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INTRODUCTION 
Advanced Driver Assistance Systems (ADAS) are enacted to protect road users in these circumstances. As a merger 

of numerous sophisticated systems, ADAS includes Adaptive Cruise Control (ACC), Autonomous Emergency Braking 
(AEB), Anti-lock Braking System (ABS), and many more [1, 2]. Although ADAS can prevent a collision, pedestrian-
vehicle collisions are viewed as the most deliberate type of accident since they yield a high fatality rate. There were 
almost 316,000 cases of road disaster in the ASEAN Region, which was transcribed to a disaster rate of 17.0 per 100 000 
population [1]. Meanwhile, in Malaysia, pedestrian fatalities registered roughly 500 deaths each year. The data continued 
to show that fatal road traffic crashes among the elderly (60 years old) are on the increase, climbing from 24.4 % in 2006 
to 44.2 % in 2013 [3]. In terms of incident conditions, the statistics indicate that straight roads have the greatest number 
of pedestrian fatalities, followed by junction-type roads [3]. Frontal collisions are the most common form of accident in 
Malaysia, according to data from the Malaysian Institute of Road Safety Research (MIROS) [1]. Usually, an accident 
occurs because of the driver’s incompetence to act in time [4].  

AEB can prevent accidents by determining potential threats before the incident [5]. At low speeds, an AEB system 
has been found to be effective, reducing collisions by 35 % to 41% [6]. At speeds less than or equal to 50 km/h, crashes 
and injury events are reduced by 54–57% [6], but at speeds of 60–70 km/h, only 35–42% of collision is mitigated, 
respectively. Only 12–25 percent of the risk is avoided when the host vehicle reaches speeds of 80 km/h or greater [7].  

The architecture of an AEB system consists of three essential elements: threat assessment strategies, motion planning, 
and tracking trajectory [8]. When involving the presence of the pedestrian as an obstacle, AEB is known as Autonomous 
Emergency Braking Pedestrian (AEB-P). Another pivotal aspect of the AEB-P system of an autonomous vehicle is its 
ability to calculate prior risk incidents and provide a possible replanned path in a hazardous situation. The motion planning 
system will receive the information fed by the pedestrian prediction motion system acting as a threat assessment that re-
evaluates the vehicle’s ongoing trajectory. After the threat assessment identifies the hazard and risk, an overriding system, 
namely motion planning, will replan the current trajectory to overcome the obstacle [9]. The potential-field-based method 
is one of the well-known path-planning approaches because of its simplicity in concept and application.  

In [10], the author proposed the Artificial Potential Field (APF) approach, in which the robot movements as a result 
of the summation of attractive and repulsive forces in its environment. The attractive force [10] is the force that pulls the 
robot toward its destination, whereas the repulsive force [10] is the force that pulls the robot away from an obstacle. 
However, a team of researchers recently tried to improve a conventional algorithm by adding dynamic boundaries as well 
as environmental boundaries into the algorithm [11] and [12]. As a result, this method assures that the vehicle can no 

ABSTRACT – Accidents between vehicles and pedestrians usually occur when a pedestrian is 
crossing the road. An Autonomous Emergency Braking Pedestrian (AEB-P) is introduced to 
prevent collisions between vehicles and pedestrians. However, the performance of an AEB-P will 
be reduced when the brake pad is worn out on a dry road. In this study, the motion planning, namely 
Vehicle Conditional Artificial Potential Field (VC-APF), including a warning signal and emergency 
brake phase that generate the vehicle’s deceleration, is proposed to analyze the effect of brake 
pad on the AEB-P performance. Then, the vehicle’s deceleration is tracked by the tracking 
trajectory, where the PI controller is adapted to provide the optimum braking force. The function of 
PI control is to ensure the vehicle’s deceleration is approaching the desired deceleration. The 
performance of the proposed method has been simulated on the dry road surface with different 
brake pad coefficients; 0.4, 0.35, and 0.24. The simulation results show that the vehicle manages 
to stop colliding with a pedestrian on the dry road surface at the minimum safety distance range of 
2.7-2.9 meters. 
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longer be trapped in local minima situations. Finally, the researcher managed to provide an optimized replanned trajectory 
by manipulating the Potential Field’s formulation [13].  

