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ABSTRACT - This paper focused on modelling of a gradient flexible plate system utilizing an 
evolutionary algorithm, namely particle swarm optimization (PSO) and cuckoo search (CS) 
algorithm. A square aluminium plate experimental rig with a gradient of 30° and all edges 
clamped were designed and fabricated to acquire input-output vibration data experimentally. 
This input-output data was then applied in a system identification method, which used an 
evolutionary algorithm with a linear autoregressive with exogenous (ARX) model structure to 
generate a dynamic model of the system. The obtained results were then compared with the 
conventional method that is recursive least square (RLS). The developed models were 
evaluated based on the lowest mean square error (MSE), within the 95% confidence level of 
both auto and cross-correlation tests as well as high stability in the pole-zero diagram. 
Investigation of results indicates that both evolutionary algorithms provide lower MSE than 
RLS. It is demonstrated that intelligence algorithms, PSO and CS outperformed the 
conventional algorithm by 85% and 89%, respectively. However, in terms of the overall 
assessment, model order 4 by the CS algorithm was selected to be the ideal model in 
representing the dynamic modelling of the system since it had the lowest MSE value, which 
fell inside the 95% confidence threshold, indicating unbiasedness and stability. 
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1.0 INTRODUCTION 
The superiority of flexible plate structures such as lightweight, lower maintenance, lower energy consumption, and 

faster response intrigues various engineering industries like solar panels, bridge decks, aircraft [1], and ship bodies [2] as 
well as conveyor systems [3]. Despite the numerous benefits that a flexible structure provides, it is easily affected by 
vibration due to the presence of disturbance forces. Thus, the unwanted vibration leads to plate structural fatigue and 
durability problems which affect the plate stability and performance. Subsequently compromising the safety of working 
environments [4]. 

Unwanted vibration must be reduced for the plate's performance to be maintained. Therefore, passive vibration control 
(PVC) has been proposed. PVC primarily involves modifying the dynamic characteristics of the structure by adding an 
absorber and damper to prevent excessive vibration on the plate. The increase in weight structure, however, limits PVC, 
as this technology cannot sustain low-frequency vibration on the flexible plate. Therefore, active vibration control (AVC) 
is consequently introduced. The AVC is a method of suppressing undesired vibration by interfering with the principal 
disturbance source. To create a successful AVC scheme, the system modeling must be realistic enough to replicate the 
actual dynamic characteristics of the structure [5]. 

Dynamic model identification by experimentation is an effective way to obtain dynamic modelling. The characteristics 
of a complex structure normally identified in the nonlinear system can be included in the dynamic model. Researchers 
have used the System Identification (SI) method to model systems that approximate physical system behavior under 
diverse operating situations. Based on the observed input-output data, this method is used to determine the accurate model 
of a dynamic system [6]. A decent model can be found by employing an appropriate estimation optimization approach. 
Nowadays, many researchers employ evolutionary algorithms (EA) in their optimization efforts to identify the optimum 
model because EA has been proven to be effective.  

For instance, particle swarm optimization (PSO), which was inspired by the intelligent social behaviour of social 
organisms such as flocks of birds and schools of fish, has gained researchers’ attention in various optimization problem-
solving due to its fast convergence as well as fewer parameters that need tuning [7]. For a similar system in research, 
Khoooshechin et al. investigated the optimal parameters of flexible square cascade multicomponent isotopes. The 
outcome showed PSO optimization managed to increase the enrichment of each isotope at any concentration [8]. Besides, 
Negri et al. obtained the natural frequencies and mode shapes by using the simulational model updating method that 
utilized PSO optimization [9]. In [10], the researchers used an improved PSO algorithm with a two-stage optimization 
approach to efficiently accelerate particle swarm optimization (EAPSO) for estimating the localization and quantification 
of the damaged elements in plate structures. Meanwhile, Wang et al. utilized PSO optimization to calculate the optimum 
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combination of parameters of arc length for the curve interpolation method for interpolating the stress field of a wind 
tunnel flexible plate [11]. Besides, Julai et al. [12] optimized the control parameters using PSO for a flexible plate for 
vibration cancelation. 

Another widely used EA in engineering applications is the Cuckoo search (CS) algorithm, which was inspired by the 
reproduction strategy of cuckoo birds. The ability to converge optimally in global search problems makes it extensively 
used by researchers for optimization issues [13]. For example, Chavan and Pawar employed the CS algorithm for 
optimization, maximization of density and minimization of cycle time on the cold chamber die-casting process [14]. In 
[15], Tran-Ngoc et al. utilized the CS algorithm by improving the weight and bias parameters of Artificial Neural Network  
(ANN) to minimize the differences between real and desired outputs on steel bridge beam-like structures [16]. Another 
study that uses CS as an optimization approach is in [17], where the optimum parameters for both the parametric 
estimation in modelling development and the PID controller’s parameters for a single-link flexible manipulator are 
determined. Besides, [18] studied the optimization of the proportional-derivative (PD) based controller parameters by CS 
algorithm for the control scheme of a single-link flexible manipulator. Apart from that, Xu et al. investigated the vibration 
structural damage identification by using CS algorithm on detecting the local damages from the nonlinear objective 
function established by utilizing the natural frequencies and modal assurance criteria [19]. 

