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INTRODUCTION 
Fault prediction is a critical component of a successful operation in any business, but it is especially important in the 

energy industry because of its ongoing demands. Most heavy industries, such as oil and gas, energy and power plants, 
and chemical plants, adopt condition-based maintenance (CBM), in which the equipment is monitored on a regular basis 
and parts are replaced only when deteriorating tendencies are detected using condition monitoring methods. Vibration 
analysis is one of the methods that have been shown to improve machine dependability and reduce breakdown 
maintenance [1]. 

Because the recent pandemic outbreak has had a significant impact on energy prices, oil corporations have chosen to 
reduce costs by implementing integration and automation [2]. Smart devices enable automation, where technology such 
as remote monitoring which operates through sensor applications that work over wired and/or wireless connections, 
comes into play and manages to reduce the number of personnel on the field performing costly and time-consuming visual 
inspections [3, 4]. Smart pigs with transmitters, sensors, Global Positioning System (GPS), eddy current, magnetic fields, 
ultrasonics, and acoustics could help to reduce this. Aba et al. conducted a study that demonstrated that data visualisation 
via wireless communication can achieve a satisfactory level when used for real-time monitoring [4], in which they used 
vibration-based methods that used time-delay methods between pressure pulse arrivals to detect damaged locations on 
pipelines. In the oil and gas industry, the usage of data recording devices has resulted in large databases [5]. 

In recent years, machine learning (ML) for machinery fault prediction has piqued the interest of many academics. 
Because of the abundance of data that exists as a byproduct of online monitoring, where data is continuously watched 
and saved on a server or computer hard drive, this data-driven method has gained traction. This has given scholars the 
opportunity to use them as training materials for machine learning to learn about the many machinery situations found in 
historical data. As a result, a range of machine learning algorithms have been created, some of which are geared to forecast 
equipment failures, while others estimate the remaining useful life (RUL) of the machinery over its lifetime [6]. ML has 
been the go-to alternative for performing vibration-based fault diagnosis due to its nature, which operates without 
requiring a high level of expertise as traditional methodologies do [7]. Many scholars use the bearing data published by 
Case Western Reserve University (CWRU) on their data centre website [8] to develop ML models capable of recognising 
bearing faults, such as Deep Recurrent Neural Networks, Multivariable Ensemble-based Incremental Support Vector 
Machine, and Long Short-Term Memory [9, 10, 11]. ML methods, such as artificial neural networks and convolutional 
neural networks, were built using bearing datasets published by NASA [12] and gearbox datasets collected from the data 
bank of the Prognostics and Health Management (PHM) society's annual competition [13]. As the field of intelligent 
bearing diagnosis develops, there are very few studies that have been done to develop machine learning for unbalanced 
fault detection, making it difficult to find datasets containing unbalanced problems online. However, because Oliver Mey 
and colleagues used Convolutional Neural Networks (CNNs), Fully-Connected Neural Networks (FCNNs), Random 
Forests, and Hidden Markov Models to detect unbalance issues in rotating machinery, their data has been made available 
[14].  

ABSTRACT – Many machine learning models have been created in recent years, which focus on 
recognising bearings and gearboxes with less attention on detecting unbalance issues. Unbalance 
is a fundamental issue that frequently occurs in deteriorating machinery, which requires checking 
prior to significant faults such as bearing and gearbox failures. Unbalance will propagate unless 
correction happens, causing damage to neighbouring components, such as bearings and 
mechanical seals. Because recurrent neural networks are well-known for their performance with 
sequential data, in this study, RNN is proposed to be developed using only two statistical moments 
known as the crest factor and kurtosis, with the goal of producing an RNN capable of producing 
better unbalanced fault predictions than existing machine learning models. The results reveal that 
RNN prediction efficacies are dependent on how the input data is prepared, with separate datasets 
of unbalanced data producing more accurate predictions than bulk datasets and combined 
datasets. This study shows that if the dataset is prepared in a specific way, RNN has a stronger 
prediction capability, and a future study will explore a new parameter to be fused along with present 
statistical moments to increase RNN’s prediction capability. 
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Bearings have been demonstrated to play vital roles in rotating machinery such as electric motors, turbines, pumps, 
and other machines that would be prone to catastrophic failure if not maintained properly. Bearing issues scored as the 
highest tier (40%) among other defects in electric motors, according to Sharma et al. [16]. Other faults included stator 
winding faults (35%), rotor faults (15%), and other faults combined (10%). While bearing failures are the most common 
cause of machine failure, many people ignore other issues such as unbalance. Unbalance, in contrast to bearing fault, is 
considered a fundamental problem since it can be recognised at audible frequencies, which are lower than the early bearing 
fault frequencies, which are found in ultrasound ranges of around 20 kHz [13]. Because recording its characteristics does 
not necessitate particular settings inside the data acquisition device, looking for unbalance does not require in-depth 
vibration knowledge. Unbalance in rotating machinery that is not addressed can spread and harm adjacent components, 
reducing their remaining useful life dramatically. Critical unbalance could cause the system to generate strong vibration 
unbalance, which could lead to rotor breakage, bearing wear, and other failures [17], as well as a loud noise that could 
impact one’s hearing abilities. 

