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INTRODUCTION 
Centrifugal pumps are popular tools that are often used to move fluids in industries. In a centrifugal pump, kinetic 

energy is converted into pressure. Rotary mechanics are movements that occur in centrifugal pumps. The motion relies 
on the rotation around a central point to generate hydrokinetic energy to move the liquid. In general, centrifugal pumps 
are used in the food industry, wastewater treatment plants, agriculture, the oil and gas industry, and the paper and pulp 
industry [1]. Damage that can interfere with the performance and reliability of the pump will harm those industries. Fault 
detection and diagnosis systems are very important for overcoming these problems. Early detection of faults can help 
avoid product breakdowns, performance degradation, damage to machines, losses to human health, and even death [2]. 
Scholars have often conducted studies on pump fault detection. Various approaches or methods are used; some are model-
based or data-based. Model-based methods generally rely on a mathematical model of the process derived from the system 
identification process. However, data-based methods rely only on process measurements to diagnose faults [3]. Data-
based detection systems can be carried out in several ways, such as the fast Fourier transform [4], wavelet transforms [5] 
from vibration transmission, convolutional neural networks [6], and adaptive resonance theory neural networks [7]. 

The model-based detection system uses the principle of residual analysis. The residual is the signal generated from 
the difference between the model output and the measurement output. In general, the difference between researchers lies 
only in the method of obtaining the residuals and the residual analysis technique used. As in [8], the algorithm used for 
fault detection is a combination of structural analysis, observers, and analytical redundancy relations. In [9], the researcher 
used a fault diagnosis using the parity equation to generate the residuals. Residual analysis techniques can be performed 
in the time domain, as in [10], and frequency, as in [11]. Based on previous fault detection research, the model-based 
method has several advantages over the data-based method. For example, some of the advantages are high sensitivity to 
fault, robustness to modeling uncertainty, good attenuation of disturbance and noise, and the ability to distinguish 
simultaneous faults [12]. 

Model-based methods generally generate residuals using an observer, parameter estimation, and parity space, which 
require knowledge of plant dynamics through basic laws. However, under real conditions, there is no accurate 
mathematical model that can be obtained from non-linear systems. In addition, it is difficult to obtain a dynamic model 
of a plant with high nonlinearity. One solution to overcome this problem is to use an artificial neural network (ANN) 
based model. ANN is currently attracting the attention of researchers owing to their ability to study complex non-linear 
functions [13]. In addition, ANN can also identify non-linear models quickly and flexibly [14]. 

Therefore, in this study, we designed a pump fault detection system based on the residuals of ANN models. The 
residual analysis uses features in the time domain. As a case study, this study reviewed two centrifugal pumps that work 
for water flow, namely the water injection pump (WIP) and low-pressure oil flow, namely the medium-pressure oil pump 
(MPOP). One of the benefits offered by this proposed scheme is the use of the measurement results of process variables 
that already exist in the control room; therefore, there is no need to add a new measurement module. In addition, the 

ABSTRACT – Centrifugal pump is an instrument that is widely used in industry and has become 
the main driving component. A detection system is often needed to prevent damage to these pumps 
because they can interfere with the overall system performance. Therefore, this study discussed 
the development of a fault detection system for two centrifugal pump units, namely the Medium 
Pressure Oil Pump (MPOP) and the Water Injection Pump (WIP). In detecting the operating 
conditions of the pump, it was used a residual feature extraction technique in the time domain with 
a statistical approach. Residual was generated by using three sub-systems of a pumping system. 
Each sub-system was modeled using an artificial neural network with feedforward-back 
propagation architecture. Based on the feature values, the classifier was designed to classify pump 
conditions. Then the proposed fault detection system was applied in a condition monitoring system 
scheme. The test results (using data from the field) show that the fault detection system has an 
accuracy of 91.67% for MPOP and 94.8% for WIP cases. Meanwhile, the fault detection system 
has an accuracy above 99% during online monitoring simulations. 
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considered faults include those in the pumping system and not only in the pump. Furthermore, a condition monitoring 
scheme is discussed to detect faults online. This scheme was tested via a simulation. 