It can be concluded that PSO has fast convergence and use few parameters. Meanwhile, CS is very effective in solving 
global optimization, and it has single parameters to be adjusted. The advantages of PSO and CS highlighted hereby have 
prompted an investigation into their capabilities. Therefore, this study aims to use both PSO and CS algorithm with a 
system identification approach to model a flexible plate structure tilted at a gradient of 30°. The attained model is validated 
in terms of input/output mapping, Mean square error (MSE), correlation test, and pole-zero stability diagram. The 
outcome of the study would determine the suitability of the EA algorithm for a gradient flexible plate. This will serve as 
a starting point for further improvements to the algorithm.  

2.0 EXPERIMENTAL SETUP 
An experimental setup was conducted to acquire the input-output vibration data from a 30° gradient flexible plate 

structure. Firstly, the experimental rig of 30° gradient flexible plate structure was designed then fabricated. The input-
output vibration data were acquired experimentally by integrating National Instruments (NI) data acquisition and 
instrumentation system. A square aluminium thin plate was used in the experiment with a dimension of 50 cm × 50 cm × 
0.15 cm with a gradient of 30°. The edges of the experimental rig were fully clamped. The specification of the 30° gradient 
flexible plate used in this study were listed in Table 1. 

Table 1. The specification of the experimental rig 
Specification Value 
Dimension (length×width×thickness) and orientation 0.5×0.5×0.0015 m with 30° gradient 
Number of sections 10×10 
Density, ρ 2.71×103 kg/m3 
Mass moment of inertia, I 5.19×10-11 kg.m2 
Modulus of elasticity, E 7.11×1010 N/m3 
Poisson’s ratio, ν 0.3 

 
A magnetic shaker (S 50018) was placed on the excitation point of the experimental rig to generate the actuation force. 

The magnetic shaker was connected to a function generator (GFG-82155A) through a power amplifier (BAA 60) to create 
a sinusoidal actuation force. Two pieces of piezo-beam type accelerometer (PCB Piezotronics-353B33 and Kistler-
8640A50) were attached at the observation and detection point, respectively to acquire the acceleration signal that 
represents the vibration of the 30° gradient plate structure. The sampling times were set to 0.003 s. The piezo-beam type 
accelerometers were connected to the NI data acquisition system (NI 9232 and NI 9263) mounted on the NI Compact-
DAQ (portable NI cDAQ-9174) is connected to the personal computer. A personal computer equipped with a 10th 
Generation Intel® Core™ i3-10105 Processor, 16GB RAM, and MATLAB R2018A software were used to analyze the 
required signal obtained from the experiment. The experimental setup and integration system are shown in Figure 1 to 
Figure 3, respectively.  

3.0 SYSTEM IDENTIFICATION 
SI method was defined by developing the model of the system based on the input-output of experimental data [4]. SI 

steps consist of data acquisition, model structure selection, parameter estimation, and model evaluation. In this study, the 
model was developed using an autoregressive with exogenous input (ARX) and the model parameters were estimated 
using a conventional algorithm which is the RLS and PSO as well as CS algorithm.  
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Figure 1. Experimental setup of 30° gradient flexible plate rig 

 
Figure 2. Location of magnetic shaker during experimental setup 

 
Figure 3. Schematic diagram of the flexible plate with 30° gradient setup 

3.1 Data Acquisition 

Data acquisition refers to the process of collecting data from various sources. In many cases, data acquisition involves 
processing data in real-time as it is collected, in order to ensure that the model being developed is accurate and can be 
used effectively. In this research, the experimental input-output data collection involves sensors, actuators, software, and 
other electronic components to collect data from the physical structure that is a flexible plate.  

The magnetic shaker in the system provides an input signal. It produced an input acceleration signal to imitate the 
actual system under severe vibration. Accelerometer was placed on the detection point to measure this input signal. The 
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detection point is where the primary source of vibration or disturbance was detected. In order to detect the vibration output 
from the system, another accelerometer was employed to capture the acceleration signal which represents the vibration 
perceived by the gradient flexible plate. This was known as an observation point. The observation point is where the first 
mode of vibration occurred. The next three steps are explained in the following section.   

3.2 Model Structure 

A model structure is a transfer function that can represent the model of the system. In this study, the ARX model 
structure was selected due to the simplicity of its model structure in estimating the model parameters [6]. ARX model 
structure can be expressed as Eq. (1) and Eq. (2). 

