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INTRODUCTION 
The cruise control system is the most basic form of an Advanced Driver Assistant System (ADAS), where its primary 

function is to automatically regulate or maintain a vehicle's speed at the desired preference with regards to road condition 
and environment. This system can be very beneficial, especially for long-distance travel in a steady high-speed driving 
condition. Since the throttle paddle is controlled automatically, the cruise control system may reduce both: the driver 
body fatigue and also fuel consumption [1]. There are several variations in cruise control technology, which depend on 
automation capability, ranging from maintaining a current speed, tracking a new desired speed, and complete braking 
control [2]. It is also noted that most of the recent research and development works are focusing on the performance 
optimization between fuel consumption, passenger comfort, and safe distancing [3-6].   

One of the limitations of conventional cruise control systems is that they can only work in high-speed driving 
conditions (more than 40 km/hour). This is because the designing process of a controller for this operation is more 
straightforward since the vehicle dynamics is assumed to be in a steady-state condition [7]. Compared to the low-speed 
operation, the vehicle dynamics becomes more complicated due to the nonlinearity, varying gear ratio selection and other 
parameter uncertainties. Although a more advanced version of cruise control with a stop and go function has been 
introduced in the market to tackle this issue, it is found out that the system response can be very slow and not responsive 
depending on what types of control algorithm and structure that its use [8]. 

Considerable research attempts have been made on utilizing the Proportional-Integral-Derivative (PID) controller for 
the cruise control, as discussed by various authors [9,10]. The PID controller is a traditional control algorithm that is 
widely employed in various industrial applications. The key selling points are its cost-effectiveness together with the well 
established theoretical framework. Generally, the core idea is to select a suitable value for the proportional (Kp), integral 
(Ki), and derivative (Kd) gains to get the desired performance. Nevertheless, finding the optimum balance between those 
three values is not as straightforward as one think. Although several procedures such as Ziegler Nichols or auto-tune 
function can be used as a guideline, the tuning parameters are not intuitive, which may become a problem for a less 
experienced user [11]. Another limitation with the PID controller is when handling a system constraint, where for some 
cases, it may lead to over saturation and wind-up [12].  

On the other hand, a predictive controller provides a more systematic approach. It uses a simplified mathematical 
model to predict future outcomes and optimize the control input using a quadratic cost function while respecting system 
constraints [13]. MPC has achieved considerable success in a variety of practical applications, including the automotive, 
chemicals, aerospace, and food processing industries, thanks to the massive development of control theory [14]. MPC has 
had a significant impact on the direction of industrial control systems and a scientific study due to its appealing properties. 
This controller is well known for its optimality and has been a famous area of research in cruise control system 
development. However, one of the main drawbacks of MPC is that it requires high computation intensity. Within a single 
sampling time, the controller needs to compute an optimal control by making a prediction and optimization process. This 
requirement may not be a problem for a slow dynamics process; however, for fast application, the computation is critical 

ABSTRACT – This work presents a performance comparison between a Predictive Functional 
Control (PFC) and a traditional Proportional Integral Derivative (PID) controller specifically for a 
cruise control application. The tuning efficacy, constraints handling, and disturbance rejection 
features of both controllers are analysed by comparing their closed-loop response. A simplified 
nonlinear vehicle longitudinal dynamics model is derived and utilised as a plant to simulate the 
control response from a real car. For a fair comparison, both PFC and PID are tuned to achieve 
the similar desired closed-loop time response. Qualitatively, the results show that PFC provides a 
better closed-loop response, constraints handling, and disturbance rejection compared to PID. 
Besides, it is also found that the tuning approach of PFC is more intuitive and practical in nature 
which can be very handy for the future development of an autonomous cruise control application. 
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where a high power and large memory processor is often needed, leading to a relatively expensive or impractical 
implementation [15].  

