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INTRODUCTION 
Frequency-based substructuring (FBS) [1]- [3] can be used to accurately predict composite engineering structures. 

However, it should be noted that the FBS method depends heavily on the coupling interface to accurately predict the 
dynamic behaviour. The coupling interface is sensitive to translational and rotational frequency response functions 
(FRFs), the latter being very difficult to determine experimentally. It is well known that the rotational FRFs at the 
interfaces are essential for the accurate prediction of the FRFs of the assembled structure [4], [5]. This is because the 
rotational FRFs account for 75% of the FRF matrix of a single node. This means that neglecting the rotational FRFs 
seriously affects the accuracy of the interface flexibility of the test model and leads to erroneous coupling results. In FBS, 
the main challenge is to identify the rotational FRFs that are critical to the accuracy of the method in predicting and 
calculating the vibration behaviour of the assembled structure [6]. 

Over the years, various methods for estimating rotational FRFs have been proposed [7], [8]. For example, researchers 
[9], [10] have used two accelerometers with the same sensitivity to estimate rotational FRF. Methods using T-block [11] 
and X-block [12] have proven successful in structural modification applications. In particular, the X-block basis method 
used for structural modification of a helicopter cone proved to be more effective as it used several translational 
accelerometers to estimate multiple rotational FRFs. Although the X-block method is an effective method for estimating 
rotational FRFs, it has two disadvantages concerning its applicability and complexity. The disadvantage that limits the 
applicability of the method is that the test structure must be significantly larger and heavier than the X-block. The 
complexity arises from the fact that the process of estimating the rotational FRFs must incorporate the dynamics of the 
X-block. 

With the advent of technology and the development of rotational accelerometers, the rotational FRFs of a test structure 
can be effectively and directly measured [13], [14]. The rotational accelerometer can only be used to measure the 
rotational data of force excitations. This is because the current state of the art does not provide a method for pure moment 
excitation [15]. As a consequence of this limitation, semi-analytical or computational methods must be developed to 
determine the full FRF matrix. In this context, many methods have been proposed, most of which use the concept of mode 
expansion. The accuracy of mode expansion techniques depends mainly on the accuracy of the FE model of the structure 
under study. The finite elements developed for complicated structures are usually inaccurate, resulting in an inaccurate 
estimate of the rotational FRFs. 

This study presents a new scheme for estimating rotational FRFs using a simplified and approximated finite element 
model (ASFE), the modal updating method and the mode expansion method. The process flow for obtaining rotational 
FRFs is shown in Figure 1. An assembled structure consisting of two substructures: an irregular plate and a beam, as 
shown in Figure 2 [16], illustrates the proposed methodology. The two substructures are joined by two connection points. 

ABSTRACT – For frequency-based substructuring (FBS) to be accurate, translational and 
rotational data must be available at the connection points between substructures. However, 
obtaining rotational FRFs from experimental modal analyses is very difficult in practice. In this 
paper, an alternative method for estimating rotational FRFs is proposed using an approximated 
simplified finite element model (ASFE), modal updating, and mode expansion. The proposed 
approach was demonstrated on an assembled structure consisting of an irregular plate (test model) 
and a simple beam (FE model). The SEREP method was used to augment the translational and 
rotational FRFs to the updated ASFE mode shapes. The expanded rotational FRF of the test model 
was validated with the measured rotational FRF obtained from a piezoelectric direct rotational 
accelerometer. The results showed that the proposed approach for FBS correctly predicted the 
experimental FRF of the assembled structure with 90% accuracy. The FBS method is no longer 
dependent on the experimental rotational FRF, which is very difficult to measure with the 
methodology presented here. 



I.I Wan Iskandar Mirza et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 19, Issue 1 (2022) 

9470   journal.ump.edu.my/ijame ◄ 

The proposed approach is used to develop the expanded ASFE model of the irregular plate, which includes translation 
and rotational data, and is then used in the FBS method to predict the obtained experimental FRF of the assembled 
structure. 