CENTRIFUGAL PUMP 
A pump is a tool that is useful for moving fluids by using a mechanical mechanism. A centrifugal pump is a kinetic 

machine that converts mechanical energy into fluid energy using centrifugal force [15]. The centrifugal pump has two 
main components: the rotating component consists of an impeller and a shaft, and the stationary component consists of a 
casing, casing cover, and bearing. The pumping system is illustrated in Figure 1. As the driving element, the motor 
converts electrical energy (in the form of current i) into mechanical energy (in the form of torque M). Thus, the mechanical 
part of the pump is rotated at speed ω. Then, the rotation causes an increase in the momentum of the pump fluid from the 
rotor inlet with a smaller radius to the rotor outlet with a larger radius and has the same value as the differential pressure 
∆p of the two inlet-outlet lines. The pump is connected to a piping system that transports a certain fluid at a flow rate Q 
that depends on the differential pressure of the pump. The input-output relationship of each block has very high 
nonlinearity [16].  

 

 
Figure 1. Pumping system block diagram 

This study examines the types of pump faults that include suction blockage and cavitation syndrome on MPOP, and 
dirty suction strainers and pressure transmitter faults on the WIP. A dirty or clogged suction strainer can increase 
vibration/noise levels, insufficient suction or discharge pressure, cavitation, and poor pump efficiency [16]. Meanwhile, 
a fault in the pressure transmitter can cause an error in the measurement of process variables.  

Cavitation is the phenomenon of vapor bubble formation owing to liquid evaporation as a result of the static pressure 
dropping below the vapor pressure of the fluid in the pump. Pressure shock from the burst of steam bubbles can destroy 
the pump over time. Cavitation can increase pump noise and vibration, as well as damage components, such as impeller 
erosion and mechanical seal damage. If this condition is severe, cavitation can break the shaft.  

ANN RESIDUAL OF CENTRIFUGAL PUMP 
The residual is the difference between the observed signal value and the estimated signal [17]. In this study, the 

residual refers to the difference in the output estimate value of the ANN model with the measurement value, hereafter 
referred to as the ANN residual. These residual values can be used to identify the condition of the pump system, whether 
it is in a normal condition or in the presence of a fault. For this reason, a residual analysis in the time domain was carried 
out, as described in the next section.  

There are two measurement signals that are compared with the estimated signal from the ANN; the pressure difference 
between the suction and discharge lines, and the flow rate at the pump outflow. Based on the working principle of the 
pumping system, there are three ANN models, static, dynamic, and dynamic pump-pipe models, as shown in Figure 2. 
Thus, three residuals were generated: the residual of the differential pressure (r1), pipe flow rate (r2), and pump-pipe flow 
rate (r3). The input and output of the artificial neural network model are based on research in [18] and are listed in Table 
1.  

 

 
Figure 2. Residual analysis on centrifugal pump fault detection system  

Table 1. Input-output variables of the ANN model 
Model Input Output 
Static pump Measured current Differential pressure estimate 
Dynamic pump Measured differential pressure  Pump flowrate estimate 
Dynamic pump-pipe Differential pressure estimate Pump-pipe flowrate estimate 
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Note that even though the quantity that enters the dynamic models is the same, namely, differential pressure, the origin 
of the data is different. The differential pressure signal that enters the dynamic pump model is derived from the 
measurement results, whereas the signal that enters the dynamic pump-pipe model is derived from the estimation results. 
Based on historical maintenance data, the process data are grouped into normal and fault condition data. The ANN model 
used normal-condition data for training and model validation. However, it is necessary to conduct data pre-processing 
first to clean data from outliers because outliers are assumed to be reading errors. Some of the data deviated very highly, 
and some deviated very poorly. Cleaning is performed on outliers that deviate very far from most other data, so that the 
input-output data pair is truly representative of the existing conditions.  

