
INTERNATIONAL JOURNAL OF AUTOMOTIVE AND MECHANICAL ENGINEERING
ISSN: 2229-8649 e-ISSN: 2180-1606
VOL. 20, ISSUE 2, 2023, 10523 – 10535
DOI: https://doi.org/10.15282/ijame.20.2.2023.14.0812

*CORRESPONDING AUTHOR | Y.Y. Nazaruddin |  yul@itb.ac.id
© The Authors 2023. Published by University Malaysia Pahang Publishing. This is an open access article under the CC BY-NC 4.0 license 10523

RESEARCH ARTICLE

Particle-Based Optimization Algorithms for Longitudinal Control of
Autonomous Vehicle: A Comparative Study
F.A. Ma’ani1, A.R. Mahdi1, K.A. Arfian1 and Y.Y. Nazaruddin1,2, *
1Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, 40132 Bandung, Indonesia
2Instrumentation and Control Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, 40132 Bandung, Indonesia

ABSTRACT - In order to improve the stability and performance of an autonomous vehicle,
optimization needs to be explicitly performed in the controllers, which has an essential part in
the tracking system. This work proposes a novel longitudinal control optimization scheme and
a novel longitudinal controller consisting of a feed-forward and feedback term. The feed-
forward term is inspired by the vehicle’s steady-state response, whereas the feedback term is
a proportional-integral-derivative (PID) controller. Also, a model representing the longitudinal
vehicle dynamics is designed based on physical phenomena affecting the vehicle. Besides,
some nature-inspired optimization algorithms are used to determine the optimal model
parameters and optimize the controller parameters, i.e., Particle Swarm Optimization (PSO),
Accelerated PSO (APSO), Flower Pollination Algorithm (FPA), and Modified FPA (MFPA).
The algorithms are compared in optimizing the longitudinal vehicle model and controller using
the CARLA simulator, and stability tests are also done for each algorithm. In addition, the
characteristics of several cost functions in controller optimization are inspected. The results
show that the MFPA is the most stable algorithm, the proposed model represents the system
satisfactorily, and optimizing the controller using a regularized cost function leads to better
overall performance. Our code is available in https://github.com/fadamsyah/Particle-Based-
Optimization-for-Longitudinal-Control.

ARTICLE HISTORY
Received : 01st Oct 2021
Revised : 22nd June 2023
Accepted : 26th June 2023
Published : 02nd Aug 2023

KEYWORDS
Longitudinal controller;
Autonomous vehicle;
Particle swarm optimization;
Flower pollination algorithm;
Proportional-integral-derivative

1.0 INTRODUCTION
Autonomous vehicle technology has been improved for quite some time now. Its industry has grown rapidly, which

has become the answer to several technological challenges in the Industry 4.0 era. By integrating multi-sensor navigation
and positioning system, intelligent decision-making and other technologies can produce a control system that can drive
in multiple terrain settings, track probable dangers, and stay stable when there are disturbances. The goal of autonomous
vehicle development is to improve traffic safety and driving efficiency. To achieve the self-tracking-ability of an
autonomous vehicle, numerous researchers divide the control problem into two sub-categories: longitudinal and lateral
control [1–3]. The longitudinal control acts as speed control, whereas the lateral control acts as lane control. This work is
limited to longitudinal control for autonomous vehicles.

Proportional-integral-derivative (PID) controllers, one of the most prominent feedback control techniques, are
commonly used in autonomous vehicles [1,4,5] because of their simplicity, good control effect, robustness, and ease of
implementation. In the vehicle longitudinal control system, the controller is responsible for generating brake and throttle
signals by analyzing the given set-point and the actual vehicle speed. [1] implements a proportional-integral (PI) controller
to control autonomous vehicle speed for off-road driving and incorporates a saturation mechanism for the integral term
in order to avoid windup, while [5] utilizes the standard PID controller to control the vehicle longitudinal system in
simulation and real platforms in a low-speed setting. Additionally, [4] proposes an adaptive-PID controller which
automatically alters the PID gains to adapt to the changes of the longitudinal system characteristic due to the environment.
Yet, [4] uses a strong assumption; the vehicle speed is constant at 20 m/s, resulting in a linear longitudinal vehicle model
that may limit their controller span. Unlike the previously mentioned control strategies, our controller consists of a feed-
forward as well as feedback term, and we consider a data-driven non-linear vehicle longitudinal model when optimizing
our proposed longitudinal controller.

The longitudinal controller must be optimized so that the system can give stable output with a desired response
characteristic that fits any given set-point. For PID-based controllers, PID gains are typically tuned to ensure stability and
suitable tracking components. Optimization of longitudinal control is challenging due to the inherent non-linearities of
the vehicle longitudinal model. These non-linearities limit researchers in exploring optimization techniques, controller
equations, and objective functions; [1] and [5] tuned their controller gains manually to achieve stability and considerably
good speed tracking performance, while [4] linearized the vehicle longitudinal model and then the controller gains were
chosen to meet some specific criteria. None of the mentioned works mathematically formulates aspects of passengers’
comfort in their objective functions, e.g., the throttle rate of change and jerk.

