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INTRODUCTION 
The indentation tests are the most commonly used non-destructive procedures to evaluate the mechanical behaviour 

of newly developed materials, and the indentation tests have the potential to be an excellent substitute for a standard 
tensile/compression test [1]-[5]. In the present investigation, the indentation behaviour of Haynes 242 and Ti-6Al-4V 
alloys are studied using conventional and depth-sensing instrumented indentation. These two alloys are most commonly 
used in aerospace applications because of their attractive mechanical properties. Haynes242 alloy is a nickel-based super 
alloy that has exceptional attractive mechanical properties because of the fine dispersion of metastable Ni2 particles. It 
contains 25% Mo and 8% Cr (wt %), with Ni as the balance [6]-[9]. Ti-6Al-4V alloy has two crystal structures, one is α 
phase, i.e.Hexagonal closed-pack (HCP) and the second one is β phase body-centred cubic (BCC). At room temperature, 
pure titanium consists of 100% α phase. α to β phase allotropic transformation takes place at the 883 ℃ β transus 
temperature. To stabilize the β phase in Ti-6Al-4V, vanadium (V) is added by minimizing the β transus temperature and 
with the addition of aluminium (Al), it increases. The β phase transus temperature of Ti–6Al–4Vwith 6 wt.% of Al and 4 
wt.% V is 980 ℃, beyond which Ti is 100% β. It can be heat treated and aged [10] for its attractive and exceptional 
mechanical properties like the high strength–density ratio at high temperatures. Higher β content provides higher creep 
resistance. 

In conventional indentation tests, the indentation load (Pmax) is gradually applied to the indenter and the indenter 
residual impression area (Ar) is determined by using an optical microscope. The static conventional indentation hardness 
(Hs) is obtained by:  
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In the depth-sensing instrumented indentation technique, the indentation hardness of the material is taken as the ratio 

between the maximum indentation load, Pmax, and the projected residual indenter impression contact area, Ac, of the 
residual impression.  

 

ABSTRACT – Indentation tests were conducted on Ti-6Al-4V and Haynes 242 alloys at macro, 
micro and nano load range using conventional and depth-sensing indentation instruments to study 
the load effects on the mechanical behaviour of the alloys. With the increase of indentation loads 
from macro to nano, a decrease in Young’s modulus and indentation hardness values was 
observed as a result of the indentation size effect in the alloys. During the loading procedure in 
macro, micro and nano indentations, the loading curves progressively moved upwards, showing 
the increase in resistance of the alloys with the increase in indentation load. Compared the depth-
sensing instrumented indentation hardness of alloys with the conventional indentation hardness at 
micro loads, the magnitude of the depth-sensing instrumented indentation hardness is 10-25% 
greater than the conventional indentation hardness. The reason for this variation is explained as 
the depth-sensing instrumented indentation hardness is calculated at maximum load with the 
projected contact residual impression area, Ac, instead of the residual indenter impression 
projected area, Ar. So the indent pileup and sink-in play a major difference between the depth-
sensing instrumented hardness and conventional indentation hardness. The outcome of the 
experimental work clearly indicates that for evaluation of the hardness usage of projected contact 
residual impression area provides more accurate results than when residual indenter impression 
projected area is used. The concept is synonmous to evaluation of engineering stress / strain and 
true stress / strain using original and actual cross sectional area respectively. 
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𝐻𝐻𝑑𝑑 =
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝐴𝐴𝑐𝑐

 (2) 

In depth-sensing instrumented indentation, mostly Berkovich indenter is used and its residual indentation impression 
area function is:  

 
Ac = 24.56 hc

2 (3) 
  

ℎ𝑐𝑐 = ℎ − 𝛾𝛾
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆  (4) 

 
where, 𝛾𝛾 is Berkovich indenter geometric constant and its value is 𝛾𝛾 = 0.75 [11] and h is the indentation depth. The 

slope of the unloading curve, also known as contact stiffness, S, can be expressed as:  
 

dpS
dh

=  = α.m (h – hf) m-1 (5) 

 
α, m and hf are the constants and hc is the contact depth over which the indenter makes contact with the alloy. The 

Young’s modulus of alloy, E, is calculated by:  
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where 𝜈𝜈𝑠𝑠 is the Poisson ratio, and E* is the reduced modulus of the specimen. Ei=1140 GPa, 𝜈𝜈𝑖𝑖= 0.07 are diamond 

indenter Young’s modulus and Poisson’s ratio values, respectively. 
Static conventional indentations are mostly used up to the micro loads only because measuring the residual impression 

of indentation is very difficult at nano loads with a normal microscope. The advantage of depth sensing instrumented 
indentation is it does not require imaging of residual impression area for the evaluation of hardness. Depth sensing 
instrumented indentation can be used to study the behaviour of non-metallic materials like polymers[12], [13]. The 
accuracy of the depth-sensing instrumented hardness, Hd, depends on how fine the residual indenter impression contact 
area, Ac, substitutes the projected residual indenter impression area, Ar, of conventional static indentation.  