 

 
 

Figure 1. Process flow for obtaining rotational FRFs. 

METHODOLOGY  
This study focuses on the frequency range between 0Hz and 1500Hz, acquiring several resonance peaks. The 

frequency of interest of 0-1500Hz was chosen to avoid truncation of the FRF calculated. Note that the FRF of the 
substructure should be at least 1.5 greater than that of the assembled structure during FRF coupling. The reference point 
used in this study is connection point 1. The FRF at the reference point of the assembled test structure was measured by 
the impact testing method to validate the FBS obtained by the proposed method. Details of the experimental setup and 
the measured FRF of the assembled structure can be found in [16]. After measuring the FRF at connection point 1, the 
structure was disassembled for FRF analysis of the individual substructures. The FE model of the beam was created with 
HEXA elements (3D element type). The FRFs of the beam were calculated using the modal frequency response method. 
The translational FRFs of the irregular plate were measured directly, and its rotational FRFs were expanded from the 
approximated and simplified FE (ASFE) model. The details are explained in the following subsection.  

 

 
Figure 2. The assembled test structure. 

The Development of the Approximated and Simplified Finite Element (ASFE) Model 
Modal expansion methods depend primarily on the accuracy of the FE models. In some cases involving complex 

structures, developing accurate FE models is a very challenging and time-consuming activity. As an alternative to 
developing detailed FE models, a simplified and approximate modelling approach was used to build the FE model of the 
irregular plate. In this work, the ASFE model of the irregular plate was modelled by using shell elements based on the 
simplified geometry of the model as shown in Figure. 3. The simplified geometry was then discretised into 12 QUAD4 
and 6 TRIA3 elements. The methodology for developing the ASFE model can be found in [16].  
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Figure 3. (a) Test and (b) ASFE model of the irregular plate. 

EMA of the irregular plate 
Experimental modal analysis (EMA) was performed on the irregular plate to measure the natural frequencies and 

mode shapes used in model updating [17]. The EMA was performed by suspending the irregular plate with two soft 
suspensions to simulate free-free conditions [18], [19]. The details of the experimental setup for the irregular plate can be 
found in [16]. In this work, the Kistler 8840, as shown in Figure 4, was used to measure the rotational FRF. This sensor 
is made of a very stable quartz crystal, and the accelerometer can be operated with a 20-30 VDC power supply. The 
technical data of the Kistler 8840 can be found in [13], [15] and are listed in Table 1. In this work, only the rotational 
FRF of the force excitation was recorded. 

 

                            
(a)       (b) 

 
Figure 4. (a) Kistler 8840 rotational accelerometer and (b) mounting configuration. 

Table 1. Kistler Kshear 8840 specification. 
Specification Value 
Sensitivity 35 μV/rad/s 
Frequency response, ±10% 0 – 2000 Hz 
Acceleration range ±150 krad/s2 
Maximum limit ±200 krad/s2 
Source voltage 20-30 V 
Source current 4 mA 

Updating the ASFE Model 
In ASFE updating, certain parameters are systematically adjusted based on experimental data. This process is mainly 

carried out to improve the accuracy of the ASFE model [20]. ASFE parameters that are sensitive to experimental data are 
identified through sensitivity analysis. Since in this study, the experimental data are in the form of mode shapes Φ and 
natural frequencies ω, the sensitivity of the parameters θ is determined by the matrix S given by, 

 

𝐒𝐒 =  ⏀𝑖𝑖
𝑇𝑇 �
𝛿𝛿𝐊𝐊
𝛿𝛿𝜃𝜃𝑗𝑗

−  𝜔𝜔𝑖𝑖
𝛿𝛿𝐌𝐌
𝛿𝛿𝜃𝜃𝑗𝑗

�⏀𝑖𝑖  (1) 