In this study, ANN modeling uses a feedforward architecture consisting of three layers (one input layer, one hidden 
layer, and one output layer), as shown in Figure 3(a). An ANN structure with one input neuron functions as a Simple 
Linear Regression (SLR), which is fitted with a straight line on only one predictor with the criteria of the least-squares 
method [19]. In addition, related to hidden neurons in the hidden layer, Guliyev et al. explained that a feedforward network 
with only one neuron in the hidden layer could still estimate the continuous function arbitrarily [20]. The use of one 
hidden neuron was also carried out in the study of Zhang et al., where the performance of the artificial neural network 
model with one hidden neuron was sufficiently good [21]. The output of the ANN model y described on Figure 3(b) was 
computed using the following equation: 

 

𝑦𝑦 = 𝑓𝑓 ��𝑤𝑤𝑗𝑗𝑧𝑧𝑗𝑗 + 𝑏𝑏
𝑁𝑁

𝑗𝑗=1

� (1) 

 
where zj is the jth input value, wj is the corresponding weight value, b is the bias term, N is the number of hidden neurons 
and f is the activation function. The activation function can be logarithmic sigmoid or linear.  

 

 
(a)  

(b) 
Figure 3. (a) ANN model structure and (b) a neuron in the output layer  

In this study, the artificial neural network architecture was designed using the parameters listed in Table 2. 
Furthermore, researchers varied the number of neurons (nodes) to obtain the best performance of the artificial neural 
network architecture. Variations in the number of neurons were between 1-20 in the hidden layer. 

The procedure used to modify the synaptic weights of the network in an orderly fashion to attain the desired design 
objective was backpropagation. This learning algorithm is most commonly used to train ANN. This is a supervised 
learning method that uses an error term (the difference between the desired and target values) to adjust the synaptic 
weights. This process was repeated until the mean square error (MSE) was reduced to an acceptably low value.  

The first stage in determining the weight of the ANN is data normalization, which aims to change the value of the 
original process variable to the value of the process variable within a range of 0–1. It aims to make the artificial neural 
network able to learn well. Data normalization was performed using the following equation: 

 

𝑥𝑥′ =
𝑥𝑥 − 𝑏𝑏
𝑎𝑎 − 𝑏𝑏 (2) 

 
where x’ is the normalized data, x is the original data, a is the maximum value of the original data, and b is the 

minimum value of the original data. The next stage involved training and validation. The training phase was conducted 
by using the parameters listed in Table 2. The number of hidden neurons in the hidden layer was then determined by 
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varying the number of hidden neurons from 1 to 20. Subsequently, the researchers used the architecture that provided the 
best performance. 

Table 2. Parameters of artificial neural network architecture design 
Parameters Information 
Network type Feedforward backpropagation 
Training algorithm Levenberg-Marquardt 
Performance function Mean square error (MSE) 
Epoch maximum 1000 
Number of layers 3 (1 input layer, 1 hidden layer, 1 output layer) 
Number of neuron Variation 1 – 20 
Activation function Hidden layer by using LOGSIG 

Output layer by using PURELIN 
Data composition MPOP 

Training: 2198 data (74,99%) 
Validation: 733 data (25,01%)  
WIP 
Training: 1360 data (80%) 
Validation: 340 data (20%) 

 
The best architecture was obtained from the smallest root mean square error (RMSE) and mean absolute percentage 

error (MAPE) values. Smaller RMSE and MAPE values indicate that the architecture can produce an output with a small 
error compared to other architectures. RMSE and MAPE can be expressed as follows: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖  )2

𝑛𝑛  (3) 

  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛��

𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖
𝑦𝑦�𝑖𝑖

�× 100%
𝑛𝑛

𝑖𝑖=1

 (4) 

 
where 𝑦𝑦𝑖𝑖 is the ith target value, 𝑦𝑦�𝑖𝑖 is the ith output value of the neural network, and n is the amount of output data. 

RESIDUAL-BASED DETECTION SYSTEM 
A block diagram of a fault detection system that uses residuals to perform fault detection and diagnosis is shown in 

Figure 4. 