Rampant vibration can result in torsional vibration and electromagnetic flux fluctuation, which are particularly 
problematic in electric motors. Torsional vibration causes the motor speed to fluctuate, which prematurely deteriorates 
the mechanical coupling, while the latter damages the electrical winding [18]. As a result of these examples, unbalance 
should not be taken lightly and should be addressed before it has a negative impact on the rest of the system and increases 
maintenance costs.  

When it comes to machinery prognosis that involves vibration signals, the quality of the characteristics retrieved from 
the vibration data plays a big part in recognising issues. Meng et al. proposed shaft orbit as a support feature to the 
vibration energy feature in their study [19] and were successful in creating a Support Vector Machine (SVM) to detect 
rotor unbalance. Additionally, one of the elements that must be considered is the amount of data that must be put into the 
machine learning algorithm. In the case of limited data availability, Gangsar et al. have demonstrated that an SVM can 
detect unbalance within an induction motor with abundant data extraction from the first statistical moment to the extreme 
of the eighth statistical moment, providing an ample amount of information for the SVM to learn in detecting unbalance 
[20]. There have been studies on performing unbalance fault recognition by fusing datasets to be learned by machine 
learning models in two ways: the first is through the combination of datasets of unbalanced faults from two different 
intensities, both of which were extracted from vibration signals, as carried out by Mey et al. [15], and the second is 
through the combination of vibration signals and shaft orbit information, as carried out by Yan et al. in training their Deep 
Belief Network (DBN) in recognising rotor unbalance fault [21]. The former has unbalanced fault recognition accuracy 
that is lower than non-combination datasets-trained models, while the latter has prediction accuracy that is higher than 
non-combination dataset-trained black boxes. 

Because there are so few scholars working on developing machine learning models to detect unbalanced faults, 
datasets containing unbalance faults are hard to come by. Recurrent Neural Networks (RNNs) have been widely used to 
analyse data that is temporal or time-related, such as voice and vibration data [22, 23], because of their ability to produce 
highly accurate data prediction by using previous output as feedback to fresh input. RNN has not only been shown to be 
practical and accurate in performing natural language processing (NLP) and time serial prediction, but it may also be the 
most powerful method in prediction, including but not limited to fault prognosis and speech recognition [11, 10], as well 
as capturing the time relevance of data in a time sequence. For example, Liu et al. found that RNN produced a 6 % relative 
improvement in voice recognition when compared to Time Delay Neural Network (TDNN) [22]. In addition, Xie et al. 
presented a study that performed prognosis on the future condition of worsening bearing state, which was compared to 
the findings obtained by Support Vector Machine (SVM) and Echo State Network (ESN), with RNN outperforming the 
two [11]. Using RNN in the form of an autoencoder, it is also possible to anticipate the future period based on the 
preceding period of bearing fault. In comparison to what was produced by SVM, auto-encoder (AE), and denoising 
autoencoder (DE) in the experiment, the proposed approaches demonstrated satisfactory performance with high 
classification accuracy. 

Since no study involving unbalance prediction has ever used RNN as their model, writers have determined that RNN 
is the correct model to employ to forecast unbalance fault based on the cited studies. As a result, the use of datasets by 
Mey et al. to assess the performances of their CNNs and FCNNs in forecasting unbalance has led this work to creating 
many RNN models using a range of architectural designs. The following sections explain the way RNN is crafted in order 
to investigate the use of RNN as the main model to predict unbalance faults based on published online data, the effect of 
open-loop and close loop for the RNN training stage on prediction accuracy, and lastly, the impact of retraining on black 
box prediction capability. 

MACHINE LEARNING 
Machine learning is a method of utilising artificial intelligence to learn patterns of data, usually for the purpose of 

deriving prediction models without human aid and without requiring the user to understand the details of the underlying 
codes behind them [24]. Thus, the trained ML model is regarded as a ‘black box’ due to its complex behaviour that is 
difficult to understand. The development of RNN is introduced in this section, beginning with RNN initial architecture 
development as suggested in the MathWorks® documentation, which was later tailored based on the produced results to 
achieve a more reliable fault prediction capability. 
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Figure 1. Recurrent Neural Network [24]. 

Recurrent Neural Network 
RNN is deemed as one of the ML models that is suitable for sequential data analysis since its core data analysis tasks 

are executed by hidden units that are capable of keeping information about the past steps. As depicted in Figure 1, the 
output at t1 will affect the parameter at t1 + 1. Due to this, RNN utilises information from the past and the present to 
come up with new data, which allows it to perform predictions better than other ML models [27]. Due to the nature of 
vibration of rotating machinery that is sequential and changes throughout time as the condition worsens, RNN is regarded 
as a suitable proposition to deal with stochastic behaviour within long sequential datasets. 

PROPOSED METHOD 
This section discusses steps within RNN constructions which include the architectures, parameters extraction, training 

stages, and prediction efficacies. 