 
The subscript i and j indicate the i-th eigenvalue and the j-th parameter [21], [22]. The following four parameters were 

subjected to updating in this study: Density, thickness, Young's modulus and Poisson's ratio.  
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The proposed scheme involves mode expansion and synthesis to ensure that these processes yield accurate results 
meaning that the updated eigenvectors must be very close to their experimental counterparts. Consequently, the modal 
assurance criterion (MAC) [15], which quantifies the similarity between two mode shapes, was selected as the fitness 
function for the updating process. The degree of similarity between the mode shapes of the ASFE and the experimental 
ones is quantified using MAC  defined by [23], 

 

𝑀𝑀𝑀𝑀𝑀𝑀(𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ,𝜙𝜙𝐴𝐴𝐸𝐸𝐸𝐸) =  
�𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝜙𝜙𝐴𝐴𝐸𝐸𝐸𝐸�

2

�𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴��𝜙𝜙𝐴𝐴𝐸𝐸𝐸𝐸𝑇𝑇𝜙𝜙𝐴𝐴𝐸𝐸𝐸𝐸�
𝑋𝑋100% (2) 

 
where 𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  and  𝜙𝜙𝐴𝐴𝐸𝐸𝐸𝐸 are ASFE and EMA modal vectors, respectively. The MAC values can be cast in an nxm 

matrix, where n is the number of ASFE mode shapes and m is the number of EMA mode shapes. In this study, seven 
mode shapes were employed in the modal updating carried out using MSC NASTRAN Software. Figure 5(a) and 5(b) 
present the initial, Figure 5(a) and updated, Figure 5(b) MAC values between the ASFE and experimental mode shapes. 
The MAC values along the diagonal must be close to 100% (approaching the red colour in Figure 5(a) and (b)) and 
express the similarity of the EMA and FE mode shapes.  

 

 
(a)       (b) 

Figure 5. 3D view of MAC for (a) the Initial ASFE and (b) the updated ASFE. 

Figure 5(a) shows that the calculated MAC values indicate that the initial ASFE model is not in good agreement with 
the test model. The MAC values along the diagonal indicate that the mode shapes of the initial ASFE model are not well 
correlated with the experimental ones. The observed low MAC values are due to the material properties and the 
dimensions used in developing the ASFE model. However, the updating improved the MAC values significantly, as 
depicted in Figure 5(b). Due to this improvement, the updated ASFE model is on the one hand suitable to represent the 
dynamic behaviour of the irregular plate and to perform the mode expansion. 

Expanding the ASFE Model 
The mode expansion objective of the updated ASFE model of the irregular plate is to acquire the rotational DOFs that 

are not measured. The system equivalent reduction expansion procedure (SEREP) [14] was used in this study to expand 
the unmeasured rotational data from the improved ASFE model of the irregular plate. The SEREP procedure was 
performed based on the mode shapes of the updated ASFE model. The expanded modal vector with a full set of DOFs, 
𝝓𝝓𝒏𝒏is expressed in the form of:  

 
𝜙𝜙𝑛𝑛 =  �𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝜙𝜙𝐴𝐴𝐸𝐸𝐸𝐸

� = 𝐓𝐓𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴𝐸𝐸𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (3) 
 
where 
 

𝐓𝐓𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴𝐸𝐸 =   �𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝜙𝜙𝐴𝐴𝐸𝐸𝐸𝐸
� 𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑔𝑔 (4) 

 
so the expanded mode shapes are;  
 

𝜙𝜙𝑛𝑛 =   �𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝜙𝜙𝐴𝐴𝐸𝐸𝐸𝐸
� 𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑔𝑔𝜙𝜙𝐴𝐴𝐸𝐸𝐸𝐸 (5) 
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where 𝜙𝜙𝐴𝐴𝐸𝐸𝐸𝐸, 𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐓𝐓𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴𝐸𝐸  are EMA modal vectors, updated ASFE modal vectors and SEREP transformation 
matrices. The natural frequencies of the expanded model were preserved based on the original natural frequencies 
obtained from the EMA. 