The vehicle will then pursue the reassessment trajectory using a tracking trajectory [8]. As collisions in the real world 
commonly comprise high-speed moving vehicles; thus a decisive choice of each strategy is vital to ensure a timely AEB-
P execution.  The Proportional Integrative Derivative (PID) controller [14] is one of the traditional control systems that 
can be utilized to govern the trajectory. It is frequently utilized in commercial robotics, as well as in automotive and 
industrial applications. This controller’s implementation is straightforward and yields acceptable results [15, 16]. 

Although AEB-P can prevent collision, the performance of AEB-P will be reduced if the brake fade phenomenon is 
occurred due to several factors, such as the brake pad being worn out. The term “brake fade” refers to the deterioration 
of braking performance at high temperatures. The deterioration of the binder phase, i.e. the pad material’s phenolic resin, 
is the primary cause of this phenomenon. On a mesoscopic scale, the resin had degraded to the point of releasing [17]. As 
a result, these activities significantly increased the contact patch release rate, resulting in a decrease in the brake pad 
friction coefficient [17]. This event occurred as a result of the braking system overheating, which led to an increase in 
brake power loss. This is because the brake pad’s surface must operate at a constant high temperature and uniform 
coefficient of friction throughout the braking process. The braking system’s dissipation capability and heat storage must 
be considered in order to minimize brake fade caused by thermal overload during a single stop or several stops under high 
speed or high load circumstances [18]. Brake fading is also initiated by the braking pattern [18]. The researcher in [19] 
stated that the average friction coefficient is in the range of 0.35 to 0.38, 0.39 to 0.43, and 0.16 to 0.24, respectively, 
corresponding to tiredness test temperatures of the brake pad at low, medium, and high thermal levels of 100-150 °C, 
200-250 °C, and 300-350 °C. When the vehicle brakes at low speed, more severe braking, and suffers severe emergency 
braking, the tiredness test of the brake pad is comparable in low, medium, and high temperatures. [19]. 

In this paper, the combination of Vehicle Conditional Artificial Potential Field (VC-APF) path planner with PI 
controller to get a feasible deceleration of the vehicle during the presence of pedestrian is proposed. The main objective 
of this paper is to analyze the motion planning and control performance of an AEB-P system. The AEB-P system 
performance is analyzed on the dry road surface as its brake disc friction coefficient varies from 0.4, 0.35 and 0.24. The 
system is simulated using MATLAB Simulink.  

NUMERICAL ANALYSIS 
Figure 1 shows the architecture of the proposed method, AEB-P, with vehicle conditional artificial potential field 

(VC-APF). This system consists of several modules, namely, pedestrian prediction motion, motion planning and decision-
making, and vehicle dynamics control. Each module is explained in the following sub-topic. In this presence, Advanced 
Driver Assistance Systems (ADAS) are created to protect road user. 

 

 
Figure 1. Architecture of an AEB-P system.  

Analysis Vehicle Model 
The sedan car, namely Proton Persona, is used as an analysis vehicle model in this study. Figure 2 shows the analysis 

vehicle model, while Table 1 shows the specifications of the vehicle [20].  
 

 
Figure 2. Vehicle model. 

Table 1. The specification of the analysis vehicle model. 
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Details Symbol Value SI unit 
Mass (Kerb Weight) 𝑚𝑚 1330 kg 
Center of gravity (c.g) length 
towards frontal part 𝑙𝑙𝑓𝑓 1.107 m 

Center of gravity (c.g) length 
towards rear part 𝑙𝑙𝑟𝑟  1.643 m 

Height of center gravity ℎ 0.479 m 
Effective radius of the tire 𝑟𝑟𝑒𝑒𝑓𝑓𝑓𝑓  0.393 m 

 
Since this study focuses on longitudinal motion, the vehicle model is designed based on a two degree of freedom 

(DoF). Figure 3 shows the forces acting on the vehicle while braking on the road.  
 