 

𝑦𝑦(𝑡𝑡) =
𝐵𝐵(𝑧𝑧−1)
𝐴𝐴(𝑧𝑧−1) 𝑢𝑢(𝑡𝑡) +

1
𝐴𝐴(𝑧𝑧−1) 𝜉𝜉(𝑡𝑡) (1) 

  
𝑦𝑦(𝑡𝑡) = −𝑎𝑎1𝑦𝑦(𝑡𝑡 − 1) …−𝑎𝑎𝑛𝑛𝑦𝑦(𝑡𝑡 − 𝑛𝑛) + 𝑏𝑏1𝑢𝑢(𝑡𝑡 − 1) … 𝑏𝑏𝑛𝑛𝑢𝑢(𝑡𝑡 − 𝑛𝑛) +  𝜉𝜉(𝑡𝑡) (2) 

  
where y(t) is the output signal and u(t) is the input signal, respectively while 𝜉𝜉(𝑡𝑡) is the zero-mean white noise in the 

system. n is the order of the model while a1…an and b1…bn were the parameters of the model. 

3.3 Parameter Estimation 

This study employs three types of algorithms for parameter estimation: RLS, PSO, and CS. The following is a detailed 
explanation of the algorithm. 

3.3.1 Recursive least square  

Recursive Least Square (RLS) algorithm is conventional parametric modelling based on a weighted least square 
criterion, used an iterative refinement technique to estimate the parameters continuously using previously existing 
parameters and information obtained from the continuous operation of the system [20]. In the RLS algorithm, the current 
parameter vector 𝜃𝜃(𝑖𝑖) is estimated based on the previous value of estimated vector 𝜃𝜃(𝑖𝑖 − 1). The accurate modelling can 
be determined by estimating the unknown parameters in real-time operation in this system. 
 

𝜃𝜃(𝑖𝑖) =  𝜃𝜃(𝑖𝑖 − 1) + 𝐾𝐾(𝑖𝑖)𝐸𝐸(𝑖𝑖) (3) 
  

𝐾𝐾(𝑖𝑖) =
 𝜆𝜆−1𝑃𝑃(𝑖𝑖 − 1)𝑥𝑥(𝑖𝑖)

1 + 𝜆𝜆−1𝑥𝑥(𝑖𝑖)𝑇𝑇𝑃𝑃(𝑖𝑖 − 1)𝑥𝑥(𝑖𝑖) (4) 

  
𝑃𝑃(𝑖𝑖) =   𝜆𝜆−1𝑃𝑃(𝑖𝑖 − 1) − 𝜆𝜆−1𝐾𝐾(𝑖𝑖)𝑥𝑥(𝑖𝑖)𝑇𝑇𝑃𝑃(𝑖𝑖 − 1) (5) 

  
𝐸𝐸(𝑖𝑖) = 𝑦𝑦(𝑖𝑖) −  𝑥𝑥(𝑖𝑖)𝑇𝑇 𝜃𝜃(𝑖𝑖 − 1) (7) 

  
where 𝜃𝜃(𝑖𝑖) are the current parameter estimation and 𝜃𝜃(𝑖𝑖 − 1) is previous parameter estimation. 𝜆𝜆 is forgetting factor, 

x(i) is regression vector and y(t) is the output system. 

3.3.2 Particle swarm optimization  

Particle Swarm Optimization (PSO) introduced by Kennedy and Elberhart in 1995 is based on the social behaviour of 
social organisms such as a school of fish and a flock of birds which have great animal team behaviour. PSO algorithm is 
a stochastic and population-based swarm intelligence algorithm. PSO algorithm is widely known in research due to the 
advantages whereby PSO can be easily programmed with few parameters to control which makes the optimization process 
simpler. PSO also does not need prior knowledge of the problem-searching area [21].  

Initially, the number of particles is randomly initialized and then flies through the space problem. The position of each 
particle was represented with i-th particle, represented in a d-dimensional vector in problem space as Xi = (xi1, xi2, …, xid) 
where i = 1, 2, …, n where n is defined as the number of particles. The velocity vector of i-th particle vi = (vi1, vi2, …, vid) 
was defined as the change of its position. Each particle memorizes the best position it has seen, thereby each particle’s 
velocity and position are adjusted accordingly based on its memories. Meaning the particles always fly throughout the 
problem space to the best position. PSO algorithm completes the optimization after the personal best solution of each 
particle and global best values of the whole swarm were obtained. Every sample’s error is calculated, and the mean 
squared error (MSE) is used as an objective function which is defined in Eq. (20). Thus, it is used to evaluate the 
algorithm’s fitness score. The target is to reduce the fitness value and optimize the parameters.  