Surprisingly, a Predictive Functional Control (PFC) which is the simplified version of MPC seems to receive a lack 
of attention in academic research due to its suboptimal performance and lack of theoretical guarantee and assurance. 
Nevertheless, PFC can become an attractive alternative to the traditional PID controller for a simple application such as 
cruise control due to its simplicity and intuitive tuning procedure. There are also a few works of literature that compare 
the control performance of PFC and traditional PID control where the results are generally pointing to PFC's superiority 
and mainly in the robotics and chemical application [16]. The direct use of desired settling time or closed-loop time 
response as the main tuning parameter makes the designing process more transparent [17]. Besides, PFC also inherits 
several advantages of MPC algorithms, such as the systematic handling of constraints and delays control problems [18]. 
Due to the simplification in the control law, PFC coding becomes straightforward and only requires minimal computation, 
and indeed for this single-input and single-output (SISO) application, the coding is almost trivial.  

Hence, the main aim of this paper is to compare the closed-loop performance between PFC and PID, where the focus 
of the analysis will be on the tuning effect, constraints handling, and disturbance rejection for the cruise control 
application. It should be noted that PFC should not be compared with MPC as the level of complexity in the optimization 
process is very different [19]. The structure of this paper is organized as follows. Section 2 presents the methodology and 
formulation of the simplified nonlinear vehicle longitudinal dynamics model and the PFC control law. Section 3 provides 
the simulation result where the response of PID and PFC are compared and analyzed. Section 4 summarizes the findings 
with some concluding remarks and possible future works. 

VEHICLE LONGITUDINAL DYNAMICS 
This section provides a brief explanation for the standard vehicle longitudinal dynamics mathematical model [20] that 

will be used in this work. This model only covers the dynamics from vehicle traction force to velocity. The actuation 
from power train dynamics and braking system are assumed to be well controlled, and any development for these parts 
constitute future work.    

Equation of Motion for Vehicle Dynamic 
The vehicle longitudinal dynamic is derived based on Newton’s second law, where Figure 1 shows the basic force 

distribution on a vehicle.  
 

 
Figure 1. Forces distribution of vehicle climbing a hill. 

The positive sense of horizontal direction is assumed to be in line with the vehicle motion, and the verticle direction 
is assumed to be in the perpendicular direction. The summation of the force can be represented via this equation:  

 
𝐹𝐹𝑡𝑡 − 𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐹𝐹𝑟𝑟 − 𝐹𝐹𝑑𝑑 = 𝑚𝑚𝑚𝑚 (1) 

 
where 𝐹𝐹𝑡𝑡 is the total traction force from all the tires, 𝐹𝐹𝑟𝑟 is the rolling resistance force, 𝐹𝐹𝑑𝑑 is the aerodynamics force, 𝑚𝑚 

is the gravitational constant, 𝑠𝑠 is the inclination angle of the road, 𝑚𝑚 is the mass of a vehicle, and 𝑚𝑚 is the acceleration.  
The traction force 𝐹𝐹𝑡𝑡 is assumed as the input to the system, while the rolling resistance force 𝐹𝐹𝑟𝑟 and aerodynamics force 
can be represented as in Eq. (2) and Eq. (3), respectively [20].  

 
𝐹𝐹𝑟𝑟 = 𝑓𝑓𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (2) 

  
𝐹𝐹𝑟𝑟 = 𝐹𝐹𝑑𝑑 = 0.5𝜌𝜌𝜌𝜌𝐶𝐶𝑑𝑑(𝑣𝑣 + 𝑣𝑣𝑤𝑤)2 (3) 

 
The parameter 𝑓𝑓 is the rolling resistance coefficient, 𝜌𝜌 is the air density, 𝜌𝜌 is the front area of the vehicle,  𝐶𝐶𝑑𝑑 is the 

drag coefficient, 𝑣𝑣 is the vehicle speed and 𝑣𝑣𝑤𝑤 is the wind gust velocity. For simplicity, it should be noted the presented 
model is derived based on a lump parameter assumption. For a high-fidelity mathematical model, an interested reader can 
refer to these references [20,21]. 