 
Figure 3. Forces acting on the vehicle model. 

By neglecting the drag force, the vehicle dynamic equation of motion on the longitudinal axis can be written as in Eq. 
(1).   

 
max = Fxf  + Fxr – Rx – DaVx2 (1) 

 
where m is a vehicle mass, ax is an acceleration/deceleration on the longitudinal axis, 𝐹𝐹𝑥𝑥𝑓𝑓𝑟𝑟, 𝐹𝐹𝑥𝑥𝑓𝑓𝑥𝑥, 𝐹𝐹𝑥𝑥𝑟𝑟𝑟𝑟 and 𝐹𝐹𝑥𝑥𝑟𝑟𝑥𝑥 is a 

longitudinal force at each tire. The nonlinear tire model, namely Dugoff tire model is used to determine the longitudinal 
force at each tire, and it is expressed as in Eq. (2).   

 
Fx = C𝝈𝝈 𝜎𝜎𝑥𝑥

1+ 𝜎𝜎𝑥𝑥
 𝑓𝑓(λ) (2) 

 
where 𝐶𝐶𝜎𝜎 is the longitudinal tire stiffness, 𝜎𝜎𝑥𝑥 is the slip ratio, while function,𝑓𝑓(𝜆𝜆) and the variable, λ are expressed as 

in Eq. (3) and Eq. (4).   
 

𝑓𝑓(𝜆𝜆) = �(2 −  𝜆𝜆)𝜆𝜆, 𝜆𝜆 < 1        
1        , 𝜆𝜆 ≥ 1  (3) 

  
λ = µ𝐹𝐹𝑧𝑧 (1+ 𝜎𝜎𝑥𝑥)

2[(𝐶𝐶𝜎𝜎𝜎𝜎𝑥𝑥)2+(𝐶𝐶𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡))2]1/2 (4) 

 
From Eq. (4), 𝜇𝜇 is tire-road adhesive friction, 𝐹𝐹𝑧𝑧 is a dynamic load at each tire and 𝛽𝛽 is a tire side slip angle. Considering 

𝛽𝛽 is zero during braking, Eq. (4) only influences the 𝜇𝜇 and 𝐹𝐹𝑧𝑧. Eq. (5) shows the equation of 𝜇𝜇 where k is a road coefficient, 
and its value depends on the road surface. For the dry surface, k is set as 0.9.  

 
µ𝑏𝑏𝑟𝑟𝑏𝑏 = −1.15𝑘𝑘 {𝑒𝑒−35𝜎𝜎𝑥𝑥  −  𝑒𝑒−0.35𝜎𝜎𝑥𝑥 } (5) 

 
The longitudinal slip ratio during braking is defined in Eq. (6).  
 

𝜎𝜎𝑥𝑥 = 
𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 𝜔𝜔𝑤𝑤− 𝑉𝑉𝑥𝑥

𝑉𝑉𝑥𝑥
 (6) 

 
where, 𝑟𝑟𝑒𝑒𝑓𝑓𝑓𝑓 is the effective radius of the tire, 𝑉𝑉𝑥𝑥   is the longitudinal velocity, and 𝜔𝜔𝑤𝑤  acts as a rotational velocity of 

the tire. Rearranging Eq. (1), the equation for acceleration, 𝑎𝑎𝑥𝑥 of host vehicle considering the tire-road friction coefficient 
is expressed as in Eq. (7).  
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𝑎𝑎𝑥𝑥 =
𝐹𝐹𝑥𝑥𝑓𝑓𝑟𝑟 + 𝐹𝐹𝑥𝑥𝑓𝑓𝑥𝑥 + 𝐹𝐹𝑥𝑥𝑟𝑟𝑟𝑟 + 𝐹𝐹𝑥𝑥𝑟𝑟𝑥𝑥