Residual Ensemble Generation 
Residual generation was conducted by calculating the difference between the XP pump process variable signal and the 

ANN model output signal, XM, when the same U input was used. Moreover, the process data are arranged in the form of 
ensembles, which are collections of cells containing several process variable values. In this study, there are three 
ensembles, each of which represents the condition of the pump, namely, one ensemble for healthy and two ensembles for 
faults. Each ensemble contained 40 data cells, where each cell contained two process variable values, namely differential 
pressure and flow rate. Each cell has 25 data. Next, this ensemble was used to produce a residual ensemble. 

 

 
Figure 4. Block diagram of the proposed fault detection system 
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The residual ensemble dimensions were consistent with the data ensemble dimensions, with a matrix of 40 × 3 
dimensions derived from 40 rows of cell data and three columns of residual types. Based on the three ANN models in 
Table 1, three types of residuals are generated in each pump condition: residuals from model 1 (r1), residuals from model 
2 (r2), and residuals from model 3 (r3).  

Residual Feature Extraction 
After the residuals were generated, feature extraction was performed from the three types of residuals. Feature 

extraction is computationally specific and can characterize signals [22]. The residual feature used in this study is a 
statistical parameter of the residual signal, which is the value in [23].  

a) Mean: the average value of the overall residual value, written as follows: 
 

𝑥̅𝑥 =
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛  (4) 

 
where 𝑥𝑥𝑥 is the mean residual value, 𝑥𝑥𝑖𝑖 is the ith residual value, and n is the amount of residual data.  

b) Max: The maximum value of the entire residual or is written as follows: 
 

𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = max |𝑥𝑥𝑖𝑖| (5) 
 
c) Kurtosis: This is an indicator that shows the level of sharpness of the data, where the greater the kurtosis value, the 

sharper the shape of the distribution curve. This is based on the following equation:  
 

𝑥𝑥𝑘𝑘 =
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)4𝑛𝑛
𝑖𝑖=1
(𝑛𝑛 − 1)𝑥𝑥𝑠𝑠𝑠𝑠4

 (6) 

 
where 𝑥𝑥𝑘𝑘 is the kurtosis value, and 𝑥𝑥𝑠𝑠𝑠𝑠 is standard deviation. 

d) Variance: how far a residual value deviates from its average value, calculated by the following equation: 
 

𝑥𝑥𝑣𝑣 = 𝑥𝑥𝑠𝑠𝑠𝑠2 =
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1
𝑛𝑛 − 1  (7) 

 
e) One-Norm: is the sum of the residuals absolute values. 
 

|𝑥𝑥|1 = �|𝑥𝑥𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 (8) 

 
Thus, for the three residuals reviewed in this study, there were 15 features. For example, for residual r1 there are 

Mean1, Max1, Variance1, Kurtosis1, and OneNorm1 features, as shown in Table 3. 

Table 3. Residual feature codes 

Feature type 
Residual of 

Static pump model Dynamic pump model Dynamic pump-pipe model 
Mean  Mean1 Mean2 Mean3 
Maximum  Max1 Max2 Max3 
Kurtosis Kurtosis1 Kurtosis2 Kurtosis3 
Variance Variance1 Variance2 Variance3 
One-norm OneNorm1 OneNorm2 OneNorm3 

Residual Feature Classifier 
In machine learning, a classifier is an algorithm that can automatically categorize data into classes or labels. The 

classifier identifies the appropriate class, type, or category based on observed data. The classifier works by training a 
model with a training dataset, and the resulting model is used to predict the class in a set of data tests. Four types of 
classifiers were used in this study: support vector machines, decision tree, naïve Bayes, and K – Nearest neighbor. Next, 
the researcher used the residual feature input obtained from the previous stage. The residual feature classifier data 
consisted of statistical parameters (see Table 3) and pump condition labels: normal, fault-1 (suction blockage on 
MPOP/dirty suction strainer on WIP), and fault-2 (cavitation syndrome on MPOP/pressure transmitter fault on WIP). 
Thus, overall, 45 data types are used in designing the classifier for one centrifugal pump (WIP or MPOP). 
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In the classifier design, there are two stages: training and validation. Therefore, the residual feature data were divided 
into two parts: 80% for training and 20% for testing. Only the classifier with the best performance was selected and used 
in the detection-system testing phase. The parameters used to measure the performance of the classifier were accuracy, 
precision, and recall. The classifier performance can be described as follows [24]. 