M.A.S. Zainuddin et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 19, Issue 1 (2022) 

9462   journal.ump.edu.my/ijame ◄ 

Model Linearization 
To implement a linear controller, the nonlinear mathematical model of Eq. (1) needs to be linearized with respect to 

its nominal operating points, where all the parameters need to be in the steady-state condition. Let acceleration 𝑚𝑚 equals 
to �̇�𝑣 and by using a Taylor series expansion, Eq. (1) can be linearized with respect to the nominal values of 𝑣𝑣𝑛𝑛, 𝑣𝑣𝑤𝑤𝑛𝑛, θ𝑛𝑛, 
𝐹𝐹𝑡𝑡,𝑛𝑛 as: 

 
𝑚𝑚𝑣𝑣′̇ =  𝐹𝐹𝑡𝑡′  +  𝑚𝑚𝑚𝑚(𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑛𝑛  −  𝑐𝑐𝑐𝑐𝑠𝑠 𝑠𝑠𝑛𝑛)𝑠𝑠′ −   𝜌𝜌𝜌𝜌𝐶𝐶𝑑𝑑(𝑣𝑣𝑛𝑛 + 𝑣𝑣𝑤𝑤𝑛𝑛)𝑣𝑣′ (4) 

 
The superscript {’} in Eq. (4) denotes the difference between actual and nominal values [20]. With a simple algebraic 

manipulation, Eq. (4) can be further simplified into: 
 

𝜏𝜏𝑣𝑣′̇ + 𝑣𝑣′ = 𝐾𝐾 (𝐹𝐹𝑡𝑡′  + 𝑑𝑑) (5) 
 
where 
 

τ =
𝑚𝑚

𝜌𝜌𝜌𝜌𝐶𝐶𝑑𝑑(𝑣𝑣𝑛𝑛 + 𝑣𝑣𝑤𝑤𝑛𝑛) , 𝐾𝐾 =
1

𝜌𝜌𝐶𝐶𝑑𝑑(𝑣𝑣𝑛𝑛 + 𝑣𝑣𝑤𝑤𝑛𝑛) , 𝑑𝑑 = 𝑚𝑚𝑚𝑚(𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛– 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑛𝑛)𝑠𝑠′  

 
By using the Laplace transform, the linear transfer function of vehicle longitudinal dynamics can be represented as: 
 

𝑣𝑣′(𝑠𝑠) =  
𝐾𝐾

𝜏𝜏𝑠𝑠 + 1 �𝐹𝐹
′(𝑠𝑠) + 𝑑𝑑(𝑠𝑠)� (6) 

 
where the input to the system is the traction force 𝐹𝐹′, the output is velocity 𝑣𝑣′ and the term 𝑑𝑑 is assumed as a 

disturbance to the system.  

Condition of Constraints and Disturbance 
System constraint is one of the important information that can provide a logical sense when designing a controller. 

The controller needs to comply with the physical limitation of a system. In this example, only one input constraint was 
evaluated, with the maximum tractive force for both PID and PFC being limited to 2500N. In order to assess the robustness 
of the controller, two unmeasured disturbances are considered. First, an average of 200 kg mass is added to the vehicle 
weight to represent four additional passengers in the simulation. Secondly, at 300s, an inclination angle of 8.13 degree is 
introduced that mimic the Genting Highland – Batang Kali road (maximum slope of 14.2% gradient) [22]. 

Predictive Functional Control Formulation 
Since Predictive Functional Control (PFC) is a discrete controller, the transfer function in Eq. (6) needs to be 

discretized with sampling time 𝑇𝑇𝑠𝑠. Let 𝑦𝑦(𝑧𝑧) denotes the output of the system and 𝑢𝑢(𝑧𝑧) as the control input. The discrete 
transfer function of Equation 6 can be represented as:  

 

𝑦𝑦(𝑧𝑧) =  
𝑏𝑏

1 − 𝑚𝑚𝑧𝑧−1
𝑢𝑢(𝑧𝑧) (7) 

 
where 𝑚𝑚 and 𝑏𝑏 are the discrete numerator and denominator, respectively. Generally, the framework of PFC can be 

divided into four components: the prediction structure, target trajectory, control law, and constraint handling. 