𝑚𝑚  (7) 

AUTONOMOUS EMERGENCY BRAKING PEDESTRIAN (AEB-P) 
AEB-P is a system that helps the vehicle avoid a collision by executing an emergency braking during the appearance 

of the pedestrian. Assuming a pedestrian is crossing a road, as in Figure 4., the trajectory route of the vehicle is planned 
to use the vehicle conditional APF (VC-APF) path planner. The vehicle’s initial separation headway from the collision 
region is set to 90 metres in the simulation. The vehicle and pedestrian are both considered to be travelling at 64 km/h 
and 4.32 km/h, respectively. The distance x1 indicates a safety margin as pedestrians enter the roadside, and ×2 represents 
a safety margin as pedestrians exit the roadside. Both safety margins are set to 0.75 metres. 

 

 
Figure 4. Illustration of VC-APF while a pedestrian is crossing a road. 

Pedestrian Prediction Motion 
In the AEB-P system, a pedestrian prediction motion will determine the position of the pedestrian as well as the vehicle 

by using time-to-collision (TTC). TTC is the time for the vehicle and pedestrian to enter the collision area. TTC is 
calculated by deriving the equation of the kinematic model when the obstacle appears in front of the vehicle as the vehicle 
is approaching it [21, 22].   

 

|𝑝𝑝| = �
−𝑣𝑣𝑣𝑣           ,         𝑎𝑎 = 0

−𝑣𝑣𝑣𝑣 +
1
2𝑎𝑎𝑣𝑣

2 , 𝑎𝑎 ≠ 0 (8) 

 
From the kinematic equation in Eq. (8), the velocity of the host vehicle is symbolized as v, while the deceleration of 

the host vehicle is symbolized as a. The time taken for the host vehicle to reach at a certain distance is symbolized as t, 
while the distance travelled by the host vehicle is represented as p. The time to collision (TTC) can be taken by rearranging 
the equation of the kinematic model as shown in Eq. (9).   

 

𝑇𝑇𝑇𝑇𝐶𝐶 = �
−𝑣𝑣 ± �𝑣𝑣2 + 2𝑝𝑝𝑎𝑎

𝑎𝑎 , 𝑣𝑣 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 < 0 (9) 

 
By referring to the architecture of AEB-P in Figure 1, the AEB-P system is linked to TTC in the pedestrian prediction 

motion module to measure the maximum safety distance between the vehicle and the pedestrian. The theory of pedestrian 
prediction motion is illustrated in Figure 4., which consists of TTC, TTCv, TTCe and TTCp. TTCv is the time when a 
pedestrian collides with a road barrier, whereas TTCe is the time when a pedestrian flees the collision zone and enters a 
safe zone. TTCp is the time it takes for a pedestrian to safely cross the road from point TTCv to point TTCe. The collision 
will occur when the algorithm of the system meets the following condition [23]:  

 
TTCv ≤ TTC ≤ TTCe & TTCp ≤ TTCe (10) 

 
If the vehicle and pedestrian is predicted to be in the collision area, the TTC value will fetch the kinematic equation 

to determine the maximum safety distance,  ⍴𝑜𝑜𝑟𝑟  for emergency braking in the motion planning and decision making. 
Maximum safety distance, ⍴𝑜𝑜𝑟𝑟  is also derived from the kinematic equation as shown in Eq. (11). Each variable in ⍴𝑜𝑜𝑟𝑟  

such as d0, 𝑣𝑣𝑐𝑐 and 𝑎𝑎𝑚𝑚𝑡𝑡𝑥𝑥 stands for critical safety distance, which is 2 m, current velocity, and maximum deceleration of 
the vehicle, respectively.  