The improved model, henceforth referred to as the expanded ASFE model, is then used to calculate the rotational FRF 
using the FRF synthesis technique. The technique for synthesising the FRF is described in detail in [23]. In this method, 
the synthesised FRF matrix Hexp (ωk) of the expanded model and the mode shapes 𝜙𝜙 are represented as follows: 
 

H𝑒𝑒𝑒𝑒𝑒𝑒(ωk) =  �
{𝜙𝜙}𝑖𝑖{𝜙𝜙}𝑖𝑖𝑇𝑇

�𝜔𝜔𝑛𝑛𝑖𝑖
2 − 𝜔𝜔𝑘𝑘

2� + 𝑗𝑗2𝜉𝜉𝑖𝑖𝜔𝜔𝑘𝑘𝜔𝜔𝑛𝑛𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (6) 

 
where N represents the number of modes, {𝜙𝜙}𝑖𝑖 represents the ith expanded mode shapes, 𝜔𝜔𝑛𝑛𝑖𝑖 represents ith natural 

frequency and 𝜉𝜉𝑖𝑖 represents the ith modal damping ratio. The translational and rotational FRFs obtained using the 
expanded ASFE model were validated by comparing them with the experimental FRFs. For comparison purposes, overlay 
plots of the experimental and synthesised FRFS are shown in Figures 6 and 7. Figure 6 presents the translational FRFs, 
while Figure 7 shows the rotational FRFs. Both FRFs were obtained by the translational and rotational response of the 
reference point to the force excitation.  

 

 
Figure 6. The evaluation of translational FRF between the test and expanded ASFE model at the reference point. 

 
Figure 7. The evaluation of force-excitation rotational FRF between the and expanded ASFE model at the reference 

point. 

Figure 6 and Figure 7 show that all the resonance peaks of the expanded FRF data obtained with the expanded ASFE 
model agree well with the peaks of the experimental FRFs. On the other hand, the expanded FRFs from both figures show 
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slight discrepancies in the anti-resonance peaks, especially in the frequency range between 1800-2000 Hz. These 
differences are due to the fact that the synthesised FRFs do not take into account the effect of the out-of-range modes. 

In this study, the Frequency Response Assurance Criteria (FRAC) was used to quantify the degree of similarity 
between the expanded and measured FRFs. The main objective of comparing the FRFs is to evaluate the accuracy of the 
expanded FRFs over the frequency range in question using a representative percentage value. A detailed explanation of 
the FRAC analysis can be found in [24]. 

The degree of similarity between the expanded translational FRF and its measured counterpart is 96.78%, while the 
expanded force-excitation-rotational FRF has a similarity of 90.81% with the measured one. The degree of similarity for 
both derived FRFs is well above 70%, which is an acceptable value [24]. It is therefore essential to note that the FRFs 
calculated with the expanded ASFE model are very similar to the measured FRFs of the irregular plate. 

RESULTS AND DISCUSSION  
In the previous section, the accuracy of the force-excitation rotational FRF of the expanded ASFE model of the 

irregular plate was discussed. However, the moment-excitation rotational FRF cannot be validated using the same 
procedure that was used for the force excitation rotational FRF. This is because measuring the moment-excitation 
rotational FRFs is exceptionally challenging. There are many shortcomings in solving the problem, such as the inability 
to introduce and control moment- excitations in experiments, the insufficient understanding of the measurement process 
and the unavailability of moment measurement sensors. 

The FBS technique is used to validate the accuracy of the moment-excitation rotational FRF produced from the 
enlarged ASFE. [18] covers a comprehensive and mathematical description of the FBS technique. It is worth emphasising 
that the accuracy of the expanded ASFE model will be acceptable if the coupled FRF calculated from the expanded ASFE 
model is similar to the measured counterparts. To test the proposed approach, the FBS method was performed in this 
study by coupling the FRFs obtained from the expanded ASFE model with the beam's FE model of the beam. The FRF 
of the FBS using the expanded ASFE model was compared with the measured FRF of the assembled structure and the 
proposed model of [16], in which an updated SFE model is used in the FBS method. 