Balshakov and Pharr [14] found that due to the pile-up and sink-in behaviour of the alloys, the estimation of the true 
contact area of the residual indenter impression, Ac, is very difficult and Sudershan [15] revealed that the Oliver and Pharr 
method numerical equations should be applied cautiously for the materials having σy /E ratio is 10.4 to 10.2. However, 
except few finite element analyses [16]-[18], Studies on experimental comparison of static conventional indentation and 
depth-sensing indentation hardness were very few and not up to the mark. Conventional plastic theories to the macro and 
nano loads have not been addressed in any of the previous investigations. The dependence of the mechanical properties 
on indentation load is termed as indentation size effects (ISE). A thorough understanding of the size effects and its 
correlation to conventional plastic theories is especially important in modern applications. 

The aim of this work is to analyze the variation of hardness in static conventional indentation and depth sensing 
indentation and also to study the load influence on the characterization of Ti-6Al-4V and Haynes 242 alloys without 
considering the effect of indenter geometry. The main focus is on how the load and displacement curves, Young’s 
modulus and hardness of alloys vary with respect to the macro, micro and nano loads and provides an explanation for 
load depending behaviour of the materials. 

EXPERIMENTAL DETAILS 
Materials and Microstructure 

In the present investigation, Haynes 242 and Ti-6Al-4V alloys were used and the Ti-6Al-4V specimens were heated 
to 1232 K for one hour, then cooled in a furnace and aged for 6 hrs at 802 K followed by cooling in the atmosphere. 
Haynes 242 samples were prepared in as-received condition. The specimens’ top and bottom surfaces were polished to 
mirror-like surfaces within ±0.1 µm. Figure 1(a) shows the optical microstructure of Ti-6Al-4V material with solution 
heat-treated and overaged (STOA). The microstructure consists of about transformed β and 30% primary equiaxed α. 
The transformed β consists of martensite needles (α‘) and a negligible amount of β. Figure 1(b) shows the microstructure 
of Haynes 242 alloy; it reveals that the Ni2 (Cr, Mo) precipitates were present in an aspect ratio of 8:3 in the major, 
intermediate dimensions and with lenticular in shape. Mn, iron, Si, Ni and Al were observed to partition to the γ matrix. 
Cr was not found to partition extensively between the phases, and Mo was found to partition to the Ni2 (Cr, Mo) 
precipitates.  
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Figure 1. Microstructure of (a) Ti-6Al-4V (b) Haynes 242 alloys. 

Static Conventional and Depth-Sensing Instrumented Indentation Tests 
Static conventional indentation experiments were conducted on Ti-6Al-4V and Haynes 242 alloys using Brinell 

hardness tester, Rockwell hardness tester and Vickers micro hardness tester. A spherical indenter made up of non-
deformable tungsten carbide (WC) with a 2.5 mm diameter was used in the conventional Brinell hardness tester and the 
hardness of the spherical (ball) indenter was 220 HV. Five indentations were made on both materials using Brinell and 
hardness tester at a load range of 62.5 kgf to 250 kgf. In the Vickers micro hardness test, a square base pyramid-shaped 
diamond indenter was used and five indentations were made on both the materials at a load range of 5 gmf to 2000 gmf. 
The diameter of the indentations was measured using a GT-K optical microscope. 

Microindentation Test 
The micro-indentation experiments were conducted on a universal mechanical tester (UMT) with a Berkovich tip. 

Contact stiffness load control mode (CSM) was used in micro indenter; in this mode, at regular intervals the contact 
stiffness can be extracted from the indentation load-depth curve. Six micro dentations were made with load control at 
1750 mN load and maintained 30 µm gap was maintained between the indents. To decrease the influence of variations in 
the micro indentation hardness values, the average values of six indentations have been considered representative values. 

Nanoindentation Test 
Nanoindentation tests were performed on G200 Agilent nanoindenter with Berkovich indenter tip, and contact 

stiffness depth control mode (CSM) was applied to obtain contact stiffness at a regular load-displacement curve. A series 
of ten nanoindentations were conducted at 120 mN load and to eliminate the effect of point-to-point variations in the 
experimental nano indentation hardness results and average values all ten nano indentations have been considered as 
representative values. 

RESULTS AND DISCUSSION 
Indentation Load and Displacement Curves 

The static and depth-sensing indentation load and displacement curves of Ti-6Al-4V and Haynes 242 alloys are shown 
in Figure 2(a), 2(b), 3(a) and 3(b), respectively. During the loading procedure in both types of indentations, the loading 
curves gradually moved upwards, indicating increase in resistance of the alloy with an increase in load. Variations of the 
indentation depths depend on the resistance of the material against deformation, and due to variation of dislocation 
density, there is an increase in the indentation depth with an increase in indentation loads. As per Figure 2(a), the load 
and displacement curves of Haynes 242 alloy, the high initial unloading slope and a very small recovery in indentation 
depth suggest that the alloy possesses high contact stiffness and Young’s modulus.  

