑘𝑘14𝑓𝑓(𝑥𝑥14, 𝑏𝑏) = 0
�̈�𝑥12 + 𝑎𝑎1(�̈�𝑥1 − �̈�𝑥2) − 𝑎𝑎2(�̈�𝑦1 − �̈�𝑦2) + 𝑎𝑎22𝑘𝑘𝑛𝑛2𝑓𝑓(𝑥𝑥12, 𝑏𝑏) − 2𝑎𝑎22𝜉𝜉𝑛𝑛2�̇�𝑥12 − 𝑎𝑎22𝑘𝑘𝑛𝑛3𝑓𝑓(𝑥𝑥13, 𝑏𝑏) −
      2𝑎𝑎22𝜉𝜉𝑛𝑛3�̇�𝑥13−𝑎𝑎22𝑘𝑘𝑛𝑛4𝑓𝑓(𝑥𝑥14, 𝑏𝑏) − 2𝑎𝑎22𝜉𝜉𝑛𝑛4�̇�𝑥14 = 𝑎𝑎2(𝑓𝑓𝑚𝑚1 + 𝑓𝑓𝑚𝑚2) + �̈�𝑒12(𝜏𝜏)
�̈�𝑥13 − 𝑎𝑎1(�̈�𝑥1 − �̈�𝑥3) + 𝑎𝑎2(�̈�𝑦1 − �̈�𝑦3) − 𝑎𝑎22𝑘𝑘𝑛𝑛2𝑓𝑓(𝑥𝑥12, 𝑏𝑏) − 2𝑎𝑎22𝜉𝜉𝑛𝑛2�̇�𝑥12 + 𝑎𝑎22𝑘𝑘𝑛𝑛3𝑓𝑓(𝑥𝑥13, 𝑏𝑏) +
      2𝑎𝑎22𝜉𝜉𝑛𝑛3�̇�𝑥13 + 𝑎𝑎22𝑘𝑘𝑛𝑛4𝑓𝑓(𝑥𝑥14, 𝑏𝑏) + 2𝑎𝑎22𝜉𝜉𝑛𝑛4�̇�𝑥14 = −𝑎𝑎2(𝑓𝑓𝑚𝑚1 + 𝑓𝑓𝑚𝑚3) + �̈�𝑒13(𝜏𝜏)
�̈�𝑥14 + 𝑎𝑎2(�̈�𝑥1 − �̈�𝑥4) + 𝑎𝑎2(�̈�𝑦1 − �̈�𝑦4) − 𝑎𝑎22𝑘𝑘𝑛𝑛2𝑓𝑓(𝑥𝑥12, 𝑏𝑏) − 2𝑎𝑎22𝜉𝜉𝑛𝑛2�̇�𝑥12 − 𝑎𝑎22𝑘𝑘𝑛𝑛3𝑓𝑓(𝑥𝑥13, 𝑏𝑏) −
      2𝑎𝑎22𝜉𝜉𝑛𝑛3�̇�𝑥13+𝑎𝑎22𝑘𝑘𝑛𝑛4𝑓𝑓(𝑥𝑥14,𝑏𝑏) + 2𝑎𝑎22𝜉𝜉𝑛𝑛4�̇�𝑥14 = −𝑎𝑎2(𝑓𝑓𝑚𝑚1 + 𝑓𝑓𝑚𝑚4) + �̈�𝑒14(𝜏𝜏)

 (11) 