The best fitness value is represented as Pi (pi1, pi2, …., pid) while the fittest particle found at the time, t was represented 
as Pg (pg1, pg2, ..., pgd). Both velocities and positions of particles were updated based on the following equations: 
 

𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) = 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑐𝑐1𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟1�𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡)� +  𝑐𝑐2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2�𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡)� (8) 
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𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) (9) 
  

where t is the number of iterations, c1 and c2 are acceleration coefficients, rand1 and rand2 are random numbers in the 
range [0, 1], and w is the inertia weight. The inertia weight, w is updated by the equation as shown below to reduce the 
weight over a number of iterations [7].  

𝑤𝑤 = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 −  �
𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥 −  𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
� 𝑡𝑡 (10) 

 
where wmin and wmax are the maximum and minimum values of inertia weight, while 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum number 

of iterations. Figure 4 shows the flowchart of the PSO algorithm developed in this study. 

 

 

Figure 4. PSO algorithm flowchart 

3.3.3 Cuckoo search algorithm 

Inspired by brood parasitism reproduction of cuckoo birds, Cuckoo Search (CS) algorithms were introduced by Xin-
She Yang and Suash Deb in 2009. Similar to the PSO algorithm, CS is also categorized as a stochastic and population-
based swarm intelligence algorithm. The Cuckoo is considered a fascinating bird due to its aggressive reproduction 
strategy. Cuckoos lay eggs in communal nests and may remove other eggs to increase the hatching probability of their 
eggs. The ability of the CS algorithm to converge to global optimality is an advantage that is considered in the study. The 
switching or discovery probability in the CS algorithm controls both local search and global search capabilities [4, 12]. 
The switching probability affects the searching time of the local and global searches. A lower value of discovery rate will 
consequently increase the global search time and thus allow global optimality can be determined with a higher probability. 
The levy flight process that is used in the global search is another contributing factor to the CS algorithm. The levy flight 
process has infinite mean and variance, which allows the CS algorithm to explore the global search space more efficiently 
[12]. 

Initially, a population of host nests was initialized. The population was performed as follows: 

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙 +  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢 − 𝑙𝑙𝑙𝑙), 𝑖𝑖 = 1, … ,𝑛𝑛; 𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚 (11) 

 
where xij is a solution that represents a cuckoo egg in a nest of the host while lb and ub represented the lower and 

upper boundary of the problem domain, respectively. randij is a random number from the uniform distribution within the 
interval, the range usually between 0 and 1. The exploration of search space was carried out by Levy flight process in 
cuckoo search is presented as: 

𝑥𝑥𝑖𝑖
(𝑡𝑡+1) =  𝑥𝑥𝑖𝑖𝑡𝑡 +  𝛼𝛼𝛼𝛼(𝑥𝑥𝑖𝑖𝑡𝑡 −  𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 )𝑟𝑟 (12) 

 
where 𝑥𝑥𝑖𝑖𝑡𝑡 is an individual current location, 𝛼𝛼 is the step size variable, r is a random number resulting from the normal 

distribution and 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡  is the current best nest, and S is a random walk based on Levy flights. The step length S is calculated 
using the Mantegna algorithm as shown in the following: 

 

NO 

YES 

Start 

Specify the PSO parameters (w, C1 and C2) 

Initialize particles with random position, x and velocity, v 

Calculate the fitness of each particle 

Update Pbest and Gbest particles 

Update position, x and velocity, v of particles 

Gen > Max Gen 

End 



Jamali et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 3 (2023) 
 
 

ijame.ump.edu.my  10564 

𝑆𝑆 =  
𝑢𝑢

|𝑣𝑣|1/𝛽𝛽′ (13) 
 
where 𝛽𝛽 is a parameter from range 1 to 2. The value of u and v can be obtained from normal distribution as follows: 

𝜎𝜎𝑢𝑢 =  �
𝛤𝛤(1 +  𝛽𝛽) sin �𝜋𝜋𝜋𝜋2 �

𝛤𝛤 �1 +  𝛽𝛽2� 𝛽𝛽2(𝛽𝛽−1)/2
�

1
𝛽𝛽

,𝜎𝜎𝑣𝑣 = 1 (14) 

 

 
Figure 5. CS algorithm flowchart 

3.4 Model Validation 

Model validation is the last step in the system identification procedure. Validation of the developed model is very 
crucial to verify the optimum model, which represents the dynamic system of the 30° gradient flexible plate accurately. 
Four validation tests were considered for this study, namely one step ahead prediction (OSA), mean squared error (MSE), 
correlation tests, and pole-zero diagram stability. Al-Khafaji stated that the principles of model validation were comparing 
the actual and predicted output in time and frequency domain, respectively, as well as conducting the correlation test 
between input data and the prediction errors. 