Parameters Preparation 
In this study, the works and datasets of Oliver Mey and his colleagues in creating ML models for unbalanced 

predictions are used as benchmarks, their published datasets were taken for extraction to produce inputs to the RNN in 
the training stage. Table 1 and 2 show the description of Mey et al.’s datasets of unbalance faults that were collected from 
their test rig as per the depicted in page 1610 of ref. [20]. The test rig was made of a DC motor whose speed was regulated 
by a motor controller that enabled it to run at a speed of 300 to 2,300 revolutions per minute (RPM). The motor shaft was 
then connected to the 75 mm shaft via a coupling, where the latter was held by a bearing within a pedestal block made of 
galvanised steel. The unbalance disc, which was made through additive manufacturing, uses nylon as the main material. 
The disc was fabricated at 52 mm in diameter and designed with axially symmetrical recesses for weight insertion to 
simulate unbalances. Three vibration sensors were used to acquire vibration signals from the motor and bearing, of which 
the former was fitted with one accelerometer in the vertical direction, while the latter was fitted with the remaining 
accelerometers in the vertical and horizontal directions at the bearing pedestal. 

Table 1. Unbalance datasets for training by Mey et al. [15]. 

Identity Radius 
(mm) Mass (g) Unbalance factor 

(mm.g) 

Number of samples 
Development (D) 

(training) Total number of data 

0D - 0 0 6,438 26,370,048 
1D 14 ± 0.1 3.281 ± 0.003 45.9 ± 1.4 6,434 26,353,664 
2D 18.5 ± 0.1 3.281 ± 0.003 60.7 ± 1.9 6,434 26,353,664 
3D 23 ± 0.1 3.281 ± 0.003 75.5 ± 2.3 6,430 26,337,280 
4D 23 ± 0.1 6.614 ± 0.007 152.1 ± 2.3 6,430 26,337,280 

The data was recorded accordingly based on unbalance intensity in an incremental manner, starting from 0 towards 4, 
where 0 represents zero induced unbalance within the system as no weight was installed on the unbalance disc, while 4 
represents the maximum unbalance within the system where 6.614 grammes of weight were installed at the recess that is 
located 23 mm from the centre of the unbalance disc. Each intensity was divided into two classes, denoted by the letters 
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D and E, where the former represents the ‘Development’ dataset and the latter, the ‘Evaluation’ dataset, respectively. The 
development dataset is to be used for training ML models, while the evaluation datasets are to be used by trained black 
boxes to perform fault prediction. Each of them was recorded for a specific amount of time, with each sample being 
recorded in one second with 4,096 sampling rate. The ‘Number of samples’ values represent both the total number of 
samples and the duration of the datasets recorded. 6434 of a 1D dataset, for example, denotes that the data was recorded 
for 6,434 seconds, or approximately 1 hour and 47 minutes of recording time, and comprises 26,353,664 data values. 

Table 2. Unbalance Datasets for Testing by Mey et al. [15]. 

Identity Radius 
(mm) Mass (g) Unbalance factor 

(mm.g) 

Number of samples 
Evaluation (E) 

(testing) Total number of data 

0E - 0 0 1,670 6,840,320 
1E 14 ± 0.1 3.281 ± 0.003 45.9 ± 1.4 1,673 6,852,608 
2E 18.5 ± 0.1 3.281 ± 0.003 60.7 ± 1.9 1,669 6,836,224 
3E 23 ± 0.1 3.281 ± 0.003 75.5 ± 2.3 1,672 6,848,512 
4E 23 ± 0.1 6.614 ± 0.007 152.1 ± 2.3 1,675 6,860,800 

 
From the provided data, two parameters, Crest Factor and Kurtosis were extracted to be the training materials for the 

RNN which were synthesised by using the following equations: 
 

𝑅𝑅𝑅𝑅𝑅𝑅 = ��
1
𝑁𝑁  �(𝑥𝑥(𝑖𝑖) − �̅�𝑥)2

𝑁𝑁

𝑖𝑖=1

� (1) 

  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡 𝑣𝑣𝑃𝑃𝑣𝑣𝑣𝑣𝑃𝑃𝑣𝑣 = max�𝑥𝑥(𝑛𝑛)� − min (𝑥𝑥(𝑛𝑛)) (2) 

  

𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝑡𝑡 𝐹𝐹𝑃𝑃𝐹𝐹𝑡𝑡𝑡𝑡𝐶𝐶 =
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡 𝑣𝑣𝑃𝑃𝑣𝑣𝑣𝑣𝑃𝑃𝑣𝑣

𝑅𝑅𝑅𝑅𝑅𝑅  (3) 

  

𝐾𝐾𝐾𝐾𝐶𝐶𝑡𝑡𝑡𝑡𝐶𝐶𝑖𝑖𝐶𝐶 =  
1
𝑁𝑁∑ (𝑥𝑥(𝑖𝑖) − �̅�𝑥)4 𝑁𝑁

𝑖𝑖=1

𝑅𝑅𝑅𝑅𝑅𝑅4  (4) 