Ma’ani et al.│ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 2 (2023)

ijame.ump.edu.my 10524

PID tuning with particle-based optimization algorithms shows promising results on various occasions [6–9]. A PSO-
based PID controller performs better than one tuned with a conventional tuning method, i.e. Ziegler-Nichols, Tyreus-
Luyben, and Internal Model Control (IMC), for a third-order linear system [6]. The same observation also emerges in [7],
where PSO results in a better-performing PID controller than Ziegler-Nichols method for a composite control system
controlling the liquid level of a linear three-tank system. In addition to the superiority of particle-based optimization
algorithms for PID tuning, as these algorithms do not depend on gradients to optimize controller parameters, the
algorithms allow a wide range of design choices, including incorporating regularization terms and constraints that may
introduce non-linearity, singularity, and non-convex optimization problems. de Moura Oliveira et al. [8] conduct an
experiment on a first-order linear system with time delay, explore various criteria in the objection function (e.g. integral
of square error and integral of absolute error), and incorporates a smoothness term for the control input. Jadhav and
Vadirajacharya [9] further introduce hard constraints for the parameters of 2 PID controllers in a system with dual inputs.
Thus, inspired by the outstanding capabilities of the particle-based optimization for control systems, this paper explores
the optimization scenario of our proposed non-linear longitudinal controller while considering several challenging
aspects; a non-linear data-driven vehicle longitudinal model, constrained controller parameters, and regularization terms
in the objective function which relate to passengers’ comfort.

In this paper, non-linear equations are applied to represent the longitudinal vehicle model by considering physical
properties such as drag force and friction force [10]. To determine the parameters in the proposed non-linear model,
nature-inspired optimization methods are applied. These optimization methods can find a global optimal solution for a
system which is highly non-linear and nonlinearly constrained [11]. Some methods are compared in this paper, i.e. particle
swarm optimization (PSO), accelerated particle swarm optimization (APSO), flower pollination algorithm (FPA), and
modified flower pollination algorithm (MFPA). Each algorithm has its capabilities and limitations that are discussed by
testing the algorithms through several optimization problems which are mainly obtained from the CARLA simulator 1
[12]. There are four contributions delivered in this paper, namely:

i. Propose a longitudinal controller that has a feed-forward and feedback term.
ii. Propose a longitudinal vehicle model representing a real vehicle for simulation.

iii. Compare optimization algorithms performance and stability.
iv. Compare cost function modifications on algorithm performance.

This paper has the following structure. The second section, i.e. longitudinal controller design, discusses the proposed
longitudinal controller used in the system design. The third section, i.e. optimization algorithms, reviews the optimization
algorithm structure. Further, the longitudinal model optimization is described in the fourth section, i.e. model
optimization, whereas the fifth section, i.e. PID controller algorithm, discusses the optimization of the proposed
longitudinal controller. The effects of cost function modification on controller tuning will be explained in the sixth section,
i.e. cost function modifications. Finally, the last section concludes and presents future works.

2.0 LONGITUDINAL CONTROLLER DESIGN
2.1 Controller Algorithm

The longitudinal controller acts as speed control for an autonomous vehicle. The longitudinal controller proposed in
this work has a feed-forward and feedback term. In control systems, the feed-forward term is a technique where the control
action is determined based on a predicted or anticipated disturbance or input. On the other hand, feedback control is a
technique where the control action is determined based on the difference between the desired output and the actual output
of the system. The proposed controller with a feed-forward and feedback term is illustrated in Figure 1. In this work, a
PID controller acts as the feedback term that consists of proportional, integral, and derivative parameters, where the
feedback term needs to be tuned to obtain the best results from the controller. The throttle value at a steady-state given
set-point, 𝑟𝑟, is selected as the feed-forward term that acts as a performance tracker in the system. Both controller terms
are optimized by using several algorithms and the performance of the controllers are measured with cost functions.

Figure 1. Proposed feed-forward and feedback control

A standard PID controller normally experiences an integral-windup [13]. An integral-windup happens due to an
overshoot of accumulated error caused by the nonlinearity of the actuators and the inability to follow the control

1 Track and simulation map obtained from Introduction to Self-Driving Cars course provided by Coursera

Ma’ani et al.│ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 2 (2023)

ijame.ump.edu.my 10525

commands perfectly. Generally, the integral-windup phenomenon is often caused by actuator saturation or constraints
[14]. Integral-windup can occur in autonomous vehicles when the actuator signals, specifically the throttle and brake, are
limited to a range of 0 to 1. This phenomenon arises when the integral part of the controller continues to accumulate an
error that exceeds the saturation limit. As a result, the error accumulates beyond the maximum allowed value, leading to
integral-windup. The accumulated error can cause overshoot, instability, longer settling times, control saturation,
degraded control performance, and increased steady-state error. To compensate for the integral-windup, an anti-windup
integrator is applied in the controller, which is also known as integral-clamping [13]. Integral-clamping can help maintain
the error accumulation under a saturation limit by terminating the accumulation. This means that the clamping process
stops accumulating the error only, not turning off the whole integrator. There are two terms that need to be fulfilled to
clamp the integrator:

i. Compare the PID controller output before and after the saturation check. If both values are the same, then the
saturation limit has not been surpassed yet, but if the values are different, then the error accumulation has
surpassed the saturation limit.

ii. Compare the controller output and error signs. If the signs are both positives or negatives, then the error will
increase or decrease from the saturation limit, but if the signs are different, then there is an indication that the
error is still located in a safe range from the saturation limit.

From both terms, it can be concluded that an integral-clamping is active when the error accumulation has surpassed
the saturation limit and the signs of both the controller output and error are the same. The block diagram of the clamping
mechanism is shown in Figure 2.

Figure 2. Schematic of integral-clamping strategy

In order to tune the proposed controller, a longitudinal vehicle model should be identified based on simulation data
obtained from the CARLA simulator. The feed-forward term utilizes desired speed as input and changes it to the throttle
value; hence the steady-state response of the system also needs to be identified. Both models are optimization problems
that are discussed in the next section of this paper.

2.2 Steady-State Response

Generally, an autonomous vehicle is represented as a non-linear model [15]. Another aspect that should be recognized
from an autonomous vehicle is the throttle-to-speed conversion. If the throttle of the vehicle stays the same for a certain
amount of time, the vehicle speed will only reach a saturation point. Therefore there must be a model to define the throttle-
to-speed relation of an autonomous vehicle. This work proposes a steady-state response model to represent the throttle-
to-speed relation and to create a more concrete longitudinal model of the vehicle. The relation is considered non-linear;
hence an exponential function is used to create the model.