 

⍴𝑜𝑜𝑟𝑟 = d0 + (𝑣𝑣𝑐𝑐  × TTC) + 𝑣𝑣𝑐𝑐 2

2𝑡𝑡𝑚𝑚𝑎𝑎𝑥𝑥
 (11) 
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where, ⍴𝑜𝑜𝑟𝑟  represents the safe distance while driving as the value is frequently changes depends on vehicles velocity 
and maximum deceleration of the vehicle. 

Motion Planning and Decision Making 
Motion planning considers the presence of a pedestrian in the environment using an artificial potential field (APF) to 

calculate the desired longitudinal motion of the vehicle, such as vehicle deceleration. Then, the APF is modified by 
including the phase of the vehicle during travel such as no signal, warning signal and full brake [22]. In this study, the 
Vehicle Conditional Artificial Potential Field (VC-APF) is used where it is influenced by the vehicle condition, which is 
the distance between the vehicle and obstacle. The shorter the distance between the vehicle and the obstacle, the greater 
the repulsive force generated at the impediment’s centre [12]. Equation (12), (13) and (14) show the full braking, warning 
signal and free states of the AEB-P system, as illustrated in Figure 5. Equation (15) shows the deceleration produced by 
the VC-APF path planner.  

 
Frep(X) = 1

2
n ( 1

⍴𝑟𝑟
 – 1

 ⍴𝑜𝑜𝑟𝑟 
) 1
⍴𝑟𝑟2

       if,  ⍴𝑟𝑟 ≤  ⍴𝑜𝑜𝑟𝑟 (12) 
  

Frep(X) = warning signal      if,  ⍴𝑜𝑜𝑟𝑟 ≤  ⍴𝑟𝑟 ≤  ⍴𝑜𝑜𝑟𝑟 + 1.5   (13) 
  

Frep(X) = no signal      if,  ⍴𝑟𝑟 ≥  ⍴𝑜𝑜𝑟𝑟 + 1.5 (14) 
 

 
Figure 5.  Activation phase of AEB-P system. 

The deceleration of VC-APF, αVC-APF can be obtained by deriving the Newton Second Law equation as follows:  
 

αVC-APF = 𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟(𝑋𝑋)
𝑚𝑚

 (15) 
 
The value of αVC-APF will be compared with the desired deceleration in the vehicle dynamic control module, as in 

Figure 1. In the simulation, the desired deceleration is set to 8 m/s2.  

Vehicle Dynamic Control 
After the redefined collision avoidance path has emerged, the vehicle dynamics control will track the path from the 

motion planning module. If the vehicle requires braking intervention to stop at a given distance and a pedestrian appears 
in front of the vehicle, a system with a short response time is preferred. This system is a simple and linear tracking system 
known as single-input and single-output (SISO), using deceleration and velocity of the vehicle as input and output, 
accordingly [8]. In this system, the vehicle dynamic control is handled by a PI controller. As it has its own abilities, the 
PI formulation variable refers to proportional and integral. As illustrated in Figure 6, the deceleration error is the 
difference between the required deceleration and the deceleration produced by the VC-APF path planner.  

 

 
Figure 6. Block diagram of PI controller. 



Z. Abdullah et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 19, Issue 3 (2022) 

10007   journal.ump.edu.my/ijame ◄ 

The ability of proportional gain is to boost the vehicle’s deceleration response speed. If the proportionate gain is too 
great, the reaction will become shaky. Since it can integrate the error over time, the integrative variable can converge the 
steady-state error to zero. The tuning of the P and PI controller is based on the vehicle’s constant desired deceleration of 
8 m/s2 [14]. The deceleration error, 𝛼𝛼𝑒𝑒𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟   between the desired deceleration, 𝛼𝛼𝑑𝑑𝑒𝑒𝑑𝑑  and VC-APF deceleration, 𝛼𝛼𝑉𝑉𝐶𝐶−𝐴𝐴𝐴𝐴𝐹𝐹   
is denoted as in Eq. (16). The PI controller equation can be expressed in Eq. (17) where 𝛼𝛼𝑟𝑟𝑝𝑝𝑑𝑑 is the desired trajectory 
deceleration, while 𝐾𝐾𝑟𝑟 and 𝐾𝐾𝑝𝑝 is the proportional and integral gain accordingly.  