 
Note: N = length of the signal; and x̄̄ = mean value of the data.  
Because the RNNs in this study were built using MATLAB R2017B on a Windows 64-bit i5 CPU with 8GB RAM, 

all of the extracted parameters from the above equations must be sorted out in the matrix array in order for MATLAB to 
compute them as shown below: 

 

�
𝐶𝐶𝐹𝐹11 𝐶𝐶𝐹𝐹21 𝐶𝐶𝐹𝐹31
⋮ ⋮ ⋮

𝐶𝐶𝐹𝐹16430 𝐶𝐶𝐹𝐹26430 𝐶𝐶𝐹𝐹36430

𝐾𝐾11 𝐾𝐾21 𝐾𝐾31
⋮ ⋮ ⋮

𝐾𝐾16430 𝐾𝐾26430 𝐾𝐾36430
� (5) 

 
Note that, 
 CF1  = Crest Factor of vibration data from sensor 1 (DC motor) 
 CF2  = Crest Factor of vibration data from sensor 2 (bearing pedestal vertical) 
 CF3  = Crest Factor of vibration data from sensor 3 (bearing pedestal horizontal) 
 K1 = Kurtosis of vibration data from sensor 1 (DC motor) 
 K2 = Kurtosis of vibration data from sensor 2 (bearing pedestal vertical) 
 K3 = Kurtosis of vibration data from sensor 3 (bearing pedestal horizontal) 
And target matrix for RNN is made of the values of unbalance factor (UF) from Table 1. Because Mey et al. data 

contained a variable total number of samples, the authors chose 6430 for training purposes in order to ensure that all 
matrices had a consistent total number of rows, while 1670 was chosen for testing purposes. All constructed RNNs were 
trained on development (D) datasets and tested on evaluation (E) datasets. 

 

�
𝑈𝑈𝐹𝐹1
⋮

𝑈𝑈𝐹𝐹6430
� (6) 
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RNN Architectures 
As per the recommendation by MathWorks® in its documentation, it is suggested that the construction of RNN begins 

with an open loop architecture (Figure 2 (top)) for training purposes and later be converted into a close loop (Figure 2 
(bottom)) for multistep-ahead prediction [25]. Although the recommendation was to begin with an open loop, this scenario 
triggered a new hypothesis regarding the prediction outcome when a closed loop comes into consideration for the training 
stage. This study also considered the hypothesis that retraining the black box would improve the predicting performance, 
making it more accurate than the black boxes that only undergo one training session.  

 

 
Figure 1: Open Loop RNN (top), close loop RNN (bottom) – generated in MATLAB. 

Prediction Accuracy 
Each prediction from the black box will be taken into comparison against the designated unbalance factor and the 

tolerances of -0.1 and +0.1 for maximum and minimum were given for any deviated values to be considered as correct, 
respectively. For example, if the unbalance factor for 1E was 45.9 mm.g and the prediction came out with a value of 45.8 
mm.g or 46.0 mmg, the value will be considered correct, but if the value goes less than or beyond the tolerance given, the 
prediction will not be taken into account as correct. Overall accuracy is calculated by applying the following equation: 

 

𝐴𝐴𝐹𝐹𝐹𝐹𝐾𝐾𝐶𝐶𝑃𝑃𝐹𝐹𝑣𝑣 =  
𝑁𝑁𝐾𝐾𝑁𝑁𝑁𝑁𝑃𝑃𝐶𝐶 𝑡𝑡𝑜𝑜 𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝑃𝑃𝐹𝐹𝑡𝑡 𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑖𝑖𝐹𝐹𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛𝐶𝐶
𝑇𝑇𝑡𝑡𝑡𝑡𝑃𝑃𝑣𝑣 𝑁𝑁𝐾𝐾𝑁𝑁𝑁𝑁𝑃𝑃𝐶𝐶 𝑡𝑡𝑜𝑜 𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑖𝑖𝐹𝐹𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛𝐶𝐶  (7) 

RNN CLASSIFICATIONS 
Approach 1: RNN Through Bulk Datasets 

There were several parametric selections to be made in the construction of an RNN that fulfilled the aim of predicting 
unbalanced fault accurately. Parameters such as input delays, type of training function, number of hidden layers, quantity 
of neurons within every layer, type of learning function, type of performance function, and number of retraining sessions 
for the black box need to be conducted. The impact of these parameters was studied through multiple iterations and was 
conducted through mix and match and trial and error to obtain the best prediction analysis. Furthermore, the way datasets 
are created also plays a major role in producing effective training sessions to produce black boxes with the prediction 
capability of matching the target matrix. In this approach, all extracted parameters from the development (D) group of 
every unbalanced intensity were stacked altogether to produce a very long matrix array of inputs, as shown below. A 
similar observation was seen for the evaluation (E) stage. The matrix array of evaluation (E) was made in the same manner 
as development (D), where they were also stacked altogether, but only for input because the values of output would be 
monitored afterwards to evaluate its accuracy. 