The simulated autonomous vehicle in the CARLA simulator accepts an input of throttle that ranges from 0 to 1. There
are multiple properties that can be measured from an autonomous vehicle. However, the simplest physical property that
can be measured is the speed of the vehicle. To ensure the controller can give an appropriate throttle value given a set-
point, a steady-state response model of the system is needed as a converter. The equation used to determine the steady-
state response is

sr = β1�1 − eβ2(vs+β3)� (1)

where sr is the throttle value, vs is steady-state speed, β1 is a positive constant, β2 and β3 are negative constants. The
boundary for each constant is defined as β1 > 0, β2 < 0, and β3 < 0. The β1 must be positive because it is a scaling
factor for the throttle-to-speed relation. The β2 must be negative in order to create an exponential value of 0-1, whereas
β3 must be negative to represent the minimum throttle threshold needed for a vehicle to start moving.

Ma’ani et al.│ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 2 (2023)

ijame.ump.edu.my 10526

2.3 System Identification

There are multiple physical properties that need to be defined for the algorithms, such as friction and drag force.
Friction happens in a vehicle due to the interaction between the wheels and a road surface that resists vehicle movement.
Friction force does not affect the contact surface, but it is proportional to the normal force, 𝑁𝑁, and affected by the contact
surface coefficient of friction (COF), μ.

COF is the ratio between friction force and normal force. It also represents the surface roughness. A stationary vehicle
is affected by static friction force, F ≤ μsN, where F is the resulting force of the vehicle and μ𝑠𝑠 is the static COF. A
moving vehicle is affected by kinetic friction force that is formulated as,

F = μkN (2)

where μk is the kinetic COF. The μs and μk are dimensionless, valued between 0 to 1, where μs > μk. The F and N are
Newton unit forces.

The drag force that affects a vehicle is related to the aerodynamic properties of the vehicle. There are five types of
drag which are, form, lift, surface friction, interference, and internal flow. Form drag is affected by the shape of the vehicle
and is represented by the easiness of airflow through the contours of the vehicle. Lift drag is the difference between the
upper and lower pressure of the vehicle. Surface friction drag is affected by the viscosity of the air around the vehicle,
and it is the number of friction that happens through the layers of air that surround the vehicle. Interference drag is
generated by the mixture of airflow around the vehicle, and internal drag happens due to the air that flows into the vehicle.
A more detailed description of drag forces can be found in [16]. The percentage of drag forces that are generated from
various sources, based on [16], are 55% form, 16% interference, 12% internal, 10% surface friction, and 7% lift.

Based on the physical properties mentioned above, the dynamics equation proposed for the system is

𝑣̇𝑣 = 𝑎𝑎1 + 𝑎𝑎2𝑣𝑣 + 𝑎𝑎3𝑣𝑣2 + 𝑏𝑏1𝑢𝑢11 + 𝑏𝑏2 exp(𝑏𝑏3 + 𝑏𝑏4𝑢𝑢12)𝑢𝑢13 + 𝑐𝑐1𝑢𝑢21 + 𝑐𝑐2 exp(𝑐𝑐3𝑣𝑣 + 𝑐𝑐4𝑢𝑢22)𝑢𝑢23 (3)

where 𝑣̇𝑣 is the vehicle acceleration, 𝑢𝑢1𝑝𝑝 is the throttle with time delay 𝑑𝑑1𝑝𝑝, 𝑢𝑢2𝑝𝑝 is the brake with time delay 𝑑𝑑2𝑝𝑝, and 𝑎𝑎1,
𝑎𝑎2, 𝑎𝑎3, 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3, 𝑏𝑏4, 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, and 𝑐𝑐4 are constants. Equation (3) is designed based on the physical properties of the
system, hence there are constrains for each parameters which are:

i. 𝑎𝑎1,𝑎𝑎2 are constants which represent friction that resists the vehicle movement, so the value must be negative
(𝑎𝑎1,𝑎𝑎2 < 0). The value is set to 0 when the vehicle is not moving.

ii. 𝑎𝑎3 is a constant which represents drag force that resists the vehicle movement, so the value must be negative
(𝑎𝑎3 < 0).

iii. 𝑏𝑏1,𝑏𝑏2 are constants which represent the throttle that moves the vehicle, so the value must be positive (𝑏𝑏1, 𝑏𝑏2 >
0).

iv. 𝑐𝑐1, 𝑐𝑐2 are constants which represents brake that resists vehicle movement, so the value must be negative (𝑐𝑐1, 𝑐𝑐2 <
0).

v. 𝑑𝑑11,𝑑𝑑12,𝑑𝑑13,𝑑𝑑21,𝑑𝑑22, and 𝑑𝑑23 are time delay constants that must be positive.

3.0 OPTIMIZATION ALGORITHMS
3.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was developed by Eberhart and Kennedy in 1995 [17] who were inspired by the
behavior of bird flocks where social sharing of information occurs and each bird benefits from the discoveries and
previous experiences of all other companions while searching for food [18]. The companions, called particles, will move
randomly and find the best position individually and the group’s best position which is also known as the global best
position. Those information are used for updating the value that is searched. The position and velocity update vector is
formulated as

xk+1i = xki + vk+1i Δt (4)

vk+1i = wvki + c1r1�pki − xki � + c2r2�pk
g − xki � (5)

where xki is the position vector of the i-th particle at the 𝑘𝑘-th iteration, pki is the individual best position, pk
g is the global

best position, w, c1, and c2 are positive constants, r1 and r2 are random values that ranges from 0 to 1, and Δt is the time
difference.