An interesting observation from the comparison of the FRF between the FBS using the expanded ASFE model and 
the FBS using the updated SFE model is that the FBS using the updated SFE model does not match the modes occurring 
at high frequencies (in Figure 8). In contrast, the FBS using the expanded ASFE model performs much better at higher 
frequencies, Figure 10. Figure 8 shows that the FBS can accurately predict the coupled FRF of the assembled structure 
using the updated SFE model. However, the prediction model seems to be accurate only for predicting modes in the 
frequency range of 0 to 700 Hz and is not able to capture higher modes with reasonable accuracy (in Figure 9). 
Furthermore, there is no strong correlation between the test and the improved SFE model, as shown by the FRAC value 
of 30.47 per cent. As a result, the improved SFE model is not accurate enough to correctly predict the rotational FRF of 
the irregular plate.  

 

 
Figure 8. The evaluation of coupled FRF between the test and updated ASFE model at the reference point. 
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Figure 9. The evaluation of the coupled FRF between the test and updated SFE model at the reference point at a range 

of 900 to 1100 Hz. 

The comparison of the coupled FRFs in Figure 10 shows that the proposed expanded ASFE model is able to estimate 
the force-excitation and moment-excitation-rotational FRF required for the FBS method. In other words, the expanded 
ASFE model successfully provides 75% of a complete FRF coupling matrix, which is the crucial element for the accuracy 
of the FBS method [2], [6], [21]. Note that the coupling interface lost the join flexibility in the rotational FRFs during the 
coupling process. Furthermore, the strong correlation from the comparison indicates that the use of the expanded 
rotational FRFs from the expanded ASFE model in the coupling process significantly improved the accuracy and 
flexibility of the coupling interfaces of the assembled structure.  

 

 
Figure 10. The evaluation  of the coupled FRF between the test and expanded ASFE model at the reference point. 

Another noteworthy point is that a significant improvement in the correlation between the tested and the predicted 
coupled FRF is observed within the frequency range of interest from 900 to 1100, as shown in Figure 10. The 6th and 7th 
resonance peaks show a similar pattern in terms of resonance and anti-resonance of the test FRF.  

FRAC analysis was performed to assess the level of correlation between the test and the FBS, using the expanded 
model of the assembled structure. The value calculated from the analysis is 84.44%, which is significantly higher than 
the FBS using the updated SFE model. The result indicates a dramatic improvement in the predictive ability of the 
proposed approach, namely the expanded ASFE model. Thus, the results of this study indicate that the proposed approach 
provides a more practical and reliable solution for calculating the coupled FRF of the assembled structure compared to 
the method in [16]. 

 

0.0001

0.001

0.01

0.1

1

10

100

1000

900 950 1000 1050 1100

g/
N

Frequency (Hz)

Measured FRF Updated SFE

0.0001

0.001

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400

g/
N

Frequency (Hz)

Measured FRF Expanded ASFE



I.I Wan Iskandar Mirza et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 19, Issue 1 (2022) 

9476   journal.ump.edu.my/ijame ◄ 

 
Figure 11. The evaluation of the coupled FRFs at the reference point within the range of 900 to 1100 Hz between test 

and expanded ASFE model. 

CONCLUSION 
An alternative approach to obtain a complete coupling matrix including translational and rotational FRFs using the 

model updating and mode expansion method for the FBS method is presented and discussed. The proposed approach was 
demonstrated on an irregular plate. It was found that the rotational FRF obtained by the proposed approach agrees well 
with that obtained by the piezoelectric direct rotational accelerometer. To predict the FRF of the assembled structure, the 
proposed approach was used in the FBS method by coupling the FRF obtained from the expanded ASFE with the FRF 
derived from the beam model. A high degree of accuracy was observed when applying the proposed approach to the 
prediction of the coupled FRF. This approach appears to be effective in accurately estimating the rotational FRF, which 
is crucial in structural dynamics. The proposed approach can be further improved by performing FRF expansion using 
System Equivalent Model Mixing (SEMM) and using inaccurate node groups (VIKING) for FRF coupling. 
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