Approach 1.1: Open-loop vs close-loop 

This approach was the expansion of Approach 1, where it was carried out by creating a few architectures that each 
were developed into two classes; open loop and close loop architectures. The prior architecture will be created for the 
training stage and will be converted into a close loop for fault prediction, while the latter architecture will be created 
without being converted for fault prediction. The prediction prowess will be put into comparison with each other 
subsequently. 
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Approach 1.2: Retraining the black box 

This approach was also a branch of what was produced within Approach 1 and was carried out by creating a few 
architectures that will undergo the training process five times, which means the produced black box from the first training 
session will be taken into another four training sessions before the evaluation (E) arrays is fed into them for fault prediction 
purposes. 
 

Input 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐶𝐶𝐹𝐹10𝐷𝐷1 𝐶𝐶𝐹𝐹20𝐷𝐷1 𝐶𝐶𝐹𝐹30𝐷𝐷1

⋮ ⋮ ⋮
𝐶𝐶𝐹𝐹10𝐷𝐷6430 𝐶𝐶𝐹𝐹20𝐷𝐷6430 𝐶𝐶𝐹𝐹30𝐷𝐷6430

𝐾𝐾10𝐷𝐷1 𝐾𝐾20𝐷𝐷1 𝐾𝐾30𝐷𝐷1
⋮ ⋮ ⋮

𝐾𝐾10𝐷𝐷6430 𝐾𝐾20𝐷𝐷6430 𝐾𝐾30𝐷𝐷6430
𝐶𝐶𝐹𝐹11𝐷𝐷1 𝐶𝐶𝐹𝐹21𝐷𝐷1 𝐶𝐶𝐹𝐹31𝐷𝐷1

⋮ ⋮ ⋮
𝐶𝐶𝐹𝐹11𝐷𝐷6430 𝐶𝐶𝐹𝐹21𝐷𝐷6430 𝐶𝐶𝐹𝐹31𝐷𝐷6430
𝐶𝐶𝐹𝐹12𝐷𝐷1 𝐶𝐶𝐹𝐹22𝐷𝐷 𝐶𝐶𝐹𝐹32𝐷𝐷1

⋮ ⋮ ⋮
𝐶𝐶𝐹𝐹12𝐷𝐷6430
𝐶𝐶𝐹𝐹13𝐷𝐷1

⋮
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𝐶𝐶𝐹𝐹14𝐷𝐷1

⋮
𝐶𝐶𝐹𝐹14𝐷𝐷6430

𝐶𝐶𝐹𝐹22𝐷𝐷6430
𝐶𝐶𝐹𝐹23𝐷𝐷1

⋮
𝐶𝐶𝐹𝐹23𝐷𝐷6430
𝐶𝐶𝐹𝐹24𝐷𝐷1

⋮
𝐶𝐶𝐹𝐹24𝐷𝐷6430

𝐶𝐶𝐹𝐹32𝐷𝐷6430
𝐶𝐶𝐹𝐹33𝐷𝐷1

⋮
𝐶𝐶𝐹𝐹33𝐷𝐷6430
𝐶𝐶𝐹𝐹34𝐷𝐷1

⋮
𝐶𝐶𝐹𝐹34𝐷𝐷4096

𝐾𝐾11𝐷𝐷1 𝐾𝐾21𝐷𝐷1 𝐾𝐾31𝐷𝐷1
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𝐾𝐾11𝐷𝐷6430 𝐾𝐾21𝐷𝐷6430 𝐾𝐾31𝐷𝐷6430
𝐾𝐾12𝐷𝐷1 𝐾𝐾22𝐷𝐷1 𝐾𝐾32𝐷𝐷1
⋮ ⋮ ⋮

𝐾𝐾12𝐷𝐷6430
𝐾𝐾13𝐷𝐷1
⋮

𝐾𝐾13𝐷𝐷6430
𝐾𝐾14𝐷𝐷1
⋮

𝐾𝐾14𝐷𝐷6430

𝐾𝐾22𝐷𝐷6430
𝐾𝐾23𝐷𝐷1
⋮

𝐾𝐾23𝐷𝐷6430
𝐾𝐾24𝐷𝐷1
⋮

𝐾𝐾24𝐷𝐷6430

𝐾𝐾32𝐷𝐷6430
𝐾𝐾33𝐷𝐷1
⋮

𝐾𝐾33𝐷𝐷6430
𝐾𝐾34𝐷𝐷1
⋮

𝐾𝐾34𝐷𝐷6430⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Target 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑈𝑈𝐹𝐹0𝐷𝐷1
⋮

𝑈𝑈𝐹𝐹0𝐷𝐷6430
𝑈𝑈𝐹𝐹1𝐷𝐷1
⋮

𝑈𝑈𝐹𝐹1𝐷𝐷6430
𝑈𝑈𝐹𝐹2𝐷𝐷1
⋮

𝑈𝑈𝐹𝐹2𝐷𝐷6430
𝑈𝑈𝐹𝐹3𝐷𝐷1
⋮

𝑈𝑈𝐹𝐹3𝐷𝐷6430
𝑈𝑈𝐹𝐹4𝐷𝐷1
⋮

𝑈𝑈𝐹𝐹4𝐷𝐷6430⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (8) 