The value of w, also known as the inertia factor, affects the search speed of the algorithm, whereas c1 and c2 are called
cognitive learning rates. The c1 and c2 affect the individual learning rate and the social or swarm learning rate,
respectively. The value of Δt can be considered as 1 that represents the number of iteration done until the new position is
updated.

Ma’ani et al.│ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 2 (2023)

ijame.ump.edu.my 10527

The procedure of the PSO Algorithm:

1. Generate 𝑛𝑛-particles, 𝑛𝑛 position vector and velocity vector
2. Set the initial cost value for local and global cost as high as possible
3. Set the initial value of 𝑝𝑝𝑘𝑘 = 𝑥𝑥𝑘𝑘
4. Create best global position vector
5. Set the value of w, c1, and c2
6. Iterate for each particle and find the local cost value

a) If the cost has a lower value than the previous local cost, update the local cost and local best position
b) If the cost has a lower value than the previous global cost, update the global cost and global best position

7. Iterate until max iteration
a) Update the velocity vector by using Eq. 5
b) Update the position vector by using Eq. 4
c) Iterate for each particle and find the local cost value

i. If the cost has a lower value than the previous local cost, update the local cost and local best position
ii. If the cost has a lower value than the previous global cost, update the global cost and global best position

8. Use the last known global best position as the output of the algorithm

For a simple case, the inertia factor w can be considered constant, but for a more complex case, the value of w should
be decreased linearly. The value of w is usually between 0.4 to 0.9 suggested by Yuhui Shi [19], whereas for a linearly
decreasing w, the desired value at the start of an iteration should be wmax and at the end of the iteration, the value decreases
to wmin. The linearly decreasing value helps in converging the particles. The value of 𝑤𝑤 is determined by

wk = wmax − k(wmax − wmin)/Tmax (6)

where Tmax is the maximum iteration. The function above is known as the linearly decreasing weight (LDW), which is
introduced by Yuhui Shi [19]. Briefly, the PSO’s parameters used in all simulations of this work are 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = 0.4, 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 =
0.9, and Δ𝑡𝑡 = 1, while 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 varies. Besides, 𝑐𝑐1 and 𝑐𝑐2 are selected based on [18] but 𝑐𝑐1 = 0.7 and 𝑐𝑐2 = 0.8 works better
for this work.

3.2 Accelerated Particle Swarm Optimization

Accelerated Particle Swarm Optimization (APSO) is an improved method of the original PSO algorithm that reduces
the computational time, and it is considerably simple compared to the PSO. APSO only calculates the updated value for
the position vector of the global best only. As suggested by Yang in 2008 [20], the APSO only uses random values to
increase the diversity instead of individual best as in PSO. The individual best is used when the searched function is non-
linear and multimodal [21]. The velocity vector is not present in the APSO algorithm because it is substituted due to an
improvement in the algorithm. The position vector update function is changed to

xk+1i = (1 − β)xki + αϵ + βpk
g (7)

where xki is the position vector of the i-th particle at the 𝑘𝑘-th iteration, and the pk
g is the global best position. The

recommended value of β = 0.1 ∼ 0.7 whereas the value of α will decrease with the number of iterations done, and the
value of ϵ is a random number from a normal distribution 𝒩𝒩(0,1). The value of α is determined by

αk = α0L (8)

where α0 is a constant and 𝐿𝐿 is the range of each variable.

The procedure of the APSO differs from the PSO in the sixth step, where the velocity update is not needed, and the
position is updated with Eq.(7). It should be noted that in this work, APSO only updates the next 𝑥𝑥𝑖𝑖 if it generates a better
result. Also, the range 𝐿𝐿 is set to the range value of each variable on 𝑥𝑥𝑘𝑘, so 𝐿𝐿 will vary. Briefly, the APSO’s parameters
used in all simulations on this work are β = 0.15, and α0 = 0.8. These parameters are chosen based on [21] but have
been tuned by performing several tests to get the best results.

3.3 Flower Pollination Algorithm

Flower Pollination Algorithm (FPA) is an algorithm that is inspired by the pollination behavior of plants; this
algorithm was introduced by Yang in 2012 [22]. There are four rules to search for global minima by using the FPA, and
it has been explained in [22]. The procedures of the FPA are switch probability, global search, and local search [23]. The
first operation, ‘switch probability’ uses a probability 𝑝𝑝 to decide whether a pollen will be updated using the local or
global pollination.

In the second operation, ‘global search’, the value of xki that represents the 𝑖𝑖-th pollen for the k-th iteration will be
updated using the following function

xk+1i = xki + γL�gk − xki � (9)

Ma’ani et al.│ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 2 (2023)

ijame.ump.edu.my 10528

where gk is the global best value in the k-th iteration, L is the strength of pollination or Levy Flights based step size. In
the Levy distribution, the value of s is stated as a random value [24] that can be written as

s = X/|Y|α (10)

here α is a constant, 𝑋𝑋 ∼ 𝒩𝒩(0,σ2), and 𝑌𝑌 ∼ 𝒩𝒩(0,1). The σ2 is represented by the function as follows

σ2 = �
Γ(1 + α)

αΓ(0.5 + α/2)
sin(πα/2)
2(α/2−0.5) �

1/α

 (11)

where Γ represents the standard gamma function. The recommended value for 𝛼𝛼 is 1.5 .

The third operation, ‘local search’, updates the value based on the function

xk+1i = xki + ϵ�xk
j − xkl � (12)

where xk
j and xkl are pollen that originated from different flowers but are the same types and ϵ is a value of uniform

distribution that ranges from 0 to 1.

Briefly, the FPA parameters used in all simulations on this work are 𝑝𝑝 = 0.8, α = 1.5, γ = 0.1, and σ2 = 0.697.
Parameters 𝑝𝑝 and α based on [22], while γ and σ2 based on [24].