where, 𝜉𝜉𝑖𝑖𝑥𝑥= 𝐶𝐶𝑖𝑖𝑖𝑖
2𝑀𝑀𝑖𝑖𝜔𝜔𝑛𝑛

, 𝜉𝜉𝑖𝑖𝑦𝑦= 𝐶𝐶𝑖𝑖𝑖𝑖
2𝑀𝑀𝑖𝑖𝜔𝜔𝑛𝑛

, 𝑘𝑘𝑖𝑖𝑥𝑥= 𝐾𝐾𝑖𝑖𝑖𝑖
𝑀𝑀𝑖𝑖𝜔𝜔𝑛𝑛

2 , 𝑘𝑘𝑖𝑖𝑦𝑦= 𝐾𝐾𝑖𝑖𝑖𝑖
𝑀𝑀𝑖𝑖𝜔𝜔𝑛𝑛

2 , 𝜉𝜉𝑛𝑛2= 𝐶𝐶12
2𝑀𝑀12𝜔𝜔𝑛𝑛

, 𝜉𝜉𝑛𝑛3= 𝐶𝐶13
2𝑀𝑀13𝜔𝜔𝑛𝑛

, 𝜉𝜉𝑛𝑛4= 𝐶𝐶14
2𝑀𝑀14𝜔𝜔𝑛𝑛

,𝑘𝑘𝑛𝑛2= 𝐾𝐾12(𝜏𝜏)
𝑀𝑀12𝜔𝜔𝑛𝑛

2 , 𝑘𝑘𝑛𝑛3= 𝐾𝐾13(𝜏𝜏)
𝑀𝑀13𝜔𝜔𝑛𝑛

2 , 𝑘𝑘𝑛𝑛4= 𝐾𝐾14(𝜏𝜏)
𝑀𝑀14𝜔𝜔𝑛𝑛

2 ,  

𝜉𝜉12= 𝜉𝜉𝑛𝑛2𝑀𝑀12

𝑀𝑀2
, 𝜉𝜉13= 𝜉𝜉𝑛𝑛3𝑀𝑀13

𝑀𝑀3
, 𝜉𝜉14= 𝜉𝜉𝑛𝑛4𝑀𝑀14

𝑀𝑀4
, 𝜉𝜉21= 𝜉𝜉𝑛𝑛2𝑀𝑀12

𝑀𝑀1
, 𝜉𝜉31= 𝜉𝜉𝑛𝑛3𝑀𝑀13

𝑀𝑀1
, 𝜉𝜉41= 𝜉𝜉𝑛𝑛4𝑀𝑀14

𝑀𝑀1
, 𝑘𝑘12= 𝑘𝑘𝑛𝑛2𝑀𝑀12

𝑀𝑀2
, 𝑘𝑘13= 𝑘𝑘𝑛𝑛3𝑀𝑀13

𝑀𝑀3
, 𝑘𝑘14= 𝑘𝑘𝑛𝑛4𝑀𝑀14

𝑀𝑀4
, 𝑘𝑘21= 𝑘𝑘𝑛𝑛2𝑀𝑀12

𝑀𝑀1
, 

𝑘𝑘31= 𝑘𝑘𝑛𝑛3𝑀𝑀13

𝑀𝑀1
, 𝑘𝑘41= 𝑘𝑘𝑛𝑛4𝑀𝑀14

𝑀𝑀1
, 𝑓𝑓𝑚𝑚1= 𝑇𝑇1

𝑀𝑀1𝜔𝜔𝑛𝑛
2𝑏𝑏𝑐𝑐𝑅𝑅𝑏𝑏1

, 𝑓𝑓𝑚𝑚2= 𝑇𝑇2
𝑀𝑀2𝜔𝜔𝑛𝑛

2𝑏𝑏𝑐𝑐𝑅𝑅𝑏𝑏2
, 𝑓𝑓𝑚𝑚3= 𝑇𝑇3

𝑀𝑀3𝜔𝜔𝑛𝑛
2𝑏𝑏𝑐𝑐𝑅𝑅𝑏𝑏3

, 𝑓𝑓𝑚𝑚4= 𝑇𝑇4
𝑀𝑀4𝜔𝜔𝑛𝑛

2𝑏𝑏𝑐𝑐𝑅𝑅𝑏𝑏4
, �̈�𝑒12(𝜏𝜏)=-𝑒𝑒𝑚𝑚2𝜔𝜔2 cos(𝜔𝜔𝜏𝜏 + 𝜓𝜓0), �̈�𝑒13(𝜏𝜏)=-

𝑒𝑒𝑚𝑚3𝜔𝜔2 cos(𝜔𝜔𝜏𝜏 + 𝜓𝜓0), �̈�𝑒14(𝜏𝜏)=-𝑒𝑒𝑚𝑚4𝜔𝜔2 cos(𝜔𝜔𝜏𝜏 + 𝜓𝜓0), 𝑎𝑎1= sin𝛼𝛼𝑛𝑛, 𝑎𝑎2= cos𝛼𝛼𝑛𝑛, (i=1,2,3,4). 

2.2 Poincaré Sections and Simulation Data 

The main standard designing parameters for the multi-shaft gear system with multi-clearances are; the modulus m=7 
mm, the gear teeth number of input gear z1=49, the gear teeth number of output gear z2=z3=44, the gear teeth number of 
fan transmission gear z4=21, and the normal pressure angle αn=20°. The standard dynamic parameters are selected in 
Table 1.  

Table 1. Dynamics parameters of the system 
Dynamic parameter Symbol Value Remark 
Displacement nominal dimension/m bc 50×10-6  
Gear backlash/m 2B 100×10-6  
Bearing radial clearance/m 2Bi 100×10-6 (i=1,2,3,4) 
Input torque /N·m T1 800  
Comprehensive transmission error /m Emj 25×10-6 (j=2,3,4) 
Support stiffness in X,Y coordinate direction / N·m-1 Kix,Kiy 2.0×107 (i=1,2,3,4) 
Average meshing stiffness /N·m-1 Kmj 2.6×108 (j=2,3,4) 
Time-varying meshing stiffness amplitude Ka 0.2  
Support damping ratio ξix,ξiy 0.1 (i=1,2,3,4) 
Meshing damping ratio Cmj 0.1 (j=2,3,4) 