Approach 2: RNN Through Separate Datasets 
As illustrated in Figure 3, this stage can only begin after obtaining the results from Approach 1, which confirms the 

effects of parametric studies from varying the listed methods (training function, amount of input delays and feedback 
delays, number of hidden layers, neuron quantities, learn function, and retrain amount) on prediction prowess. The best 
parameters that produced the best predictions amongst all will be taken forward into creating new RNNs within this 
approach. The new RNN will be trained only by using one class of unbalanced development (D) datasets per training 
session and will perform the prediction on the respective evaluation (E) datasets with the same unbalanced intensity.  

 

 
Figure 3. Flow process of RNN for unbalance prediction. 
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Another RNN with the same architecture will be created anew and will be trained using the next class of unbalance 
intensity from development (D) datasets and will perform the prediction on the evaluation (E) datasets from the next class 
of unbalance intensity as well. This process was repeated until maximum unbalance intensity is reached as per depicted 
in Table 3 and finished by taking the prediction results into comparison against the designated unbalance factor, as shown 
in Table 1. 

Table 3. Architecture for RNN via bulk datasets. 

Bill Methods (loop) Training 
function 

Delays Hidden 
layers 

Neuron 
allocations Learn 

function 

Retrain 
(no. of 
retrain) Training Prediction Input Feedback Layer Quantity 

1 Open Close Trainlm 2:9 3:7 3 1 29 Learngd No 
2 29 Learngdm 
3 23 Learngd 

2 Open Close Trainlm 0:37 0:67 3 1 29 Learngd No 
2 29 Learngdm 
3 23 Learngd 

3 Open Close Trainlm 0:9 1:11 4 1 7 Learngd No 
2 5 Learngdm 
3 3 Learngd 
4 11 Learngdm 

4 Open Close Trainbr 0:9 1:11 2 1 10 Learngdm No 
2 10 Learngdm 

5 Open Close Trainrp 0:9 1:11 2 1 29 Learngdm Yes (4) 
2 37 Learngdm 

6 Open Close Traincgf 0:9 1:11 2 1 29 Learngdm Yes(4) 
2 37 Learngdm 

7 Open Close Traingd 0:9 1:11 2 1 29 Learngdm Yes (4) 
2 37 Learngdm 

8 Open Close Traingdm 0:9 1:11 2 1 29 Learngdm Yes (4) 
2 37 Learngdm 

9 Close Close Trainlm 0:1 1:2 2 1 13 Learngdm Yes (1) 
2 17 Learngdm 

10 Close Close Trainlm 0:1 1:2 2 1 31 Learngdm Yes (1) 
2 11 Learngdm 

11 Close Close Trainlm 2:3 1:4 2 1 3 Learngdm No 
2 7 Learngdm 

12 Close Close Trainlm 4:5 1:5 2 1 3 Learngdm No 
 7 Learngdm 

Approach 3: RNN Through Combined Datasets 
Table 4 shows how this combined datasets strategy is crafted. It is a replication of what Oliver Mey and his colleagues 

did to train their ML models since this work benchmarked the datasets and a few ML algorithms from Mey et al. The 
datasets were created by mixing the zero unbalance intensity dataset with other datasets from various levels of unbalance 
intensity. For training, a 0D dataset was coupled with a 1D dataset, a 0D dataset with 2D, a 0D dataset with 3D, and a 0D 
dataset with 4D. The same is true for testing. The dataset was produced by coupling 0E with 1E, 0E with 2E, 0E with 3E, 
and 0E with 4E. 

Table 4. Architectures for RNN through separate datasets and combined datasets. 

Bill Methods (loop) Training 
function 

Delays Hidden 
layers 

Neuron 
allocations Learn 

function 

Retrain 
(no. of 
retrain) Training Prediction Input Feedback Layer Quantity 

1 Close Close Trainlm 1:5 3:5 3 1 3 Learngdm No 
2 7 Learngdm 

2 Close Close Trainlm 1:5 3:5 3 1 3 Learngdm No 
2 7 Learngdm 
3 5 Learngdm 

3 Close Close Trainlm 1:5 3:5 4 1 3 Learngdm No 
2 7 Learngdm 
3 5 Learngdm 
4 11 Learngdm 

 
Note that, 
Trainlm  = Lavenberg-Marquardt Train Function, 
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Trainbr = Bayesian Regularisation Train Function, 
Traingd = Gradient Descent Train Function, 
Traingdm = Gradient Descent with Momentum Train Function, 
Trainrp = Resilient Backpropagation Train Function 
Traincgf = Fletcher-Powell Conjugate Gradient 
Learngd  = Gradient Descent Learn Function 
Learngdm = Gradient Descent with Momentum Learn Function 
All architectures for approach 1, 2 and 3 within this study utilised mean square error (MSE) as a performance function. 