3.4 Modified Flower Pollination Algorithm

The modified Flower Pollination Algorithm (MFPA) is a variation of the original FPA. MFPA works similarly to the
original FPA, but the step size is limited. In this paper, the step size 𝑠𝑠 is limited as in s ≥ s0 to increase the convergence
rate [25], where 𝑠𝑠0 is a positive constant. The rate increases due to the value of s > 0, which changes the step vector
always towards the global minima. It should be noted that, based on Eq.(9), if the value of s < 0, the parameters will
tend to avoid the global minima. In this work, the 𝑠𝑠0 is set to 0.1 across all simulations based on [25].

4.0 MODEL OPTIMIZATION
4.1 Steady-State Response

To find the steady-state response, throttle versus speed data is obtained from the CARLA simulator. The optimization
algorithms are utilized to find the best values for β1, β2, and β3 based on Eq.(1). The cost function used to find the best
solution is

J =
1
M�(yk − y�k)2

M

k=1

 (13)

where J is the cost function, y is the true value, y� is the predicted value, and M is the maximum simulation step. Equation
(13) is also known as the mean squared error (MSE) function. Commonly, the MSE function is utilized in order to check
the accuracy of a prediction in comparison to the true value. In this work, by utilizing the MSE function, the algorithms
can find the best function parameter that results in the best-predicted data. The hyperparameter setting for the algorithms
are 25 population and 5000 iterations. The computation process is performed using Ryzen 5 3600, running at 3.6 GHz.
The results of the optimization from each algorithm are shown in Figure 3 (a) and in Table 1.

From Table 1, it can be seen that the algorithms minimum loss value are the same. It can be observed from Figure
3(a) that the algorithms can fit the simulation data accurately. Another parameter that is compared is the stability by
running each algorithm 50 times with the same hyperparameters. The resulting losses obtained from the iteration is shown
in Figure 3(b) and Table 2. The algorithms are defined as stable when the standard deviation (STD) of the loss obtained
is near or equal to 0.

Table 1. Steady-state optimization comparison
Algorithm Minimum Cost 𝛽𝛽1 𝛽𝛽2 𝛽𝛽3
PSO 0.000012 0.8501 -0.1450 0.0962
APSO 0.000012 0.8501 -0.1450 0.0962
FPA 0.000012 0.8501 -0.1450 0.0962
MFPA 0.000012 0.8501 -0.1450 0.0962

Ma’ani et al.│ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 2 (2023)

ijame.ump.edu.my 10529

(a) (b)

Figure 3. (a) Steady-state optimization result, and (b) steady-state stability test for PSO, APSO, FPA, and MFPA

Table 2. Steady-state stability comparison
Algorithm Min. Max. Mean STD
PSO 0.000012 0.000012 0.000012 3.4844 x 10-20

APSO 0.000012 0.038092 0.007186 9.4475 x 10-3
FPA 0.000012 0.000012 0.000012 2.4271 x 10-20
MFPA 0.000012 0.000012 0.000012 2.5949 x 10-20

4.2 System Identification

Based on Eq.(3), the algorithms finds the best model to represent the dynamics of the simulated vehicle in the CARLA
simulator. The ground-truth data for the optimization is sampled at a rate of 50 Hz. The algorithm optimizes the MSE of
the ground truth data compared with Eq.(3) so the resulted model will be able to represent the actual system. There are a
total of 24 dataset used to identify the system. The optimization is carried out by using the same hyperparameters as the
steady-state optimization. The algorithms use 50 particles and 10000 iterations. The results are then tested to find the
accuracy value by using the following relation.

acc = 100�1 −
‖v − v�‖
‖v − v�‖�% (14)

where v is the ground truth speed, 𝑣𝑣� is predicted speed, and 𝑣̅𝑣 is the mean of the ground truth speed.

Table 3. System identification stability comparison
Algorithm Min. Max. Mean STD
PSO 0.2162 39.8521 5.8126 9.9319
APSO 0.5765 31.4719 5.4365 8.0996
FPA 0.0872 0.8551 0.2338 0.1659
MFPA 0.0656 0.1201 0.0701 0.0119

Stability tests are also done where each algorithm is run 20 times. The results of the stability test are shown on Figure
4(a). The minimum cost value for the ground truth data prediction by each algorithm is shown in table Table 3. Based on
the loss value, it can be seen that the APSO is the least accurate algorithm, and the MFPA is the most accurate algorithm.
The prediction results for the MFPA-optimized longitudinal model are shown in Table 4. The Maximum Absolute Error
(MAER) is also considered in the table.

Table 4. MFPA training results
Data
index

Accuracy
(%)

MSE
(m2/s2)

MAER
(m/s)

Data
index

Accuracy
(%)

MSE
(m2/s2)

MAER
(m/s)

1 90.41 0.0104 0.4944 13 76.63 0.0091 0.1724
2 93.42 0.0520 0.9492 14 86.19 0.0071 0.2261
3 94.89 0.0583 0.6929 15 77.77 0.0466 0.3375
4 89.84 0.0343 0.3446 16 84.36 0.0417 0.4246
5 87.88 0.1085 0.8189 17 91.54 0.0218 0.3554
6 94.75 0.0723 1.0087 18 91.73 0.0296 0.2586
7 96.04 0.0491 1.0384 19 83.79 0.1360 0.4555
8 85.61 0.0824 0.7002 20 90.45 0.0501 0.2700
9 77.48 0.0386 0.2530 21 96.70 0.0107 0.2291

10 90.56 0.0308 0.4325 22 91.70 0.0823 0.3437
11 95.36 0.0233 0.7653 23 88.83 0.1980 0.5112
12 95.85 0.0350 1.0363 24 92.87 0.1375 0.6962

Ma’ani et al.│ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 2 (2023)

ijame.ump.edu.my 10530

Table 5. Test data results
Result Data set 1 Data set 2
Accuracy 0.9390 0.9368
MSE 0.0311 0.0620
MAER 0.4127 0.4707

(a) (b)

(c)

Figure 4. (a) System identification stability test for PSO, APSO, FPA, and MFPA, (b) first data set test result, and (c)
second data set test result

Based on the results of optimization performed by MFPA, the model is then tested by using two sets of data. The test
data set has a different throttle profile than the training data. The first data set is throttle only data, whereas the second
data set is throttle data based on a PID controller output. The results are shown in Figure 4(b), Figure 4(c), and Table 5.
It can be seen that the model does not overfit the training data.