Three Poincaré sections are defined to describe the impact characteristics of the gear system: 

i. Meshing periodic mapping section: 𝜎𝜎𝑛𝑛={(𝜏𝜏, 𝑥𝑥, �̇�𝑥) ∈ 𝑅𝑅2 × 𝑇𝑇|𝜏𝜏 = mod(2𝜋𝜋/𝜔𝜔)} 
ii. Tooth surface impact mapping section: 𝜎𝜎𝑝𝑝={(𝜏𝜏, 𝑥𝑥, �̇�𝑥) ∈ 𝑅𝑅2 × 𝑇𝑇|𝑥𝑥 = 𝑏𝑏} 

iii. Tooth back impact mapping section: 𝜎𝜎𝑞𝑞={(𝜏𝜏, 𝑥𝑥, �̇�𝑥) ∈ 𝑅𝑅2 × 𝑇𝑇|𝑥𝑥 = −𝑏𝑏} 
By the periodic mapping σn, the motion period number n of the excitation force contained in a meshing period T=2nπ/ω 

can be determined. Through the tooth surface impact mapping σp and tooth back impact mapping σq, the numbers of tooth 



Yan Yang │ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 3 (2023) 

ijame.ump.edu.my  10687 

surface impact and back impact, namely p and q are respectively determined. Combined with three types of Poincare 
mapping, the periodic motion pattern of the gear pair is obtained. The dimensionless differential equation in Eq. (11) is 
solved using the fourth-order Runge-Kutta numerical integration with variable step size, and the global bifurcation 
diagram, phase diagram, Poincaré projection mapping and the maximum dynamic load coefficient are obtained under 
standard parameters. Accordingly, nonlinear dynamic characteristics of the gear system are analyzed.  

3.0 RESULTS AND DISCUSSION 
3.1 Nonlinear Dynamics under Standard Parameters 

During the meshing process, there are generally three impact states on the meshing gear teeth [22], which are expressed 
by the symbol I. I=0 means the non-impact state, also called complete meshing condition, that the driving tooth and driven 
tooth of the gear pair are always in contact without separation. In this state, the system runs linearly. I=1 means the 
unilateral impact state that the impact occurs on the forward surface of the driving tooth or the backward surface of the 
driven tooth, the driving tooth and driven tooth of the gear pair separated. I=2 means the bilateral impact state that the 
impacts simultaneously occur on the forward and backward surface of the tooth in one meshing period or alternately occur 
in several meshing periods. 

Additional dynamic loads or impacts are generated during meshing because of the manufacture and assemble errors, 
elastic deformation of gear teeth, and time-varying characteristics of meshing stiffness accompanied by the alternate 
occurrence of single and double tooth mesh of gear pairs [23,24]. Dynamic load coefficient Kv is usually used to evaluate 
the deviation of the actual dynamic load from the theoretical load in the gear dynamics studies. The dynamic load during 
the meshing is variable by time, so the dynamic load coefficients in each meshing period (T=2nπ/ω) were continuously 
sampled. The maximum in the date set obtained is exactly the maximum dynamic load coefficient Kvmax at the motion 
state. The larger the value of Kvmax is, the greater the alternating impact stress and the more serious the impact noise is. 

Under standard parameters, the dimensionless meshing frequency ω is set as the control parameter, and the global 
bifurcation diagrams of gear pair 12, 13 and 14 are shown in Figures 2(a), 2(b) and 2(c), respectively. In the figures, the 
state of I=0 non-impact is shown in red, I=1 unilateral impact in black, and I=2 bilateral impact in blue. It can be observed 
that with the variations of controlling parameters ω, the periodic motion pattern and the bifurcation law is consistent, 
except for the amplitudes of relative micro-displacement at the meshing position. Therefore, in this study, gear pair 12 is 
focused on typically describing the dynamic characteristics of a multi-shaft gear system. As shown in Figure 2(d), the 
maximum dynamic load coefficient Kvmax during the meshing gear pairs varies with the controlling parameters ω.  