RESULTS AND DISCUSSION 
In this section, the predictions from a variety of RNN classifications were discussed sequentially, as per the previous 

section. 

RNN Through Bulk Datasets 
Figure 4 and 5 show the results of fault prediction training using bulk datasets. The graphs from (A1) to (A12) show 

the predictions made by RNNs were trained by using bulk datasets, as per shown in Eq. (8). Each prediction has an 
accuracy of 20.03%, 20.03%, 20.03%, 1.07%, 5.31%, 7.88%, 19.65%, 19.84%, 0.58%, 0.15%, 1.22%, and 0.07%, 
respectively, for A1 to A12. Within the group of open-loop and close-loop designs, black boxes created with the 
Lavenberg-Marquardt train function (trainlm) produced the best forecasts.  

Furthermore, because the trainlm produced the best predictions for open loop and close loop, with accuracy of 20.03% 
and 1.22%, respectively, the predictions for open loop tended to stay in the region of 150 mm.g regardless of unbalance 
intensity, whereas the predictions for close loop responded more significantly to the increment of unbalance factor. 
Although the close loop appears to have insignificant accuracy, the authors believe that the close loop architecture will 
be significant to the unbalance fault prediction in the separate datasets and combined datasets approaches because of its 
behaviour in producing predictions that mimic the designated unbalance factor more dynamically than open loop 
architectures. In terms of delay, their effects may be seen in the results in A1, A2, and A3, where different values of 
delays had no effect on prediction results, according to A1, A2, and A3, rather than slowing down the processing time. 
Consequently, the incoming approaches from B and C will be carried out with shorter delays to prevent time loss. 

 

 

(A1) (A2) 

(A3) (A4) 
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Figure 4. The above figures are sequential representations of the RNN architecture shown in Table 2, where (A1), (A2), 

(A3), (A4), (A5), and (A6) represent architectures A1, A2, A3, A4, A5, and A6, respectively. The graphs show how 
much the predictions (blue lines) made by RNN deviate from the designated value (orange lines). 

The number of neurons in each layer was taken into account as an early hypothesis, with the expectation that the 
number of neurons created would be proportional to the prediction outcome, with the higher the number of neurons 
produced, the better the prediction accuracy. However, the open-loop pool's A1, A2, A3, A6, and A7 indicated that 
topologies with a higher number of neurons per layer did not provide better predictions than those with a lower number 
of neurons per layer. When it comes to the effect of retraining on fault prediction performance, RNNs with architectures 
of A5, A6, A7, A8, A9, and A10 show no significant improvement.  

 

 

(A5) (A6) 

(A7) (A8) 

(A9) (A10) 
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Figure 5. The above figures are sequential representations of the RNN architecture shown in Table 2, where (A7), (A8), 
(A9), (A10), (A11), and (A12) represent architectures A7, A8, A9, A10, A11, and A12, respectively. The graphs show 

how much the predictions (blue lines) made by RNN deviate from the designated value (orange lines). 

Although there were some minor variations in the prediction patterns, as observed in A5 of the open-loop and A9 of 
the close loop, the predictions in A10 became unpredictable and had a forecast accuracy of less than 1%. As a result, 
retraining failed to improve the overall accuracy of the selected black boxes. The twelfth (A12) RNN architecture's results, 
which have gone beyond A10's erratic, show the obvious alterations in the unbalance prediction. This architecture can be 
compared to the eleventh (A11) RNN architecture because they both used the same train function, had the same number 
of layers, and had the same number of neurons in each layer, but they differed in terms of input delay allocation, with 
A12 receiving four (4) delayed inputs and A11 receiving two (2) delayed inputs. The amount of time it takes for the 
output to respond to the input is referred to as input delays. As a result, these two results show how the amount of delays 
for the close loop RNN architecture affects fault prediction accuracy, with longer input delays reducing fault prediction 
accuracy more than shorter input delays. 

RNN Through Separate Datasets 
The strategy of using datasets in this approach was similar to that utilised by Oliver Mey and his colleagues, who 

trained CNNs and FCNNs using datasets of different unbalance intensities. In order to obtain a clear contrast in terms of 
prediction ability, the RNN prediction results were overlayed together with those produced by Mey et al. Figure 6 shows 
that RNNs trained on independent datasets were able to accurately predict the unbalance and achieve an overall accuracy 
of 100%, or 1.00 in efficiency, outperforming CNNs and FCNNs in every unbalance intensity. Although both graphs B1 
and B2 show that both CNNs and FCNNs achieved convergence at the highest unbalance intensity, the low prediction 
accuracies at unbalance intensities of 0, 1, 2, and 3 have reduced the overall unbalance prediction percentage, with CNNs 
having 93.3% (1 layer), 94.0% (2 layers), 91.5% (3 layers), 93.6% (4 layers), and FCNNs having 91.6% (0 layer), 98.0% 
(1 layer), 98.6% (2 layers), 97.5 (4 layers).  
 