4.3 Analysis

The two systems that are optimized have their own characteristics based on the optimization results. The difference is
based on the number of parameters that each system needs to be searched. It can be seen that based on Table 2 and Table
3, the mean and STD results differ greatly for both systems. The system identification has a high mean and STD, thus
showing that the search space is complex and makes it harder for the algorithms to find the global minima. On the other
hand, the steady-state response has a much lower mean and STD. This shows that the search space of the steady-state
response is simpler compared to the system identification.

Considering the search space complexity, it can be represented as a performance measure for the algorithms. The
PSO, APSO, FPA and MFPA can represent the data well, although the PSO and APSO sometimes are stuck in best local
values, also known as local minima. Subsequently, for the system identification, there are 24 sets of training data. The
model can be represented by each algorithm very well and with high accuracy. However, only the MFPA can find the
global minima with stable output, it can be seen by its low-cost value and low STD as well. There are two sets of test
data, where the throttle input for the test and training data are different. The results acquired from the test data show that
the model does not overfit the training data as it still can perform well on inputs having different characteristics.

5.0 PID CONTROLLER ALGORITHM
5.1 Controller Tuning

The PID controller applied in the CARLA simulator is equipped with a feed-forward and feedback term with an added
integral-clamping mechanism. In discrete-time, the longitudinal controller can be represented as follows

Ma’ani et al.│ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 2 (2023)

ijame.ump.edu.my 10531

ek = rk − vk (15)

uk = sr,k + kpek + kiEk + kd
ek − ek−1

ΔT (16)

where (⋅)k is a variable at time-step k, e is the difference between the set-point r and actual speed v, u is the control
signal, ΔT is the sampling time, sr is the value throttle at set-point in steady-state condition, E is the integral result by
using the integral-clamping method, kp is the proportional gain, ki is the integral gain, and kd is the derivative gain.

The optimum value for kp, ki, and kd are acquired by minimizing the following function

minimize
kp, ki, kd

       𝐽𝐽 =
1
𝑀𝑀  �(𝑒𝑒𝑘𝑘)2

𝑀𝑀

𝑘𝑘=1

 

subject to  𝑘𝑘𝑝𝑝 ≥ 0,
𝑘𝑘𝑖𝑖 ≥ 0,
𝑘𝑘𝑑𝑑 ≥ 0.

 (17)

where J is the cost function, and M is the value of the number of simulation step. Equation (17) is utilized so that the
algorithms can find the best combination of controller gains that generates the least value of mean squared of error.

The hyperparameter settings for the algorithms are 50 population and 5000 iteration. The loss obtained is shown in
Table 7, whereas the lowest-loss parameters are kp = 0.9120, ki = 1.5813, and kd = 0.0329. The simulation is then
carried out by using the PID parameters obtained. The speed of the vehicle is used to determine the success rate of the
optimization. The result is shown in Figure 5 (a) and Table 6.

Table 6. PID tuning stability comparison
Algorithm Min. Max. Mean STD
PSO 0.000961 0.000961 0.000961 2.0807 x 10-18

APSO 0.000988 0.001861 0.001195 2.0215 x 10-4
FPA 0.000961 0.000961 0.000961 1.6656 x 10-18
MFPA 0.000961 0.000961 0.000961 1.4834 x 10-18

Stability tests are also performed on the PID tuning. The algorithms are run 20 times each. The result is shown in
Figure 5(b). The controller is then implemented in the CARLA simulator, the data are sampled at 50 Hz, and the results
are demonstrated in Figure 6.

(a) (b)

Figure 5. (a) Controller response of the lowest MSE, and (b) PID tuning stability test for PSO, APSO, FPA, and MFPA

Ma’ani et al.│ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 2 (2023)

ijame.ump.edu.my 10532

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. CARLA simulation results using the optimized controller

5.2 Analysis

The proposed PID controller uses the integral-clamping method. The cost function utilized is only the MSE. The set-
point for the PID tuning has a different value than the set-point for the CARLA simulation in order to check whether the
controller can adapt to varying conditions with different set-points or not. Simulation shows that the optimized controller
is able to perform well in the simulation. Based on Figure 6, it can be seen that the results are oscillatory; hence there
need to be improvements in the optimization process which is discussed in the next section of this paper.

6.0 COST FUNCTION MODIFICATIONS
6.1 Regularization Strategy

The optimized controller in the previous section produces highly oscillatory outputs with jittery control signals. This
profile may lead to inconvenience to passengers. The profile of the control signal is also oscillatory so that the actuators
could break quickly. This phenomenon shows that only using MSE in the objective function is insufficient for generating
an appropriate controller. Therefore, to improve the overall performance of the controller, modifications of the cost
function are investigated. The cost function is modified by giving an additional term as a regularization factor. There are
three regularizations investigated in this work, namely:

i. Sum-squared inputs regularization
ii. Sum-squared derivative of inputs regularization

iii. Sum-absolute derivative of inputs regularization

Ma’ani et al.│ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 2 (2023)

ijame.ump.edu.my 10533

The first regularization is inspired by the cost utilized in the Linear-Quadratic Regulator (LQR) method. In contrast,
the second and third regularization is designed to create a smoother and lower-oscillatory control signal output. The
mathematical notation of the modification is given as follow.