Taking ω∈[0.712, 0.72] as the simulation interval, Figure 3 describes the mutual transition between the adjacent 1-0-
0 and 1-1-0 impact motion of gear pair 12. The irreversibility of the adjacent impact motions mutual transition and the 
formation process of the hysteresis zone are discussed based on this. The superscript “↔ ” of the control parameter ω 
in Figure 3 indicates the superposition of increasing and decreasing directions of ω during the numerical calculation. With 
the meshing frequency ω increases, the period 1 non-impact motion 1-0-0 transfers into the period 1 one-sided tooth 
surface impact motion 1-1-0 through the grazing bifurcation point G1-0-0 (ω=0.7164). The relative micro-displacement x12 
jumps after the bifurcation point G1-0-0. On the contrary, with the meshing frequency ω decreases, the 1-1-0 one-sided 
impact motion passes through the saddle-node bifurcation point SN1-1-1 (ω=0.8448) into 1-0-0 non-impact motion. A 
narrow hysteresis zone L1-0-0∩L1-1-0 is formed between the bifurcation points G1-0-0 and SN1-1-1; within this hysteresis zone, 
adjacent 1-0-0 and 1-1-0 period 1 motions coexist simultaneously and stably. The control parameter ω passes through the 
hysteresis zone from the bifurcation point G1-0-0, and the meshing gear tooth surface impact number p increases by 1. 
Conversely, ω leaves the hysteresis zone through the bifurcation point SN1-1-1, the impact number p is reduced by 1, and 
the excitation force period number n=1 in a meshing period remains unchanged. 

  
(a) bifurcation diagram of gear pair 12 (b) bifurcation diagram of gear pair 13 
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(c) bifurcation diagram of gear pair 14 (d) maximum dynamic load coefficient Kvmax of 
gear pairs 12,13 and 14 

Figure 2. Global bifurcation and the maximum dynamic load coefficient diagrams of the gear pairs 

 
Figure 3. Transitions between 1-0-0 motion and 1-1-0 motion 

From Figure 2, the gear pair 12, 13 and 14 both exhibit a state of full meshing in period 1 of 1-0-0 stage when ω is in 
the low-frequency domain. From Figure 4(a), the phase diagram of gear 12 is a closed curve, and the Poincaré mapping 
of phase trajectory over periodic σn is a point in red, along with the stable run and lower vibration noise of gear 
transmission. With an increase in meshing frequency ω, the relative micro-displacement x12 increases. When ω exceeds 
0.7164， for gear pair 12, the state changes from non-impact complete meshing motion in the 1-0-0 stage to unilateral 
tooth surface impact motion in the 1-1-0 stage, grazing bifurcation (which are marked as “G Bif” in Figure 2) occurring, 
with the number of the period is the constant 1, which is shown in Figure 4(b). Grazing causes the system to jump around 
the bifurcation critical value of the control parameter ω in Figure 4(c). The 1-1-0 motion pattern does not change with the 
jump; however, as a reference in Figure 2(d), the maximum dynamic load coefficient increases abruptly due to the 
suffering of instantaneous impact at the meshing position, causing harm to meshing teeth, in serious cases, even damage 
to teeth or transmission failure. With the meshing frequency ω increases into the intermediate frequency domain, the 1-
1-0 unilateral tooth surface impact motion firstly enters quasi-periodic impact motion through Hopf bifurcation (Hopf 
Bif), then the quasi-periodic motion transits to long-period multi-impact motion and chaotic motion via phase locking.  

As shown in Figure 4(d), the phase diagram of chaotic motion presents multiple intersecting curve trajectories, and 
there are many scattered points in the mapping section σn. Due to the inherent sensitivity and randomness of the initial 
value, chaotic motion makes the gear system seriously unstable, the impact number on the tooth surface increases sharply, 
and the impact noise intensifies. Therefore, in the early stage of gear design, it is necessary to avoid the system working 
in the corresponding chaos frequency range to ensure the stable operation of the gear system. With a further increase in 
ω, the system degenerates from chaos into 2-1-0, 2-2-0 motion; when ω=1.89, the jump phenomenon occurs again near 
the grazing bifurcation point G2-1-0 between the above two motions. The phase path of 2-2-0 motion crosses σn twice to 
form two stable projection points in Figure 4(e). 4-4-0 motion is generated by period-doubling bifurcation (PD Bif) with 
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an increase in ω. When ω crosses 2.05, the gear pair 12 passes through the saddle-node bifurcation point SN4-4-0. At this 
time, the phase trajectory grazes at backlash b=1 shown in Figure 4(f), and the number of tooth surface impacts is reduced 
by 1, which produces the 4-3-0 impact motion. After a long window of chaotic motion as in Figure 4(g), gear pair 12 
gradually degenerates into 8-4-0, 4-2-0, 2-1-0 motion through a series of inverse period-doubling bifurcations (Inverse 
PD Bif) with increasing ω, see Figure 4(h). The phase diagram shows continuous inverse doubling of the period number 
n, and the number of projection points is respectively 8, 4 and 2. Eventually, the meshing impact motion changes to a 
stable 1-1-0 state, see Figure 4(i). In this process, the relative micro-displacement x12 decreases continuously; the 
maximum dynamic load coefficient decreases continuously, the impact number and noise decrease, and the stability 
gradually improves. 