i. Precision is a parameter that provides an estimate of how often the prediction results show the actual conditions. 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 (9) 

 
ii. Recall: This parameter describes how often the condition data can be detected by the classifier from the training 

results. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 (10) 

 
iii. Accuracy: a parameter that defines how well the classifier can distinguish classes. 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 (11) 

 
where true positives (TP) and true negatives (TN) are the outcomes of the positive and negative classes, respectively, 
correctly classified by the model, whereas false positives (FP) and false negatives (FN) are incorrectly classified 
outcomes.   

Design of Online Monitoring 
In this study, the detection system generated for each pump type was applied to an online monitoring scheme. A 

schematic of the pump condition monitoring system is shown in Figure 5. The input of this system consists of the 
measured current, flow rate, and differential pressure, whereas the output is the label of the predicted fault. The measured 
variables were obtained online using the data acquisition system.  

 

 
Figure 5. Pump condition monitoring system 

To determine the performance of the online condition monitoring system, this system was tested by simulation, the 
scheme of which is shown in Figure 6. Dynamic data from the process variable simulation (testX), which consists of the 
measured current, flow rate, and differential pressure, are fed to the prediction function block as the proposed fault 
detection system so that it can predict the pump condition (class label). Next, the prediction results are compared with the 
actual conditions (test Y) such that the correct prediction value can be calculated in the form of Boolean logic data. The 
data were then entered into the accuracy function block to calculate the level of prediction accuracy.  

 

 
Figure 6. Testing scheme of the proposed online system 

RESULTS AND DISCUSSION 
The specifications of the MPOP and WIP used as the research objects are listed in Table 4. Both are pump units in 

PT. Saka Indonesia Pangkah Limited, which is equipped with a Piping and Instrumentation Diagram (P&ID), as shown 
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in Figure 7. In addition to the differences in fluid usage, the difference between the MPOP and WIP also lies in the 
capacity and power of the pump.   

Table 4. Review of centrifugal pump specifications 
Parameters MPOP WIP 
Liquid type Oil Produced water 
Rated flowrate 110 m3/h 213 m3/h 
Suction pressure 22,5 barg 15,5 barg 
Discharge pressure 71,43 barg 97,2 barg 
Differential pressure 45,93 bar 81,7 bar 
Differential head 632 m 838,9 m 
Temperature 40,3 ºC 40 ºC 
Impeller type Closed Closed 
Driver type Induction motor Induction motor 
Rated of speed 2967 rpm 2969 rpm 

 

 
Figure 7. The P&ID of the installed pumps 

The data used in this study include operation (process) and maintenance data. The operation data are historical data 
from the three units of WIP and MPOP. The historical data used included normal pump data and faulty pump data. Thus, 
the initial stage of the experiment was to sort the normal pump data and fault-condition pump data. The next stage was 
pre-processing to remove outliers. The results of this stage are data that are ready to be used in designing the proposed 
detection system through the following stages: modeling normal pump conditions using the neural network method, 
generating residuals, extracting residual features with a statistical approach, and constructing a proper classifier. Finally, 
the proposed detection system design results were implemented in an online monitoring scheme. The experimental 
procedure is shown in the flowchart of Figure 8.  

 

 
Figure 8. The flowchart of the overall methodology 
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Residual Generation 
The operation data consist of several process variables, such as current, flow rate, suction, and discharge pressure, 

which can be accessed in the control room. Thus, the related sensors were located in the pump motor for current 
measurement, in the pump outlet for flow rate and discharge pressure measurements, and in the pump inlet for suction 
discharge measurement. The differential pressure variable was obtained from the difference between the discharge and 
suction pressure. Furthermore, historical maintenance data includes the type of fault and action taken. 