Prediction Structure from Mathematical Model  
The PFC concept mimics human intuition, where one would predict a future outcome and adjust the control action to 

reach the desired target. The one step ahead prediction structure, 𝑦𝑦(𝑘𝑘 + 1|𝑘𝑘) at sample time 𝑘𝑘 of Eq. (7) can be formed 
as:  

 
𝑦𝑦(𝑘𝑘 + 1|𝑘𝑘) =  𝑏𝑏𝑢𝑢(𝑘𝑘) + 𝑚𝑚𝑦𝑦(𝑘𝑘) (8) 

 
By utilizing a superimposed linear prediction structure [13] to Eq. (8), the nth step ahead prediction can be represented 

as: 
 

𝑦𝑦(𝑘𝑘 + 𝑠𝑠|𝑘𝑘) = 𝐻𝐻𝐻𝐻 + 𝐹𝐹𝑦𝑦(𝑘𝑘) (9) 
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where, 
 

𝐻𝐻 = �

𝑏𝑏 0 0 0
𝑚𝑚𝑏𝑏 𝑏𝑏 0 0
⋮ ⋮ ⋱ ⋮

𝑚𝑚𝑛𝑛−1𝑏𝑏 𝑚𝑚𝑛𝑛−2𝑏𝑏 … 𝑏𝑏

� ,𝐻𝐻 =  �

𝑢𝑢(𝑘𝑘)
𝑢𝑢(𝑘𝑘 + 1)

⋮
𝑢𝑢(𝑘𝑘 + 𝑠𝑠)

� ,𝐹𝐹 =  �

𝑚𝑚
𝑚𝑚2
⋮
𝑚𝑚𝑛𝑛
� 

 
Remark 1: The prediction structure for Eq. (8) is only valid for a first-order system. A higher-order system may need 
other information such as past inputs u(k-1) and outputs y(k-1), which depends on the size and nature of a system. A 
detailed derivation for a standard transfer function can be found in this reference [13].  

Target Trajectory  
The core principle of PFC is that at each sample time 𝑘𝑘, a new target trajectory is calculated based on a desired steady-

state target 𝑅𝑅. Although the dynamics of the trajectory can take any form, the simplest one is by assuming a first-order 
response [20] from the measured output 𝑦𝑦𝑝𝑝 to 𝑅𝑅. Hence, the nth step ahead trajectory can be defined as:  

 
𝑟𝑟(𝑘𝑘 + 𝑠𝑠|𝑘𝑘) = (1 − 𝜆𝜆𝑛𝑛)𝑅𝑅 + 𝜆𝜆𝑛𝑛𝑦𝑦𝑝𝑝(𝑘𝑘) (10) 

 
It should be noted that there are two main tuning parameters for PFC. The first one is the desired closed-loop pole 𝜆𝜆. 

For industrial users, this term is usually converted to the desired Closed-Loop Time Response (CLTR), which determines 
the convergence speed to reach 95% of a steady-state value [17]. The relationship is given as:  

 
𝜆𝜆 = 𝑒𝑒−3𝑇𝑇𝑠𝑠/𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶 (11) 

 
The second tuning parameter is the number of coincidence horizon n. This is a point where the model prediction from 

Eq. (9) is forced to match with the target trajectory, as shown in Figure 2.   
 

 
Figure 2. Model prediction and target trajectory of PFC at the first-time step. 

Remark 2: The tuning procedure in the cruise control application is straightforward since the representative model is a 
first-order system. Hence, the usual practice is to set n =1 [23]. However, there is a trade-off in this selection such that if 
n is low, it will lead to an open-loop prediction mismatch or an ill-posed solution. There are some possible solutions as 
reported in [24, 25]. But this issue will not significantly impact this application as no output constraints were considered.  