   
(a) (b) (c) 

   

   
(d) (e) (f) 

   

   
(g) (h) (i) 

Figure 4. Superpositions of phase diagram and Poincaré mapping of the gear pair12: (a) ω=0.5, 1-0-0 motion;  
(b) ω=0.7164, 1-0-0 grazing bifurcation; (c) ω=0.75, 1-1-0 motion; (d) ω=1.6, chaotic motion; (e) ω=1.89, 2-2-0 

motion; (f) ω=2.05,4-4-0 Saddle-node bifurcation; (g) ω=2.8, chaotic motion; (h) ω=2.856, 16-12-0 motion;  
(i) ω=3.1, 1-1-0 motion 

3.2 Effects of Backlash on Gear System Dynamics 

Through synergistic simulation based on multi-parameter and multi-performance, the dynamic response and dynamic 
parameters matching rules of gear system can be studied from the system level, which provides a theoretical basis for 
system dynamic design. This study focuses on the meshing impact characteristics of gear system under the superposition 
of multiple stages backlashes. In this section, we study the dynamic characteristics of the gear system by taking the 
meshing frequency ω and the gear backlash b as control parameters with a region of b∈[0, 1], ω∈[0.1, 3.1] and keeping 
other standard parameters constant. In Figure 5(b) to 5(d), the parameter domain and distribution law of the periodic 
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meshing motion in the (ω,b) parameter-state space are obtained through numerical simulation and represented by different 
colors and symbol nT-I (the meshing period nT,𝑛𝑛 ≥ 1; the impact state I=0,1,2). The gray and not marked areas are 
irregular motion, long-periodic multi-impact motion or chaotic motion in the figures. The three-dimensional diagrams 
shown in Figure 5(a) contain 30 single-parameter bifurcation diagrams with relative micro-displacement x12; each 
bifurcation diagram corresponds to a certain backlash parameter b, which reflects the relationship between the relative 
micro-displacement x12 and the dynamic parameters (ω,b).  

 
 

(a) bifurcation diagram of relative micro-
displacement x12 

(b) distribution domains of impact motions for gear 
pair 12 

  

  
(c) distribution domains of impact motions for gear 

pair 13 
(d) distribution domains of impact motions for gear 

pair 14 
Figure 5. (ω,b) parameter-state diagrams showing the distributions and transition law of periodic motions for the gear 

pairs  

It can be seen from Figure 5(b) to 5(d) that in the (ω,b) parameter-state space, the three gear pairs mainly present three 
meshing motions: 1T-0 non-impact, nT-1 unilateral tooth surface impact, and nT-2 bilateral impact. In the low-frequency 
domain, the relative micro-displacement exhibits a linear jump behavior at the meshing position, and the jump bifurcation 
value is independent of gear backlash b. As shown in Figure 5(b), in the small gear backlash domain, gear pair 12 enters 
bilateral impact motion from the narrow period 1 non-impact motion, which seriously affects the critical speed of the 
“meshing-impact” jump. In the low-frequency and large backlash region, the meshing gear pair 12 presents 1T-0 motion 
with complete meshing and no impact, and the meshing relative micro-displacement x12 is always greater than the 
backlash. The two meshing tooth surfaces are always in contact with each other and not be separated. With an increase in 
ω, 1T-0 non-impact motion undergoes grazing bifurcation and transits to 1T-1 unilateral impact motion parameter domain 
without changes in the motion period n. It can be seen a grazing bifurcation line between the red (1T-0) and the black 
(nT-1) area in Figure 5(a), which corresponds to the boundary between 1T-0 motion and 1T-1 motion parameter domains 
in Figure 5(b). Grazing bifurcation of 1T-0 motion corresponds to stability boundary G1T-0, and 1T-1 motion stabilizes 
after a jump transition. On the jump boundary J1T-0/1T-0 between adjacent impact state parameter domains, the meshing 
displacement of the gear pair increases suddenly, which has a great influence on the dynamic load. Gear pair 12 exhibits 
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1T-2 bilateral swing impact characteristics in the small backlash region, which leads to the operation stability of the gear 
system being reduced, the driving ability weaker, and the impact noise higher. With increasing the meshing frequency ω, 
a parameter island consisting of 2T-2, 4T-2 double-sided impact motions appear and gradually decreases with increasing 
b. In the upper right region of the (ω,b) parameter-state space, a series of period-doubling bifurcations occur with 
increasing the meshing frequency ω, and induce a group of 2T-1、4T-1、8T-1 unilateral impact motions. After ω>2.835, 
the transition process of the meshing impact motion for gear pair 12 is: nT-1→16T-1→8T-1→4T-1→2T-1→1T-0, in this 
meshing frequency range, the type of meshing period motion does not change with increasing in backlash b, only the 
meshing relative micro-displacement increases linearly. In conclusion, it can be seen that the backlash b is mainly 
reflected in the small value range as a strong nonlinear factor of the gear system, which will result in bilateral impact 
motion. 