3.4.1 One step ahead prediction  

One-step ahead prediction (OSA) is commonly used in model validation. The equation of OSA can be expressed as 
[19]: 

 𝒚𝒚 ̂(𝒕𝒕) = 𝒇𝒇 ((𝒖𝒖(𝒕𝒕),𝒖𝒖(𝒕𝒕 − 𝟏𝟏), … ,𝒖𝒖(𝒕𝒕 − 𝒏𝒏 𝒖𝒖,𝒚𝒚(𝒕𝒕),𝒚𝒚(𝒕𝒕 − 𝟏𝟏), … ,𝒚𝒚(𝒕𝒕 − 𝒏𝒏 𝒚𝒚) ) (18) 
 

where f(.) is a nonlinear function while u and y are input and output, respectively. The equation of prediction error 
can be expressed as: 

 
𝒆𝒆(𝒕𝒕) = 𝒚𝒚(𝒕𝒕) − 𝒚𝒚�(𝒕𝒕) (19) 

 
where e(t) is the predicted error at time t, y(t) is the output system at time t, and ŷ(t) is one step ahead prediction model 

output at time t. If the value of residual is small, then the developed model meets the criteria, which can be validated by 
determining the residual between measured output and predicted output. 

3.4.2 Mean squared error 

In model validations, the mean squared error (MSE) is the most widely utilized besides OSA. The MSE is the 
difference between the actual output y(n) and the predicted output ŷ(n). It can be expressed as [19]: 

𝑴𝑴𝑴𝑴𝑴𝑴 =  
𝟏𝟏
𝑵𝑵�

(𝒚𝒚(𝒕𝒕) −  𝒚𝒚�(𝒕𝒕))𝟐𝟐
𝑵𝑵

𝒕𝒕
 (20) 

 
End 

NO 

YES 

NO 

Start 

Initialize random population of host nests 

Get cuckoo, i randomly by Levy flights and 
evaluate its fitness Fi 

Choose a nest, j randomly by and evaluate its fitness Fj 

Fi > Fj 
Let nest, j as 
the solution 

Replace nest, j 
with new solution 

Abandon a fraction pa of worse nests and build 
new one at new location by Levy flights 

Keep the best solution (nest) 

Gen > Max Gen 

YES 
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where y(n) is the actual output attained from data acquisition, ŷ(n) is the predicted output produced from the 
optimization process via simulation and N is the number of input or output samples. The model meets the satisfied criteria 
if only the MSE value is small. 

3.4.3 Correlation test 

A correlation test is a statistical test representing the degree of relationship between two variables. Two types of 
correlation tests, namely autocorrelation and cross-correlation, are represented as vectors and matrices. The prediction of 
different data sets produced is accepted if the model was unbiased. Moreover, the prediction error is uncorrelated with all 
linear and nonlinear inputs and outputs if the model structure and estimated parameters are correct [21]. 

Autocorrelation’s main purpose is to verify whether the error is independent of the past error. The equation of 
autocorrelation can be expressed as [22]: 

∅𝒆𝒆𝒆𝒆(𝝉𝝉) = 𝑬𝑬[𝒆𝒆(𝒕𝒕 − 𝝉𝝉)𝒆𝒆(𝒕𝒕)] = 𝜹𝜹(𝒕𝒕) (21) 
 

where ∅𝑒𝑒𝑒𝑒(𝜏𝜏) is the autocorrelation between 𝑒𝑒(𝑡𝑡) and 𝑒𝑒(𝑡𝑡 − 𝜏𝜏), while 𝑒𝑒(𝑡𝑡) is the residual whereas 𝛿𝛿(𝑡𝑡) is an impulse 
function. The estimated autocorrelation should be zero when 𝜏𝜏 is non-zero, as the residual is white noise. The error is 
correlated where the model structure is unallocated when 𝜏𝜏 is non-zero. The autocorrelation test was considerably 
accepted if the correlation test achieved was within 95% of the confidence level and defined as 1.96√𝑁𝑁, where N is the 
length of data. Cross-correlation’s main purpose is to verify whether the error is independent of the input signal. The 
equation of the cross-correlation test can be expressed as [19]: 

∅𝒖𝒖𝒖𝒖(𝝉𝝉) = 𝑬𝑬[𝒖𝒖(𝒕𝒕 − 𝝉𝝉)𝒆𝒆(𝒕𝒕)] = 𝟎𝟎… ∀𝝉𝝉 (22) 
 

∅ue(τ) is the cross-correlation between u(t) and e(t) which represent the input and residual, respectively. The 
residual is correlated with input when cross-correlation is non-zero for all 𝜏𝜏. Similar to the autocorrelation test, cross-
correlation test can be accepted if the correlation tests are achieved within 95% of the confidence level. 