Control Law 
As mentioned in the previous subsection, the fundamental law of PFC is to force the model prediction in Eq. (9) with 

the desired target trajectory in Eq. (10) at a selected coincidence horizon 𝑠𝑠. Nevertheless, the prediction mismatch 
between model and actual value should be considered in the control law and hence: 

 
𝑦𝑦(𝑘𝑘 + 𝑠𝑠|𝑘𝑘) + 𝑑𝑑(𝑘𝑘) = 𝑟𝑟(𝑘𝑘 + 𝑠𝑠|𝑘𝑘) (12) 

 
The term 𝑑𝑑(𝑘𝑘) = 𝑦𝑦𝑝𝑝(𝑘𝑘)– 𝑦𝑦(𝑘𝑘) represents the difference between measured output and model output for handling 

parameter uncertainty, noise, and disturbance [17].   

 
ℎ𝑛𝑛𝑢𝑢(𝑘𝑘) + 𝐹𝐹𝑛𝑛𝑦𝑦(𝑘𝑘) + 𝑑𝑑(𝑘𝑘) = (1 − 𝜆𝜆𝑛𝑛)𝑅𝑅 + 𝜆𝜆𝑛𝑛𝑦𝑦𝑝𝑝(𝑘𝑘) (13) 

 
With a simple algebraic manipulation, the control input of PFC is computed as: 
 

𝑢𝑢(𝑘𝑘) = ℎ𝑛𝑛−1�(1 − 𝜆𝜆𝑛𝑛)𝑅𝑅 + 𝜆𝜆𝑛𝑛𝑦𝑦𝑝𝑝(𝑘𝑘) − 𝐹𝐹𝑛𝑛𝑦𝑦(𝑘𝑘) + 𝑑𝑑(𝑘𝑘)� (14) 
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Based on the receding horizon principle, the whole procedure is repeated at each time step.  

Constraints Handling 
One of the advantages of PFC is its ability to handle the process constraints, including input, rate, state, or output [24]. 

For the cruise control setup, only the input constraint is considered where it can be translated into the maximum traction 
force that a vehicle can produce. Without explicitly including this constraint in the control law, a simple clipping method 
can be used as if 𝑢𝑢(𝑘𝑘) is larger than 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚, then set:  

 
𝑢𝑢(𝑘𝑘) = 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 (15) 

 
Nevertheless, it is important for the prediction model in Eq. (15) to detect a possible violation a priori [17] to avoid 

any possible overshoot in the output due to the mismatch between model and actual behaviour.  
Remark 3: The clipping method is straightforward, yet it may negatively impact certain applications, especially if it is 
used with a PID controller. Several methods have been introduced in the literature to overcome this drawback, such as 
integral wind-up and smith predictor [26]. However, the main challenge for this method is to come out with a systematic 
tuning procedure as most of the problems is system dependent. Conversely, due to the prediction nature of PFC, the 
saturation problem is eliminated with the condition that the constraints are not very tight. It has been proved in many 
papers [24,27,28] that the constraints handling of PFC is recursive feasible since the future input dynamics is constant, 
where any change in the first sample input will not contradict with the following sample.   

RESULTS AND ANALYSIS 
This section presents the performance comparison between the proposed PFC controller and traditional PID controller 

based on the simplified nonlinear vehicle longitudinal dynamic model by using MATLAB®/Simulink® software. This 
nonlinear model has been derived in the earlier section and utilized as a plant to simulate the control response of a real 
car. The vehicle and surrounding parameters for the simulation are selected based on Proton Perdana (second generation) 
parameters as provided in Table 1 below [29]:  

Table 1. Parameters for the longitudinal vehicle model. 
Parameters Value 
Curb weight 1535 kg 
Frontal Area 1.88 m2 
Wheel radius 0.317 m 
Air density, 𝜌𝜌 1.202 kg/m3 
Drag coefficient, Cd 0.31 
Gravity acceleration, g 9.81 m/s2 
Rolling resistance coefficient 0.015 
Wind gust, 𝑣𝑣𝑤𝑤𝑛𝑛  2 m/s 

 
As discussed in the previous section, the nonlinear model needs to be linearized with respect to nominal operating 

points. All the parameters for the nominal operating points are set as shown in Table 2 below. In this case, the nominal 
traction force 𝐹𝐹𝑡𝑡,𝑛𝑛 is calculated using the derived Eq. (4), which is 395.40 N by assuming the steady-state condition, 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 0.  