 
𝛼𝛼𝑒𝑒𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟  = 𝛼𝛼𝑏𝑏 - 𝛼𝛼𝐴𝐴𝐴𝐴𝐹𝐹 (16) 

  
𝛼𝛼𝑟𝑟𝑝𝑝𝑑𝑑 = 𝐾𝐾𝑟𝑟  𝛼𝛼𝑒𝑒𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟(𝑣𝑣) + 𝐾𝐾𝑝𝑝  ∫ 𝛼𝛼𝑒𝑒𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟(𝑣𝑣) 𝑎𝑎𝑣𝑣𝑡𝑡

0  (17) 
 
Table 2 below shows the P and PI controller variables as the vehicle is simulated on a dry road surface at different 

values of brake disc friction coefficients; 0.4, 0.35 and 0.24.  

Table 2. PI controller variables on dry road surface. 
µdisc Kp Ki 
0.4 0.88 0.0039 
0.35 1.01 0.0026 
0.24 1.48 0.0005 

Braking System of AEB-P 
The AEB-P system uses this disc brake system as an actuator. The coefficient of friction at the brake disc pad has a 

direct impact on the braking system’s performance. The contact patch between the brake pad and disc rotor is shown in 
Figure 7.   

 

 
Figure 7. Contact patch between brake pad and disc rotor [20]. 

When a driver presses a brake pedal, the pedal braking force will be transferred to the brake calliper. The brake 
calliper’s piston pushes the brake pad against the disc rotor, decreasing and subsequently stopping the wheel’s rotation. 
The braking torque, Tb, is formed by multiplying the actuating force acting on the centre of pressure with the effective 
radius, Fact and R. The Fclamp is referred to as the force that clamped the disc brake. The actuation forces on disc brakes 
have pressed the piston against the rotor, resulting in disc brake retarding torque. Ffriction is stand for frictional force after 
the actuation force operating on it, Ffriction occurred at the disc brake.  

 
Fact = mαpid (18) 

  
Fclamp = 2Fɑct (19) 

  
Ffriction = µFclamp (20) 

  
Tb = FfrictionR (21) 

 
The braking torque on disc brakes can be written as in Eq. (22). Fɑct is obtained from the production of deceleration 

after P or PI controller tuning with the mass of the vehicle.  
 

Tb = 2µdiscFactR (22) 
 
The value of the brake pad’s coefficient of friction, which is a disc, is varied in this simulation to explore the influence 

of the brake pad. The brake pad’s coefficient of friction values of 0.4, 0.35, and 0.24 are used in the simulation. 
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RESULTS AND DISCUSSION 
The results are based on the proposed AEB-P architecture, which starts with the pedestrian prediction module, which 

consists of the time-to-collision (TTC) and AEB-P activation phase. Then, the proposed method VC-APF in the motion 
planning and decision-making module are discussed with the consideration of the different brake disc pad friction 
coefficient for the dry road surface.   

Pedestrian Prediction Module 
Figure 8 shows the time-to-collision (TTC) and AEB-P activation system when a vehicle is driving on a dry surface. 