J =
1
M�[(ek)2 + λ g(sk, ṡk)]

M

k=1

 (18)

where λ is a trade-off constant and g(⋅) is a regularization function.

The optimization algorithm utilized in this case is only the algorithm with the best steady-state-response, system
identification, and PID results, that is, the MFPA. The results of optimized controllers using the regularized cost functions
are shown in Table 7 and Figure 7.

Table 7. Cost function comparison

Type λ kp ki kd MSE
Training Test

Unregularized - 0.9120 1.5813 0.0329 0.000961 0.0434
1 1

10
30

0.8683
1.1481
0.4715

1.3099
0.0036
0.0005

0.0349
0.0570
0.0583

0.000986 0.0409
0.057035 0.0268
0.423748 0.0358

2 1
20
40

0.3975
0.2962
0.2795

0.7738
0.3864
0.2858

0.0273
0.0224
0.0208

0.001931 0.0479
0.004343 0.0512
0.006198 0.0546

3 1
10
20

0.4113
0.3258
0.2944

0.6298
0.1593
0.0872

0.0378
0.0331
0.0315

0.002165 0.0377
0.009162 0.0434
0.016824 0.0481

(a) (b)

(c) (d)

Ma’ani et al.│ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 2 (2023)

ijame.ump.edu.my 10534

(e) (f)

Figure 7. Comparison of the optimized controllers performance. Black-dotted line denotes the speed set-point. All of the
proposed regularization factors in cost function effectively lower the oscillation of the resulting vehicle speed

6.2 Analysis

In terms of smoothness and oscillatoriness, the regularized cost functions give better responses than the unregularized
ones. In addition, there are certain behaviors that can be observed from each cost modification which are:

i. The 1𝑠𝑠𝑠𝑠 cost function: When the λ increases, the value of kp and ki decrease whereas kd increases. It is also
worth noting that the 𝑘𝑘𝑖𝑖 decreases extremely toward zero.

ii. The 2𝑛𝑛𝑛𝑛 cost function: When λ increases, the value of kp, ki, and kd decrease with ki > kp.
iii. The 3𝑟𝑟𝑟𝑟 cost function: When λ increases, the value of kp, ki, and kd decreases. Here, the value of ki is relatively

smaller than the value resulted from the 2𝑛𝑛𝑛𝑛 cost function.

When implemented in the CARLA simulator, it can be seen that based on Table 7, the lowest MSE is obtained from
the controller optimized using the 1𝑠𝑠𝑠𝑠 cost function with λ = 10. However, the overall performance is rather not good
because the value of kp is too large, hence creating an extremely sensitive system. Moreover, the value of 𝑘𝑘𝑖𝑖 is too small,
creating a bad tracking performance, especially if the feed-forward term is inaccurate. On the other hand, using the 2𝑛𝑛𝑛𝑛
cost function, controllers produce more oscillation on the output compared to controllers optimized using the 3𝑟𝑟𝑟𝑟 cost
function because of the more considerable ki value. Considering the trade-off between the MSE, control signal profile,
and output profile, it can be concluded that the best PID parameter is obtained by the third cost function with a λ value of
10. The reason is that because the kp is not too small, so the response is sensitive enough, and ki is not too large; hence
the system does not oscillate and still has a good tracking ability.

Note that in this work, the feedback controller is coupled with the feed-forward term. Consequently, it may give a
different result and conclusion for different kinds of use cases. Nevertheless, the most exciting thing is that the regularized
cost function can produce controllers performing lower MSE values in the test set where the MSE value of the system
with a controller optimized using unregularized cost function is 0.0434 m/s.

7.0 CONCLUSIONS
The proposed longitudinal controller in this paper is able to adapt to varying set-points, and the proposed vehicle

model can nicely represent the vehicle longitudinal dynamics by considering physical phenomena affecting vehicles.
Also, the combination of the feed-forward and feedback term in the controller is able to give a smooth control response.
Furthermore, the comparison explored in this paper shows the capability and limitation of the PSO, APSO, FPA, and
MFPA optimization algorithms. The algorithms work well for steady-state response optimization, so it can be concluded
that they can optimize simple search spaces. For a complex search space such as system identification, MFPA is the only
algorithm that can generate stable performance and find an optimal solution. It can be clearly seen based on the cost value
and the STD of the MFPA. In the case of PID tuning, all algorithms are able to find an optimal solution except for the
APSO. Moreover, this work shows that controllers tuned with the regularized cost functions can perform better than the
unregularized ones.

There are various possibilities of hyperparameters that can be tuned to improve the performance of the algorithms.
Additional tests can be done for the algorithms such as changing the particle number or other optimization parameters to
get a more definite comparison. There are more efficient forms of the algorithms that are tested in this paper that can be
used to obtain better results. Another factor that can be used to improve the performance of an optimization algorithm is
by modifying the cost function used.

Ma’ani et al.│ International Journal of Automotive and Mechanical Engineering │ Vol. 20, Issue 2 (2023)

ijame.ump.edu.my 10535

8.0 ACKNOWLEDGEMENT
This research is partially funded by the Indonesian Ministry of Education, Culture, Research, and Technology under

WCU Program managed by Institut Teknologi Bandung and in part by Institut Teknologi Bandung Research Program.

9.0 REFERENCES
[1] G.M. Hoffmann, C.J. Tomlin, M. Montemerlo, and S.Thrun, “Autonomous automobile trajectory tracking for off-road driving:

Controller design, experimental validation and racing,” In Proceedings of the American Control Conference, 2007, pp.2296-
2301.