Based on the training and validation results, the best ANN model was obtained with the number of hidden neurons, 
as shown in Table 5, and the validation results are shown in Table 6. Based on the validation results, it can be seen that 
the largest RMSE value is in the dynamic pump-pipe model of the WIP pump. This is because the input of this model is 
not from the measurement results but from the estimation results of the static pump model; there is a double error. 
However, the dynamic pump-pipe model of an artificial neural network exhibits the expected performance. Based on the 
MAPE value, the entire design of the MPOP and WIP pump-estimation models had a value of less than 10%. This means 
that the prediction results are included in the high-accuracy category; therefore, the model is valid for representing the 
healthy condition of the pump. 

Table 5. The number of hidden neurons with the best performance 

Model 
Number of hidden neuron 

MPOP WIP 
Static pump 1 1 
Dynamic pump 17 1 
Dynamic pump – pipe 2 1 

Table 6. ANN model validation results 

Model 
MPOP WIP 

RMSE MAPE RMSE MAPE 
Static pump 0.0174 2.5547 1.0940 0.95546 
Dynamic pump 0.0461 8.8969 1.0044 0.43213 
Dynamic pump - pipe 0.0450 7.4179 5.4540 2.23170 

 
The validation results are also shown using a comparison graph of the ANN model output (blue circle) and the 

measured value as the target (red circle), as shown in Figure 9 for the WIP case. There are several estimates with results 
that have a small difference from the target. In addition, some estimates do not meet the target. However, this occurs in 
outlier data. The results of the artificial neural network-based modeling from the previous stage were used to generate the 
residual signals. Based on the model, each pump condition, both healthy and faulty, had three types of residuals. The 
residual stored the condition characteristics of the pump. The residual signal is shown in Figure 10. In this case, 25 
residual data points are obtained. 

 

  
(a) static pump model (b) dynamic pump model 
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(c) dynamic pump–pipe model 

Figure 9. WIP model validation 

 
Figure 10. Residual plot for WIP case 

Residual Feature Extraction Results 
The relationship between certain residual features for the healthy (blue) and fault (red and green) conditions is shown 

in Figure 11 for the MPOP and Figure 12 for the WIP. The graph shows the distribution of each feature in the diagonal 
position. Meanwhile, in nondiagonal positions, there are plots of two residual feature values.  

 

 
Figure 11. Max2 and OneNorm3 features on MPOP  
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Figure 12. Mean2, Max1, and OneNorm2 features on WIP 

For example, in Figure 11, the first column and first row are Max2 distribution graphs, whereas the second column 
and second row are OneNorm3 distribution graphs. On the other hand, the graph of the relationship between Max2 and 
OneNorm3 is shown in the first column – second line and second column – second row. In Figure 12, there are nine 
graphs, namely Mean2, Max1, and OneNorm2, because three residual features are considered. Fault can be distinguished 
based on the scatter plot. This is because some residual features have a fairly well-separated distribution of data between 
normal and fault conditions. However, some data were still close to the fault condition. In addition, not all residual features 
have good data separability; therefore, they were analyzed manually using a scatter plot. Moreover, if there are many 
fault analyses, the possibility of faults identification increases. Therefore, in this study, machine learning was used to 
classify the fault types automatically. 

Residual Feature Classifier Results 
The next stage is the design of multi-classification based on machine learning using Support Vector Machines (SVM), 

Gaussian Naïve Bayes (GNB), and K-Nearest Neighbors (KNN) methods. A comparison of the training results of the two 
best methods is presented in Table 7 for MPOP and Table 8 for WIP. Thus, SVM was selected as the classifier for MPOP, 
whereas GNB was selected as the classifier for WIP. A precision value of 100% was obtained under healthy conditions. 