4.0 RESULTS AND DISCUSSION 
In this study, a total of 4000 datasets were collected throughout the experimental test and the sampling time was set 

to 0.003 s. A total of 2000 data points were used for training, while the remaining 2000 points were used for testing.The 
optimum model should have the lowest MSE, the highest stability in the pole-zero diagram, and be within 95 percent 
confidence for both auto and cross-correlation tests.  

4.1 Modelling using Recursive Least Square  

The optimum model based on the RLS algorithm was fine-tuned by varying the model order and forgetting factor. 
Table 2 shows the initial RLS parameters. Model order 6 was shown to be the optimum, with the lowest mean square 
error of 6.645310-4 and 7.416210-5 for training and testing data, respectively. Figures 6 and 7 represent the actual and 
expected outputs of the 30° gradient flexible plate system in the time and frequency domains. Based on Figures 6 and 7, 
it was demonstrated that the developed model was capable of reproducing the actual result. It was supported by the 
relatively small error that occurred between the real and estimated outputs based on RLS modelling as shown in Figure 
8.  

Table 2. Parameter of optimum model for RLS modelling 
Parameter Value 
Forgetting factor, 𝜆𝜆 0.7 
Model order 6 
MSE for training data 6.6453×10-4 
MSE for testing data 7.4162×10-5 

 
Figures 9 and 10 show the pole-zero diagram and the correlation test, respectively. According to the pole-zero diagram, 

the RLS algorithm produced model was stable because all of the transfer function poles were inside the unity circle – 
(0,0) being the most stable. The efficiency of the RLS algorithm-developed model was tested using autocorrelation and 
cross-correlation tests. Based on both correlation tests, the RLS-developed model was found to be biased because the 
autocorrelation does not satisfy the 95 percent confidence level. Equation (23) expresses the transfer function of a 30° 
gradient flexible plate system based on RLS modelling.  

 

𝑯𝑯(𝒛𝒛)𝑹𝑹𝑹𝑹𝑹𝑹 =  
−𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐−𝟏𝟏 −  𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎−𝟐𝟐 +  𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏−𝟑𝟑 +  𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏−𝟒𝟒 + 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐−𝟓𝟓 +  𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝒛𝒛−𝟔𝟔

𝟏𝟏 + 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎−𝟏𝟏 +  𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏−𝟐𝟐 −  𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎−𝟑𝟑 +  𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎−𝟒𝟒 +  𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏−𝟓𝟓 −  𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑−𝟔𝟔
 (23) 
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(a)   (b) 
Figure 6. Actual and prediction outputs of the system by RLS modelling in the time domain (a) estimated output for 

4000 sample datasets and (b) an enlarged view of 200 sample datasets 

 

Figure 7. Actual and prediction outputs of the system by RLS modelling in the frequency domain 

 
 

(a)  (b) 
Figure 8. Error between actual and estimated output by RLS modelling (a) sample for 4000 datasets and (b) an enlarged 

view of 200 datasets 

The results show that the developed mathematical model of the gradient flexible plate, represented by the transfer 
function expressed in Eq. (23), generates a small mean square error (MSE) value when a model order of 6 is used. This 
suggests that this mathematical model can generate data that is closely aligned with the original data. In addition, the 
pole-zero diagram result indicates that the model is stable. System stability is a crucial performance specification for a 
control system that cannot be disregarded. Besides, although the correlation test was found to be biased, the model can 
still be accepted as this biasness indicates that the model is specialized for certain settings or universally applicable. Thus, 
it can be concluded that the developed mathematical model by using RLS can be used to represent the physical structure 
of the titled flexible plate. 
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Figure 9. Pole-zero diagram system of model order 6 by RLS modelling 

  

(a) (b) 
Figure 10. Correlation tests of model order 6 by RLS modelling (a) autocorrelation and (b) cross-correlation 

4.2 Modelling using Particle Swarm Optimization 

The optimum model of the PSO algorithm was obtained by the heuristic method. Several parameters were adjusted 
heuristically by substituting different values of the number of particle swarm, number of iterations, inertia weight, 
acceleration coefficient, and model order. Firstly, the tuning process was initiated by adjusting one of the parameters at 
one time while the other parameters were set as constant. Then, other parameters were tuned until the optimum model of 
the PSO algorithm was acquired. Table 3 contains the initial PSO parameters. The optimal model order was found to be 
model order 2, with mean squared errors of 1.174110-5 and 1.067210-5 for training and testing data, respectively. Figure 
11 represents the relationship between the mean squared error and the number of iterations. Figure 12 and Figure 13 show 
the actual and predicted outputs of the 30° gradient flexible plate system in the time and frequency domains. Based on 
Figure 12 and 13, it was demonstrated that the developed model could imitate the actual output. Figure 14 demonstrates 
the relatively low difference between real and estimated outputs, showing PSO’s reliability in system modelling 
estimation. 