  
(B1)       (B2) 

Figure 6. RNNs’ fault prediction against convolutional neural networks (B1), fully-connected neural networks (B2) 
through separate datasets approach. 

Regardless of the number of layers and neurons inside each layer, the RNN architectures presented in Table 3 are 
capable of making correct predictions. Neuron amounts were tabulated at random in each layer in this technique, while 

(A11) (A12) 
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the rest of the parameters were set to fixed values. This method has yielded black boxes capable of reliably predicting the 
unbalance fault, with the datasets specifically prepared based on the unbalance intensity having a substantial impact on 
unbalance prediction. As such, the method of preparation of datasets has become a vital factor for consideration in the 
development of effective RNN models. 

RNN Through Combined Datasets 
The findings of this strategy were also overlayed with what Mey et al. achieved in training their CNNs and FCNNs 

using combined datasets of 0E with 1E, 0E with 2E, 0E with 3E, and 0E with 4E, similar to Approach 2. On every 
combined dataset, RNNs scored 23.98% (2 layers), 38.17% (3 layers), and 17.42% (4 layers), while CNNs had an 
accuracy of 72.7% (1 layer), 79.0% (2 layers), 72.3% (3 layers), and 82.2% (4 layers), and FCNNs had an accuracy of 
85.6% (0 layer), 88.7% (1 layer), 88.9% (2 layers), 85.1% (3 layers), and 86.8% (4 layers). When comparing the fault 
predictions of Approach 3 to those of Approach 1 and 2, it was found that the fault predictions of Approach 3 were better 
than those created by RNNs using bulk datasets but much worse than those produced using separate datasets. In terms of 
fault prediction accuracy when using combined datasets, accuracy graphs reveal that Mey et al.’s CNNs and FCNNs also 
suffer from deterioration albeit not to the same extent as the RNNs. According to Figure 7, the order in which datasets 
were stacked has a significant impact on the accuracy of RNN's unbalance prediction, as RNN appears to have a difficult 
time correctly predicting the output when multiple datasets from different unbalance intensities are stacked together, as 
done in Approach 1. 
 

  
(C1)       (C2) 

Figure 7. RNNs’ fault prediction against convolutional neural networks (B1), and fully-connected neural networks (B2) 
through combined datasets approach. 

CONCLUSION 
In this research, a number of RNN designs for unbalance fault prediction are proposed, each of which takes into 

account different unbalance intensities in the published data. There are three basic approaches to the proposed method: 
To begin, the models were created using bulk datasets, in which each dataset from different unbalance intensities were 
stacked together in the form of a long matrix array to be fed into the RNN, which was then split into two minor approaches: 
considering open-loop vs close-loop parameters and retraining the created black boxes. Second, based on the best 
architecture and parameters from the previous approach, new RNN models were created and trained using datasets that 
were divided into groups according to unbalance intensity. Finally, RNN models were created by utilising combined 
datasets from different unbalance intensities. 

This paper's strategy focuses on RNN architectures that were developed in a random yet structured manner while 
taking into account several parameters to create black boxes capable of providing high prediction accuracy under varied 
dataset designs. Multiple parameters, such as the type of loop, training function type, amount of delays, neuron quantity, 
and the way datasets are prepared, must be taken into account, according to the analysis, because all of these have 
contributed to accurate black box predictions where RNNs that used separate datasets were able to perform accurate 
unbalance predictions whenever datasets that were segregated into the group of unbalance intensity were provided. The 
longer the input delays were employed, the worse the prediction, whereas the number of layers and neuron quantity had 
no effect on the prediction. The Lavernberg-Marquardt training function and the Gradient Descent with Momentum 
learning function, out of all the training and learning functions employed, contributed to the creation of black boxes with 
great prediction accuracy. Finally, retraining the accomplished black boxes would not increase their prediction accuracy 
considerably.  

This work did not use the end-to-end technique without feature extraction used by Chen et al. and Jiang et al., in which 
the prior was performed using Cyclic Spectral Coherence (CSCo), which converts raw data into a 2D map, which is 
subsequently processed by CNN utilising pattern recognition [26]. The latter carried out their fault diagnosis research by 
feeding the inputs obtained by converting raw vibration data into vibration spectrum using the Fast Fourier Transform 
(FFT) [10]. Because the goal of this study was to create an RNN capable of recognising unbalance with the least number 
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of statistical moments possible (just two statistical moments were used throughout the study), such an automated 
conversion was not used. Furthermore, to the author's knowledge, there has never been a mechanism for automatically 
extracting statistical moments for use as machine learning input. This study uses the manual extraction approach to derive 
the crest factor and kurtosis. 

In summary, RNN can be the best alternative for reliable unbalance fault prediction if the datasets are separated into 
different datasets using unbalanced intensity clustering. In terms of dealing with sequential data, RNN outperforms CNN 
and FCNN since the findings demonstrate 100% prediction accuracy. The positive findings of this study will be carried 
forward into the future by using phase shift as a new addition to the existing parameters in order to increase prediction 
capabilities using the bulk datasets method. 
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