Table 7. Comparison of training classifier performance under MPOP conditions 

Condition 
Parameter (%) 

Precision Recall Accuracy 
SVM KNN SVM KNN SVM KNN 

Healthy 100 100 100 100 
93.75 92.71 Cavitation syndrome 96.87 93.75 86.11 85.71 

Suction blockage 84.37 84.37 96.43 93.10 

Table 8. Comparison of training classifier performance in WIP conditions 

Condition 
Parameter (%) 

Precision Recall Accuracy 
GNB KNN GNB KNN GNB KNN 

Healthy 100 100 100 100 
94.8 93.8 Dirty suction strainer 100 90.6 84.4 90.6 

Pressure transmitter fault 86.5 90.6 100 90.6 
 
At the MPOP testing stage, the SVM classifier performed well in detecting the centrifugal pump condition, as shown 

in the confusion matrix in Figure 13. Meanwhile, for the suction blockage condition, the SVM classifier was able to detect 
six of the eight conditions correctly, where two data were read incorrectly as a condition of cavitation syndrome, so the 
precision value of the suction blockage category was only 75% (Table 9). This is referred to as a false negative, which is 
a condition when the actual condition data are detected as another condition data. System detection faults can occur 
because the statistical feature values in each condition are almost the same. In this case, cavitation syndrome and suction 
blockage have similar features. For the recall performance parameter in the testing phase, the SVM classifier has a value 
of 100% for healthy conditions and suction blockage and 80% for cavitation syndrome conditions. 
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Figure 13. Confusion matrix with Support Vector Machine classifier testing 

Table 9. Support Vector Machine classifier performance parameters 

Condition 
Parameter (%) 

Precision Recall Accuracy 
Train Test Train Test Train Test 

Healthy 100 100 100 100 
93.75 91.67 Cavitation syndrome 96.87 100 86.11 80 

Suction blockage 84.37 75 96.43 100 
 
In the WIP case test, the GNB classifier produced a confusion matrix, as shown in Figure 14. For fault conditions, 

GNB correctly detected seven of the eight conditions. Based on the test performance in Table 10, the prediction accuracy 
of the test data is 91.67%. The sensitivity (recall) of the healthy class was higher than that of the fault class. This is 
because one data point from each fault is incorrectly predicted as another type of fault. In this case, the transmitter fault 
condition and suction fault have features with similar values (see Figure 10, red and green coincide). When referring to 
the values of precision and recall, GNB produces 100% correct predictions for healthy conditions and 87.5% for fault 
conditions. 

 

 
Figure 14. Confusion matrix Gaussian Naïve Bayes classifier testing 
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Table 10. Gaussian Naive Bayes classifier performance parameters 

Condition 
Parameter (%) 

Precision Recall Accuracy 
Train Test Train Test Train Test 

Healthy 100 100 100 100 
94.8 91.67 Dirty suction strainer 100 87.5 84.4 87.5 

Pressure transmitter fault 86.5 87.5 100 87.5 

Online Monitoring 
The results of the online monitoring simulation are shown in Figure 15 (a) for MPOP and Figure 15 (b) for WIP. 

Based on the results of the online monitoring simulation, it can be seen that the system has been able to detect faults with 
an accuracy of 99.43% for MPOP and 100% for WIP. All test data were detected correctly under healthy conditions, 
cavitation syndrome, dirty suction strainer, and pressure transmitter fault. Detection faults occurred momentarily in the 
suction blockage condition, where 17 data were read as cavitation syndrome conditions (Figure 15 (left)). However, the 
fault detection system that has been developed can detect changes in the steady state of the pump from healthy to fault 
according to the test data entered in general.  

 

  
(a) MPOP (b) WIP 

Figure 15. Condition monitoring results 

CONCLUSIONS 
The ANN-based fault detection strategy proposed in this study has been proven to be able to detect healthy conditions 

and fault conditions in centrifugal pumps with 100% accuracy. Meanwhile, the accuracy reached 91% for fault diagnosis 
purposes. In addition, this system can detect changes in pump conditions with an accuracy rate of > 99% when used for 
online monitoring purposes. The use of ANN has proven to be a good alternative for the residual estimation of complex 
plants with parameters that depend on operating conditions. Therefore, a fault database must be available such that the 
detection system can work for various types of faults. This is a novelty for further research.  
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