Table 3. Parameter of the optimum model by PSO modelling 
Parameter Value 
Number of particle swarm 700 
Number of iterations 500 
Inertia weight, ω 0.7 
Acceleration coefficient, C1 and C2 2.0 
Model order 2 
MSE for training data 1.1741×10-5 
MSE for testing data 1.0672×10-5 
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Figure 11. Mean squared error versus number of iterations by PSO modelling 

  

 

 

    (a) (b) 
Figure 12. Actual and prediction outputs of the system by PSO modelling in the time domain (a) estimated output for 

4000 sample datasets and (b) an enlarged view of 200 sample datasets  

 

Figure 13. Actual and prediction outputs of the system by PSO modelling in the frequency domain 
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    (a) (b) 
Figure 14. Error between actual and estimated output by PSO modelling (a) sample for 4000 datasets and (b) an 

enlarged view of 200 datasets 

The pole-zero diagram and correlation test are shown in Figure 11 and Figure 12, respectively. Based on the pole-zero 
diagram, the developed model by the PSO algorithm was stable as all the transfer function poles were inside the unity 
circle. The effectiveness of the developed model by the PSO algorithm was validated using autocorrelation and cross-
correlation tests. Based on both correlation tests, the developed model by PSO was found to be biased as the 
autocorrelation did not meet the confidence level of 95%. The transfer function of the 30° gradient flexible plate system 
based on PSO modelling was expressed in Eq. (24).  

𝑯𝑯(𝒛𝒛)𝑷𝑷𝑷𝑷𝑷𝑷 =  
𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑−𝟏𝟏 −  𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎−𝟐𝟐

𝟏𝟏 −  𝟏𝟏.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒−𝟏𝟏 + 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗−𝟐𝟐 (24) 

 

 

Figure 15. Pole-zero diagram system of model order 2 by PSO modelling 

  

  

(a) (b) 
Figure 16. Correlation tests of model order 2 by PSO modelling (a) autocorrelation (b) cross-correlation 

The study demonstrates that when a model order of 2 is utilized, the developed mathematical model of the designated 
flexible plate, represented by the transfer function expressed in Eq. (24), produces a minimal MSE value. This implies 
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that the generated data from the mathematical model can be reasonably close to the original data. Additionally, the result 
of the pole-zero diagram shows that the model is stable. System stability is an essential performance criterion for a control 
system that must be taken into consideration. Furthermore, even though the correlation test was shown to be biased, the 
model can still be accepted because this biasness shows that the model is either generally applicable or tailored for certain 
contexts. It can be concluded that the mathematical model that was developed by PSO can represent the physical structure 
of the gradient flexible plate. 

4.3 Modelling using Cuckoo Search 

The heuristic method was also used to find the optimum model of the CS algorithm. Several parameters were 
heuristically changed by substituting different values for the number of nests, iterations, switch probability, lower and 
upper boundaries, and model order. To begin, the tuning process started by altering one of the parameters at a time while 
leaving the others constant. Then, various parameters were tweaked until the optimum CS algorithm model was obtained. 
Table 4 shows the initial settings of CS. The optimum model order was found to be model order 4, with MSE of 1.292310-

5 and 8.191810-5 for training and testing data, respectively. Figure 17 depicts the relationship between the mean squared 
error and the number of iterations. Figure 18 and Figure 19 show the actual and predicted outputs of the 30° gradient 
flexible plate system in the time and frequency domains. Based on Figure 18 and 19, it was demonstrated that the 
developed model could mimic the actual output. Figure 20 demonstrates the significantly low difference between actual 
and estimated outputs, indicating CS capability in system modelling estimation.  

Table 4. Parameter of the optimum model by CS modelling 
Parameter Value 
Number of nests 16 
Number of iterations 2500 
Switch probability 0.01 
Lower and upper boundary [-1,1] 
Model order 4 
MSE for training data 1.2923×10-5 
MSE for testing data 8.1918×10-6 

 

 

Figure 17. Mean squared error versus number of iterations by CS modelling 

 
 

(a) (b) 
Figure 18. Actual and prediction outputs of the system by CS modelling in the time domain (a) estimated output for 

4000 sample datasets (b) enlarged view of 200 sample datasets  
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Figure 19. Actual and prediction outputs of the system by CS modelling in the frequency domain 

  

(a) (b) 
Figure 20. Error between actual and estimated output by CS modelling (a) sample for 4000 datasets and (b) an enlarged 

view of 200 datasets 

Figure 21 and 22 show the pole-zero diagram and the correlation test, respectively. According to the pole-zero 
diagram, the produced model by the CS algorithm was stable because all of the transfer function poles were inside the 
unity circle. The effectiveness of the developed model by the CS algorithm was confirmed using autocorrelation and 
cross-correlation tests. Based on both correlation tests, CS’s developed model was confirmed to be unbiased, as the 
autocorrelation reaches the confidence threshold of 95%. Equation (25) represents the transfer function of a 30° gradient 
flexible plate system based on CS modelling.  