Because of the coupling effect between the gear pairs, the pattern type of meshing impact motion and bifurcation 
characteristics of gear pairs 13 and 14 shown in Figures 5(c)-(d) are similar to the gear pair 12. The difference is: a) The 
gear pairs 13 and 14 do not transit into 1T-0 non-impact motion in the high-frequency domain but maintain the 1T-1 
unilateral tooth surface impact motion state. 1T-2 bilateral impact motion parameter domain moves in the direction of 
increasing meshing frequency; b). 1T-2 parameter domain of the gear pair 13 in the small clearance range is divided into 
two parts by 1T-0 and 1T-1 motions, and the peak value of 1T-2 motion parameter domain corresponding to the backlash 
b is significantly reduced; c). 4T-1, 2T-1 motion parameter domain of gear pair 14 is extended to the large backlash range, 
the window of I=2 bilateral impact motion parameter domain in the (ω,b) parameter-state space increases, and the 
undesirable parameter range for severe meshing impact increases. 

 
Figure 6. Parameter-state diagrams showing the maximum dynamic load coefficient Kvmax of the gear pair 12 in the 

(ω,b) parameter-state space 

According to the definition of the maximum dynamic load coefficient Kvmax, the 3D surface diagram of Kvmax for gear 
pair 12 in the (ω,b) parameter-state space is obtained in Figure 6, which intuitively reflects the distribution of the 
maximum dynamic load coefficient in the two-parameter control domain. In the 1T-0 non-impact complete meshing 
domain, the maximum dynamic load coefficient Kvmax of the gear pair 12 is less than 0.75. With the increase of meshing 
frequency ω, Kvmax fluctuates with the dynamic behaviors such as jump, grazing bifurcation or period-doubling 
bifurcation. Corresponding I=1 unilateral tooth surface impact motion parameter domain in Figure 5(b), Kvmax mainly 
presents a distribution state parallel to the coordinate axis of backlash b, the dynamic performance of the gear system is 
approximately linear, and the impact state does not change with b. On the jump boundary, J1T-0/1T-0, the maximum dynamic 
load coefficient Kvmax of the gear pair 12 increases sharply at ω=0.7164. In the chaotic motion and the small backlash 
domain with I=2 bilateral impact parameter domain, the meshing motion exhibits strong nonlinear characteristics, the 
dynamic load fluctuates with the change of backlash, and Kvmax continues to increase to a peak value of Kvmax>4. It shows 
that the alternating stress of the meshing gear teeth is larger in this interval, and the tooth surface impact is stronger. 

During a horizontal scan of changing meshing frequency ω through different pattern types of impact motion regions, 
the diversity and evolution of the meshing characteristics can be observed by the single-parameter bifurcation diagrams. 
Figure 7 shows the relative micro-displacement x12 bifurcation diagram of the meshing gear pair 12 under different values 
of the dimensionless backlash b. By analyzing the stability and bifurcation of periodic motion, its parameter domain 
distribution and boundary line in the two-dimensional parameter plane can be described in detail. It can be seen from 
Figure 7(a) to 7(c) that when the value of dimensionless gear backlash b is different, complex nonlinear impact 
characteristics emerge in the gear system, and the system is sensitive to the parameter of gear backlash. Comparing with 
the calculation results under standard parameters in Figure 2(a), as shown in Figure 7(a), in the limit state where the 
dimensionless gear backlash b is 0.2, the meshing gear pair 12 has two windows of bilateral impact motions respectively, 
showing 1T-2 motion in ω∈  [0.739, 1.459] and 4T-2 motion in ω∈ [2.539, 2.692]. From Figure 7(b), when the 
dimensionless gear backlash b increases to 0.35, the bilateral impact window of the system becomes narrower to the 
interval of ω∈[0.79, 1.207], and the impact motion mode in the high-frequency domain mainly exhibits as I =1 unilateral 
impact motion state. The bilateral impact behavior leads to an increase in the relative displacement of meshing gear teeth 
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on the tooth back, and reduces the fatigue life of the gear. As shown in Figure 7(c), when b equals to 0.75, the bilateral 
impact state of the meshing gear pair disappears. In the middle and high-frequency domain, the chaotic motion window 
moves to the region where the frequency increases. 