Based on Figure 8(a), the TTC can be used to establish whether there is a high danger of collision for pedestrians. The 
blue and purple color lines represented the host vehicle’s time to collision and the time taken to count the pedestrian 
entering and exiting the collision region. The time for the pedestrian to escape and enter the collision area was depicted 
by the yellow and red color lines, respectively. When the pedestrian prediction module forecasts that the pedestrian is in 
the collision area, it begins to feed the VC-APF path planner the value of the vehicle’s maximum safe distance from the 
pedestrian. Figure 8(b) shows when the car approaches the pedestrian, the AEB-P mechanism activates. The vehicle’s 
spacing headway, warning signal phase, and full braking phase are shown by the blue, yellow, and red lines, respectively. 
As the vehicle’s spacing headway crosses the warning signal phase, the warning signal begins to trigger at time 2.125 s. 
When the spacing headway passes the full brake phase at 3.7853 s, the AEB-P system applies an emergency brake. 
Because the pedestrian is expected to enter the collision area at 2.125 s, the value for full braking and warning signal 
phase increased suddenly at 2.125 s, as shown in Figure 8(a) and 8(b).   

 

 
(a) Time to collision for the host vehicle                           (b) AEB-P activation distance 

Figure 8. (a) The time-to-collision (TTC), (b) AEB-P system during braking on a dry surface. 

Motion Planning and Decision Making 
The performance of the motion planning and control is analyzed on varies brake disc pad friction coefficient, µdisc = 

0.4, 0.35 and 0.24 on dry surface conditions. After the pedestrian prediction module predicts the collision will occur, VC-
APF path planner will send the warning signal to driver. If there is no response by the driver, the system will override the 
vehicle by generating the deceleration to the brake control unit. For getting the full braking force during emergency 
braking, the desired deceleration in the brake control unit is set at 8 m/s2. In the brake control unit, the PI controller is 
used to obtain the desired deceleration, 8 m/s2. 

Figure 9 shows the behaviors of the VC-APF deceleration on dry road surface condition for different brake pad 
coefficient. Based on the equation deceleration of VC-APF, as in Eq. (15), an increase in the deceleration’s value is 
influenced by the repulsive force, Frep(X). In addition, the Frep(X) will generate the warning signal and emergency braking 
when the distance between the host vehicle and pedestrian complies with the condition as in Eq. (12) and Eq. (13). The 
VC-APF motion planning start to initiate the deceleration at 3.7853 s which is 22.78 m from the pedestrian. Figure 9(a), 
9(b) and 9(c) shows the deceleration value trend tends to increase smoothly and stop until it achieves maximum 
deceleration which is 6.617 × 10-5, 6.201 × 10-5 and 5.784 × 10-5 for µdisc = 0.4, µdisc = 0.35, µdisc = 0.24 respectively. 
These results show that the maximum deceleration generated by the VC-APF is too small compared with the desired 
deceleration, 8 m/s2. The P and PI controllers are used in the braking control unit to minimize and eliminate the error 
between the acceleration VC-APF and desired deceleration.   
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Figure 9. The behavior of the VC-APF deceleration on a dry road surface (a) µdisc = 0.4, (b) µdisc = 0.35 and (c) µdisc = 

0.24. 

Braking Control Unit 
The P and PI controllers are compared for different brake pad coefficients. Figure 10(a), 10(b) and 10(c) show the 

comparison of P and the PI controller for each brake pad coefficient. The analysis of the P and PI controller performance 
are summarized in Table 3.  

 

 
(a) Brake pad coefficient 0.4 

 
(b) Brake pad coefficient 0.35 
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(c) Brake pad coefficient 0.24 

Figure 10. The effect of P and PI controller during activation of AEB-P. 

Table 3. P and PI controller response on a dry road surface. 

µdisc 
Rise time (s) Steady-state error 

P Controller PI Controller P Controller PI Controller 
0.4 0.023615 0.024752 0.08011 0.00145 
0.35 0.02367 0.024319 0.04610 0.0003061 
0.24 0.023734 0.023817 0.007541 0.001516 

 
The system rise time to reach the setpoint is fast for P controller compared to PI controller. However, the PI controller 

managed to reduce the steady-state error in this system compared to the P controller in Figure 10 above shows the ability 
of the integral, I variable in PI controller to reduce the steady-state error compared to the P controller. In terms of 
deceleration performance, the PI controller is slightly better compared to the P controller. Figure 10(a) shows the vehicle 
maximum trajectory deceleration in the PI controller managed to reach 7.999 m/s2 compared to the P controller, which is 
7.92 m/s2. Figure 10(b) and 10(c) shows the vehicle maximum deceleration in P controller which is 7.954 m/s2 and 7.993 
m/s2 respectively while in PI controller is 8 m/s2 for µdisc = 0.35 and 0.24. Figure 11(a), 11(b) and 11(c) show the dynamics 
behavior of the vehicle when simulated on a dry road surface at varied brake disc pad friction coefficient µdisc = 0.4, 0.35 
and 0.24, respectively.  