𝑯𝑯(𝒛𝒛)𝑷𝑷𝑷𝑷𝑷𝑷 =  
𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒−𝟏𝟏 +  𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎−𝟐𝟐 + 𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝒛𝒛−𝟑𝟑 − 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝒛𝒛−𝟒𝟒

𝟏𝟏 −  𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑−𝟏𝟏 +  𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐−𝟐𝟐 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝒛𝒛−𝟑𝟑 + 𝟎𝟎.𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝒛𝒛−𝟒𝟒 (25) 

 

 

Figure 21. Pole-zero diagram system of model order 4 by CS modelling 
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(a) (b) 
Figure 22. Correlation tests of model order 4 by CS modelling (a) autocorrelation (b) cross-correlation 

The study reveals that the constructed mathematical model of the designated flexible plate, represented by the transfer 
function indicated in Eq. (25), generates the lowest MSE value when a model order of 4 is utilized. This suggests that the 
data obtained by the mathematical model may be rather close to the data generated beforehand. The pole-zero diagram’s 
outcome further demonstrates that the model is stable. An important performance criterion for a control system that must 
be taken into account is system stability. The model also shows unbias in the correlation test, which complies with Eq. 
(21) and (22). This indicates that it is widely applicable to various settings. It can be claimed that the physical 
characteristics of gradient flexible plate are accurately captured by the mathematical model that was produced by CS.  

4.4 Comparative Assessment and Evaluation 

The performance of the developed model was compared and reviewed based on mean squared error, correlation tests, 
and pole-zero diagram stability. The accuracy of the system is determined by fulfilling all of the requirements of each 
validation. Table 5 summarises the modelling performance for a flexible plate system with a 30° gradient. According to 
Table 5, the lowest PSO modelling MSE value for training data was 1.174110-5, while the lowest MSE value for CS 
modelling testing data was 8.191810-6. From these observations, both intelligent algorithms PSO and CS outperformed 
the traditional RLS.  

In terms of a good correlation test, the obtained result must be within a 95 percent confidence level. According to 
Table 5, only the CS algorithm indicates unbiased owing to the dynamic system being within 95 percent confidence level. 
RLS and PSO, on the other hand, failed to satisfy the criterion to obtain a 95 percent confidence level. Therefore, both 
the RLS and the PSO dynamic systems were identified as biased. In this case, the CS model has proven to be superior to 
RLS and PSO since it has a low MSE value and signifies unbiasedness.  

Aside from that, the stability of the pole-zero diagram is an indicator for considering the optimum model representing 
the system by taking the placement poles in the pole-zero diagram into account. The model was considered stable if the 
poles were positioned inside the unit circle. Table 3 reveals that all models developed were stable, as determined by the 
observation that all poles plotted were within the unit circle area.  

Based on the results of the assessments, it can be concluded that the evolutionary algorithm was significantly more 
reliable than the conventional algorithms, with the CS algorithm modelling being the best model for accurately capturing 
the actual 30° gradient flexible plate structure. As previously discussed, all of the models can be used to represent the 
gradient flexible plate system. However, the model derived from the CS algorithm meets all of the criteria, making it the 
most suitable model for controller development. Hence, the CS model transfer function will be used for controller 
development to suppress undesirable vibration on the 30° gradient flexible plate system.  

Table 5. Summary of performance modelling 30° gradient flexible plate system 
Model Model order MSE in training data MSE in testing data Stability Correlation test 
RLS 6 6.6453×10-4 7.4162×10-5 Stable Biased 
PSO 2 1.1741×10-5 1.0672×10-5 Stable Biased 
CS 4 1.2923×10-5 8.1918×10-6 Stable Unbiased 

5.0 CONCLUSIONS 
This paper discussed the development of the dynamic model for 30° gradient flexible plate structure using the system 

identification (SI) technique. The models were estimated using evolutionary algorithms PSO and CS algorithm based on 
the structure of ARX model. For comparison purposes, the conventional method, RLS, was also estimated. The models 
obtained were validated by three methods: MSE, pole-zero stability, and correlation tests. The optimum model that met 
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all of the criteria was selected to be the ideal model to represent the 30° gradient flexible plate structure. Based on the 
findings, model order 4 by the CS algorithm was chosen since it had the lowest MSE value of 8.191810-6, resulting in an 
89 % improvement over RLS. In addition, when compared to RLS and PSO, the CS algorithm demonstrated great stability 
and good correlation tests. This correlation test is critical to indicate the efficacy level of the established model. To 
conclude, the ideal model obtained from CS can be applied in control development to suppress vibration on the 30° 
gradient flexible plate system. 
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