[2] C.M. Filho, D.F. Wolf, V. Grassi, and F.S. Osorio, “Longitudinal and lateral control for autonomous ground vehicles,” IEEE
Intelligent Vehicles Symposium, 2014, pp.588-593.

[3] R. Attia, R. Orjuela, and M. Basset, “Combined longitudinal and lateral control for automated vehicle guidance,” Vehicle
System Dynamics, vol. 52, pp. 261-279, 2014

[4] P. Zhao, J. Chen, Y. Song, X. Tao, T. Xu, and T. Mei, “Design of a control system for an autonomous vehicle based on adaptive-
PID,” International Journal of Advanced Robotic Systems, vol. 9, p. 44, 2012.

[5] M. Marcano, JA. Matute, R. Lattarulo, E. Martí, and J. Pérez, “Low speed longitudinal control algorithms for automated
vehicles in simulation and real platform,” Complexity, vol. 2018, pp. 1-12, 2018.

[6] H.M. Asifa, and S.R. Vaishnav, “Particle swarm optimization algorithm based PID controller,” In: 3rd International Conference
on Emerging Trends in Engineering and Technology, 2010, pp. 628–631.

[7] M.I. Solihin, L.F. Tack, and M.L. Kean, “Tuning of PID controller using particle swarm optimization (PSO),” In Proceeding
of the International Conference on Advanced Science, Engineering and Information Technology, 2011, pp. 458-461.

[8] P.B. de Moura Oliveira, J.D. Hedengren, and E.J. Solteiro Pires, “Swarm-based design of proportional integral and derivative
controllers using a compromise cost function: An arduino temperature laboratory case study,” Algorithms, vol. 13, pp. 315-
332, 2020.

[9] A.M. Jadhav, and K. Vadirajacharya, “Performance verification of PID controller in an interconnected power system using
particle swarm optimization,” Energy Procedia, vol. 14, pp. 2075-2080, 2012.

[10] F. Ahmad, SA. Mazlan, H. Zamzuri, H. Jamaluddin, K. Hudha, and M. Short, “Modelling and validation of the vehicle
longitudinal model,” International Journal of Automotive and Mechanical Engineering, vol. 10, pp. 2042-2056, 2014

[11] A.R. Conn, K. Scheinberg, and L.N. Vicente, Introduction to derivative-free optimization. vol. 8, Philadelphia, USA: SIAM,
2009.

[12] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, “CARLA: An open urban driving simulator,” In Proceedings of
the 1st Annual Conference on Robot Learning, 2017, pp. 1–16.

[13] S. Kumar, and R. Negi, “A comparative study of PID tuning methods using anti-windup controller,” In ICPCES 2012 - 2012
2nd International Conference on Power, Control and Embedded Systems, 2012, pp. 1-4.

[14] L. Angel, J. Viola, and M. Paez, “Evaluation of the windup effect in a practical PID controller for the speed control of a DC-
motor system,” presented in 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 2019.

[15] Automated Highway System (AHS) System Objectives and Characteristics, National Automated Highway System Consortium,
Troy, MI, 1995.

[16] B. Parker, The Isaac Newton school of driving: physics and your car. Baltimore, USA: Johns Hopkins University Press, 2003.
[17] J. Kennedy, and R. Eberhart, “Particle swarm optimization,” In IEEE International Conference on Neural Networks -

Conference Proceeding, 1995, pp.1942-1948.
[18] K.E. Parsopóulos, and M.N. Vrahatis, “Particle swarm optimization method in multiobjective problems,” In Proceedings of the

ACM Symposium on Applied Computing, 2002, pp.603-607.
[19] Y. He, W.J. Ma, and J.P. Zhang, “The parameters selection of PSO algorithm influencing on performance of fault diagnosis,”

In MATEC Web of Conferences, 2016, vol. 63.
[20] A.H. Gandomi, G.J. Yun, X.S. Yang, and S. Talatahari, “Chaos-enhanced accelerated particle swarm optimization,”

Communications in Non-linear Science and Numerical Simulation, vol. 18, pp. 327-340, 2013.
[21] X.S. Yang, S. Deb, and S. Fong, “Accelerated particle swarm optimization and support vector machine for business

optimization and applications,” Communications in Computer and Information Science, vol.136, pp.53-66, 2011.
[22] X.S. Yang, “Flower pollination algorithm for global optimization,” Lecture Notes in Computer Science (including including

its subseries Lecture Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics), vol. 7495, pp. 240-249,
2012.

[23] Z.A.A. Alyasseri, A.T. Khader, M.A. Al-Betar, M.A. Awadallah, and X.S. Yang, “Variants of the flower pollination algorithm:
A review,” Studies in Computational Intelligence, vol. 749, pp. 91-118, 2018.

[24] R.N. Mantegna, “Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes,” Physical Review E,
vol. 49, pp. 4677-4683, 1994.

[25] F.A. Ma’ani, and Y.Y. Nazaruddin, Optimization of longitudinal control of an autonomous vehicle using flower pollination
algorithm based on data-driven approach,” International Journal of Sustainable Transportation Technology, vol. 3, pp. 58-65,
2020.

	1.0 Introduction
	2.0 Longitudinal controller design
	2.1 Controller Algorithm
	2.2 Steady-State Response
	2.3 System Identification

	3.0 Optimization algorithms
	3.1 Particle Swarm Optimization
	3.2 Accelerated Particle Swarm Optimization
	3.3 Flower Pollination Algorithm
	3.4 Modified Flower Pollination Algorithm

	4.0 Model Optimization
	4.1 Steady-State Response
	4.2 System Identification
	4.3 Analysis

	5.0 PID controller algorithm
	5.1 Controller Tuning
	5.2 Analysis

	6.0 Cost function modifications
	6.1 Regularization Strategy
	6.2 Analysis

	7.0 Conclusions
	8.0 Acknowledgement
	9.0 References