   
(a) b=0.2 (b) b=0.35 (c) b=0.75 

Figure 7. Bifurcation diagrams of relative micro-displacement x12 under different dimensionless backlash b 

The following analyses are associated with the selected parameters: gear backlash b=0.35 and meshing frequency 
ω=1.05. In Figure 8(a), the meshing trajectory of gear pair 12 goes through the σn mapping once, forming and 1 fix points 
on the meshing periodic Poincaré section. The tooth surface impact occurs once under b equaling 0.35, and the tooth back 
impact occurs once under b equaling -0.35. As shown in the responding diagram of the time domain to relative micro-
displacement x12 (Figure 8(b)), both tooth surface impact and tooth back impact occur simultaneously under this condition. 
As shown in Figure 8(c), the responding curve of the time domain to dynamic load coefficient Kv is irregular, showing 
positive, zero and negative values. When the dynamic load coefficient Kv equals 0, the meshing gear teeth bear alternating 
dynamic loads. If the system runs in this parameter range for a long time, it is easy to produce tooth root fatigue fracture 
or tooth surface damage. It can be seen that the gear backlash is an important factor affecting the meshing impact 
characteristics and mesh-apart. What needs to be paid attention to is that in a meshing period, the more times of impact 
on the tooth surface and tooth back, the more obvious the adverse effects of vibration and noise caused by impact. 

   
(a) (b) (c) 

Figure 8. 1-1-1 double-sided impact motion, when b=0.35, ω=1.05: (a) phase diagram; (b) time response of relative 
micro-displacement x12 and (c) time response of dynamic load coefficient Kv 

From the above analysis, it can be seen that the meshing frequency ω=0.7164 is the critical value for the jumping 
behavior of the meshing gear pair. When the gear backlash b is large, ω is in the region of [0.79,1.0], [1.58,1.8], and 
[2.125,2.85], the gear system is in the state of chaotic motion and long-period impactic motion, and the input speed can 
be adjusted to prevent the gear system from continuously operating in this state domain. 

4.0 CONCLUSIONS 
Based on the consideration of the nonlinear factors, including bearing radical clearances, gear backlashes, and time-

varying meshing stiffness, a nonlinear time-varying model of the multi-shaft gear system is established. The pattern types 
and bifurcation characteristics of meshing impact motion under external load excitation are studied. The main conclusions 
are drawn as follows. 

i. The multi-shaft gear system is a strong nonlinear dynamic system with multiple degrees of freedom, and the 
system mainly presents non-impact motion in the low-frequency domain.  



Yan Yang │ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 3 (2023) 

ijame.ump.edu.my  10693 

ii. Grazing bifurcation of the meshing gear pair occurs with increasing frequency, and the complex dynamic 
characteristics of the local area near the grazing bifurcation point are analyzed to reveal the irreversibility of 
mutual transitions between adjacent fundamental periodic motions. The two types of adjacent impact motions in 
the hysteresis domain coexist stably. 

iii. Near the grazing bifurcation boundary ω=0.7164, there is a jump in the relative micro-displacement of the gear 
pair and a sudden increase in dynamic load, which causes a hard impact on the tooth surface, so this parameter 
condition is not an optional sensitive area.  

Extreme parameter conditions lead to abnormal vibration phenomena such as jumps, double-sided impact, dynamic 
mesh-apart and chaotic motion. A reasonable combination of design parameters can avoid the abnormal vibration state 
domain of the gear system and effectively reduce the dynamic instability of the gear pair caused by excessive meshing 
impacts. 

5.0 ACKNOWLEDGEMENT 
The authors gratefully acknowledge the support of the National Natural Science Foundation of China (12162019) and 

Gansu Science and Technology Planning Project (21JR7RA307, 21YF5WA060). 

6.0 REFERENCES 
[1] A. Mélot, Y. Benacha, E. Rigaud, J. Perret-Liaudet, and F. Thouverez, “Effect of gear topology discontinuities on the nonlinear 

dynamic response of a multi-degree-of-freedom gear train,” Journal of Sound and Vibration, vol. 516, pp. 116495, 2022. 
[2] L. Ryali, and D. Talbot, “Dynamic load distribution of planetary gear sets subject to both internal and external excitations,” 

Forschung im Ingenieurwesen, vol. 86, pp. 283–294, 2022. 
[3] B. Guilbert, P. Velex, D. Dureisseix, and P. Cutuli, “Modular hybrid models to simulate the static and dynamic behaviour of 

high-speed thin-rimmed gears,” Journal of Sound and Vibration, vol. 438, pp. 353-380, 2018. 
[4] W. B. Shangguan, X. L. Liu, Y. Yin and S. Rakheja, “Modeling of automotive driveline system for reducing gear rattles,” 

Journal of Sound and Vibration, vol. 416, pp. 136-153, 2018. 
[5] Y. Mao, P. Borghesani, Z.Y. Chin, and RB. Randall, Z. Peng, “Extraction and use of frequency-domain relationships between 

time-varying gear meshing properties and diagnostic measurements,” Mechanical Systems and Signal Processing, vol. 190, p. 
110129, 2023. 

[6] A. Kahraman, and R. Singh, “Nonlinear dynamics of a geared rotor-bearing system with multiple clearances,” Journal of 
Sound and Vibration, vol. 144, no. 3, pp. 469-506, 1991. 