 

 
    (a)      (b) 

Figure 2. Depth sensing indentation load and displacement curves of (a) nanoindentation at 120 mN load and (b) micro 
indentation at 1250 mN load.  
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    (a)      (b) 

Figure 3. Static indentation load and displacement curves of (a) Brinell hardness test and (b) Vickers micro hardness 
test at micro loads. 

Static Conventional and Depth Sensing Instrumented Indentation Hardness of Alloys 
The variation of static conventional indentation hardness at macro and micro loads has been plotted for Ti64 and 

Haynes 242 alloys in Figure 4. Static conventional indentation hardness, Hs, for the alloys has been calculated using the 
Eq (1); this hardness can be termed as Mayers hardness. With indentation load, the static conventional hardness was 
observed to sudden increase at macro indentation loads due to the strain hardening effect but at micro loads the hardness 
is gradually decreasing in both alloys.  

The variation of depth-sensing instrumented indentation hardness, Hd, at 120 mn (nano load) and 1750 mn (micro 
load) with respect to the indentation depth has been plotted for Ti64 and Haynes 242 alloys in Figure 5. The hardness 
values are calculated using Eq. (2). At nano and micro loads there is a decrease in indentation hardness with the increase 
in depth of indentation. The percentage of decrease in hardness at nano load is very high compared to the variation of 
hardness at micro load, indicating more indentation size effects at nano load. The residual impression of Berkovich 
indenter in depth-sensing indentation is shown in Figure 6.  

 

 
 (a)      (b) 

Figure 4. Static indentation hardness at (a) macro loads and (b) micro loads. 

 
    (a)      (b) 

Figure 5. Depth sensing indentation hardness at (a) micro loads and (b) nano loads. 
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(a)      (b) 

Figure 6. Berkovich indenter residual impression for (a) line diagram and (b) experimental impression. 

Macro, Micro and Nano Load Effects and Comparison of Static Conventional and Depth Sensing 
The effect of indentation loads on instrumented indentation hardness, Hd, for both the alloys is shown in Figure 5. 

Clearly, the Hd of Haynes 242 appears to have the strongest load effect. The Hd of Ti-6Al-4V exhibits a weak load effect 
compared to the Hyanes 242. This load effect on the indentation values is generally called as the indentation size effect 
(ISE). Variation in the indentation hardness due to indentation size effects was explained due to the strain hardening effect 
in the materials. The Young’s modulus of both alloys are shown in Figure 7. With the increase of load from macro to 
nano, there is a decrease in the Young’s modulus, E values. The consistent decrease in the E values of alloys may be due 
to the evolution of micro cracks around the indent [19]. Whereas, Figure 4 and Figure 5 show the experimental results of 
depth sensing indentation hardness and static hardness are very sensitive to the indentation size effects and the variation 
is 10% to 25%, demonstrating that the depth-sensing instrumented indentation hardness depends on the resistance against 
deformation.  

 

 
 (a)      (b) 

Figure 7. Variation of Youngs’s modulus at (a) nano load and (b) micro load. 

Oliver Pharr method was used to calculate the depth-sensing instrumented indentation hardness Hd from the 
indentation load and displacement curves, as discussed in the introduction. The Hd describes the resistance against 
deformation of the material. In Figure 8, for both alloys, the static hardness Hs values are less than the Hd values. To show 
the variation quantitatively, the ratio of Hs and Hd are presented in Table.1. As per these values, the Hd values are 10 to 
20% higher than the static hardness. Using FE analysis Bolshakov and Pharr concluded that the real contact indent area, 
Ar, with the pile-up made the area greater than Ac from the Oliver Pharr (O&P) numerical procedure. This, in turn main 
reason for the high magnitude of depth-sensing indentation hardness values. But the materials with small Y/E show the 
pile-up and sink in effect, so the main reason for variation is attributed to the depth-sensing indentation hardness values 
which are calculated using projected residual indent impression contact area Ac instead of residual indenter impression 
projected area Ar.  
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 (a)      (b) 

Figure 8. Comparison of the static and depth-sensing hardness of (a) Ti-6Al-4V and (b) Haynes. 

Table 1. Comparison of the Hd and Hs. 
SNo Material E (GPa) Y (GPa) Y/E HS/Hd 
1 Ti-6Al-4V 105 0.998 0.009 0.869 
2 Haynes 242 195 0.780 0.004 0.898 

CONCLUSION 
The work was targeted to analyze the variation of hardness in static conventional indentation and depth-sensing 

indentation. The scope also included a study of the load influence on the characterization of Ti-6Al-4V and Haynes 242 
alloys without considering the effect of indenter geometry. It can be concluded that the depth-sensing instrumented 
indentation hardness of the alloys was found to be larger than the static conventional hardness values. It can be inferred 
that the depth-sensing instrumented hardness of alloys appears to be strong indentation size effects compared to the static 
conventional indentation hardness. The main reason for the variation in the hardness can be attributed to the analysis of 
the depth-sensing indentation hardness using the projected contact residual indenter impression area, Ac, instead of the 
residual projected indenter impression area, Ar. But the nature of loading curves, i.e. continuously increasing, indicates 
that for both types of indentation, there is an increase in resistance of the alloys with the increase in indentation load. 
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