 

 
(a) Brake pad coefficient 0.4 
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(b) Brake pad coefficient 0.35 

 

 
(c) Brake pad coefficient 0.24 

Figure 11. Vehicle dynamics behavior for PI control response. 

Each subfigure: i, ii and iii stands for the minimum safety distance of the vehicle, slip ratio of the tires as well as 
stopping time for the vehicle to stop, respectively. In this simulation, the PI controller is selected as a braking control unit 
to obtain the optimum deceleration for the brake actuator. Based on the spacing headway results as in Figure 11(a)i, 
11(b)i, and 11(c)i, the vehicle is stopped before the minimum safety distance. This proved that the proposed AEB-P with 
PI controller could prevent the collision between vehicle and pedestrian, although the brake pad coefficient is low. The 
summary of minimum safety distance, maximum slip ratio and stopping time for all brake pad coefficients, as in Table 4.  

From Table 4. , the vehicle manages to have a safety distance from the pedestrian in the range from 2.7 m to 2.9 m 
after executed an emergency braking when simulated at different brake disc pad friction coefficient. The higher 
deceleration of the vehicle will produce a longer minimum safety distance of the vehicle. The slip ratio of the front and 
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rear part of the tires is in the optimal slip ratio range during emergency braking. It is important to make sure the slip ratio 
is in the range of 0.075 ≤ 𝑝𝑝 ≤ 0.211 in order to avoid skidding phenomena. The slip ratio of each tires tends to increase 
directly proportional over time due to effect of integral variable in PI controller as shown in Figure 11(a), 11(b) and 11(c) 
for subfigure ii. The vehicle only takes below than 2.3 s to stop entirely when simulated on dry road surface for µdisc = 
0.4, 0.35 and 0.24.  

Table 4. Vehicle dynamic behavior on a dry road surface. 

µdisc 
Minimum safety 

distance (m) 
Maximum slip ratio Stopping time (s) 𝜌𝜌𝐹𝐹𝐹𝐹 ,𝜌𝜌𝐹𝐹𝐹𝐹 𝜌𝜌𝐹𝐹𝐹𝐹 ,𝜌𝜌𝐹𝐹𝐹𝐹 

0.4 2.715 0.1075 0.07729 2.2247 
0.35 2.772 0.1075 0.07729 2.2187 
0.24 2.834 0.1075 0.07729 2.2137 

 

CONCLUSION 
In this study, a simulation model of VC-APF motion planner and PI tracking trajectory control has been developed to 

keep the minimum safety distance of the vehicle from pedestrian skidding while braking on the dry road surface with 
various brake disc pads friction coefficients. VC-APF is a reliable motion planner during emergency braking as it provides 
a warning signal and emergency braking phase distance for the host vehicle. The combination of VC-APF with PI 
controller is critical during braking because it can increase the VC-APF deceleration value approaching the desired 
deceleration that has been set. The vehicle manages to have a comfortable minimum safety distance which is in the range 
of 2.7-2.9 metres for various brake disc pad friction coefficients after emergency braking compared to the previous study 
[24], as the safety distance is set to 2.0 metres. These results approved that the proposed model, VC-APF and PI controller 
can increase the braking performance and safety of the vehicle. For future study, the consideration of wet road surfaces 
and integration between ABS and VC-APF is recommended to ensure the robustness of the VC-APF at the different road 
surfaces. 
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