[7] D. P. Sheng, R. P. Zhu, G. H. Jin, F-X. Lu, and H-Y. Bao, “Bifurcation and chaos study on transverse-torsional coupled 2K-
H planetary gear train with multiple clearances,” Journal of Central South University, vol. 23, pp. 86-101, 2016. 

[8] M. Azimi, “Pitchfork and Hopf bifurcations of geared systems with nonlinear suspension in permanent contact regime,” 
Nonlinear Dynamic, vol. 107, pp. 3339-3363, 2022. 

[9] M. Abruzzo, M. Beghini, C. Santus, and S. Manconi, “Dynamic behavior of a power re-circulating gear test rig including 
periodic variation of mesh stiffness and static transmission error,” Mechanism and Machine Theory, vol. 159, 104247, 2021. 

[10] N. Ullah, T. Cong, B. Huan, and H. Yucheng, “Influence of optimal tooth modifications on dynamic characteristics of a 
vehicle gearbox,” International Journal of Automotive and Mechanical Engineering, vol. 16, no. 1, pp. 6319-6331, 2019. 

[11] H. Motahar, F.S. Samani, and M. Molaie, “Nonlinear vibration of the bevel gear with teeth profile modification,” Nonlinear 
Dynamic, vol. 83, pp. 1875–1884, 2016. 

[12] Y. Xia, Y. Wan, and Z. Liu, “Bifurcation and chaos analysis for a spur gear pair system with friction,” Journal of the Brazilian 
Society of Mechanical Sciences and Engineering, vol. 40, p. 529, 2018. 

[13] Q. R. Zhao, X. Wang, T. T. Li, and H. Zhang, “Analysis of coupling fault correlation and nonlinear vibration of multi-stage 
gear transmission system,” Journal of Vibroengineeering, vol. 23, no. 7, pp. 114-126, 2020. 

[14] E. Rigaud, and J. Perret-Liaudet, “Investigation of gear rattle noise including visualization of vibro-impact regimes,” Journal 
of Sound and Vibration, vol. 467, 115026, 2020. 

[15] G. Martynenko, “Resonance mode detuning in rotor systems employing active and passive magnetic bearings with controlled 
stiffness,” International Journal of Automotive and Mechanical Engineering, vol. 13, no. 2, pp. 3293-3308, 2016. 

[16] A. Saghafi, and A. Farshidianfar, “An analytical study of controlling chaotic dynamics in a spur gear system,” Mechanism 
and Machine Theory, vol. 96, pp. 179-191, 2016. 

[17] A. Donmez, and A. Kahraman, “Characterization of nonlinear rattling behavior of a gear pair through a validated torsional 
model,” Jounal of Computational and Nonlinear Dynamic, vol. 17, no. 4, p. 041006, 2022. 

[18] G. Arian, and S. Taghvaei, “Dynamic analysis and chaos control of spur gear transmission system with idler,” European 
Journal of Mechanics - A/Solids, vol. 87, no. 1, p. 104229, 2021. 

[19] A. Farshidianfar, and A. Saghafi, “Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems,” 
Nonlinear Dynamics, vol. 75, no. 4, pp. 783-806, 2014. 

[20] J. F. Mason, P. T. Piiroinen, R. E. Wilson, and M. Homer, “Basins of attraction in non-smooth models of gear rattle,” 
International Journal of Bifurcation and Chaos, vol. 19, no. 1, pp. 203-224, 2009. 

[21] X. F. Gou, L. Y. Zhu, and D. L. Chen, “Bifurcation and chaos analysis of spur gear pair in two-parameter plane,” Nonlinear 
Dynamics, vol. 79, no. 3, pp. 2225-2235, 2015. 

[22] C. Padmanabhan, R. C. Barlow, T. E. Rook, and R. Singh, “Computational issues associated with gear rattle analysis,” 
Journal of Mechanical Design, vol. 117, no. 1, pp. 185-192, 1995. 



Yan Yang │ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 3 (2023) 
 
 

ijame.ump.edu.my  10694 

[23] Z. H. Hu, J. Y. Tang, Q. S. Wang, S. Chen and L. Qian, “Investigation of nonlinear dynamics and load sharing characteristics 
of a two-path split torque transmission system,” Mechanism and Machine Theory, vol. 152, p. 103955, 2020. 

[24] S. Qiao, J. Zhou, X. Zhang, and H. Jiang, “Dynamic thermal behavior of two-stage gear transmission system,” Journal of 
Vibration Engineering and Technologies, vol. 9, pp. 1809–1831, 2021. 
 

 


	2.0 METHODOLOGY
	2.1 Model Description
	2.2 Poincaré Sections and Simulation Data

	3.0 RESULTS AND DISCUSSION
	3.1 Nonlinear Dynamics under Standard Parameters
	3.2 Effects of Backlash on Gear System Dynamics

	4.0 ConclusionS
	5.0 Acknowledgement
	6.0 References