Table 2. Parameters for the nominal operating points. 
Parameters Value 
Nominal vehicle speed, 𝑣𝑣𝑛𝑛 20 m/s 
Nominal wind gust speed, 𝑣𝑣𝑤𝑤𝑛𝑛  2 m/s 
Nominal slope angle, 𝑠𝑠𝑛𝑛 0 degree 
Nominal traction force, 𝐹𝐹𝑡𝑡,𝑛𝑛 395.40 N 

 
Once the continuous linear model is obtained as in Eq. (6), it is then discretized with 0.1 s sampling time (𝑇𝑇𝑠𝑠). For 

each simulation case, two graphs will be presented where one corresponding to the system input (vehicle’s tractive force) 
and another is for the system output (vehicle’s output velocity). The closed-loop comparison between PFC and PID 
focused on four areas:  

i. Efficacy of tuning parameter for the closed-loop response. 
ii. Response of the closed-loop without any system constraints.   

iii. Response of the closed-loop with input tractive force constraints. 
iv. Response of the closed-loop in the presence of disturbances. 

As for the generic design objective, the proposed controller should not produce significant overshoot, fast settling 
time, and minimal root mean square error, RMSE. Furthermore, the required input should not be overly aggressive, as 
this would affect the driver's comfort and the vehicle’s fuel consumption. It also should be able to handle vehicle 
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constraints and external disturbances such as limitation of tractive force, the addition of passenger weight and inclination 
of road angle. 

Enhancing Tuning Efficacy of PID and PFC 
For this case, the PID and PFC controllers are tuned with respect to their own tuning rules for the cruise control 

application. Since the PID controller is not the main contribution of this paper, an auto-tune function in MATLAB is used 
to get the desired response. Two parameters need to be selected in the Transfer Function Based (PID Tuner App) tuning 
method, which are the expected response time and level of robustness. Based on these selections, the three PID gains 
were generated automatically. 

By fixing a maximum level of robustness which is 0.9, Figure 3 shows the closed-loop response of PID controller 
with varying response time in tracking 20 m/s from rest for the first 120 s and 25 m/s (black dashed line) for the remaining 
simulation time. Although a significant impact can be observed from the closed-loop response, it is found that the selected 
desired response time does not reflect the actual closed-loop response behaviour. In most cases, the actual response time 
is longer than the desired one, although this can be changed if the robustness property is set to be more aggressive. 
Besides, there is a noticeable overshoot in the output response corresponding to a high over actuation input computed by 
the controller.   

 

 
(a)       (b) 

Figure 3. Closed-loop input and output of PID controller with varying tuning values. 

 
(a)       (b) 

Figure 4. Closed-loop input and output of PFC controller with varying tuning CLTR. 

Conversely, PFC is tuned by selecting the desired CLTR corresponding to the time required to reach 95% of the 
steady-state value. In this case, the number of coincidence horiz 
on is fixed to 1, as discussed in Remark 2. Figure 4 shows the closed-loop behaviour of PFC with a varying selection of 
CLTR. From the observation, it is noted that the actual response is a close representation of the demanded CLTR. The 
response also seems to converge to the target value monotonically with less overshoot and less aggressive input demand 
than the PID controller. In an actual application, this response will provide less fuel consumption and a more comfortable 
driving experience.  

Unconstrained Closed-Loop Response   
For a fair comparison, both PID and PFC controllers are tuned to have the same CLTR. The response time of PID is 

tuned to 14 s, which in return generates three PID gains of P = 209.5, I = 5.294 and D = 268.4. These correspond to 14.8 
s of CLTR, which have been set in the PFC algorithm as the tuning parameter. As shown in Figure 5, both controllers’ 
responses intersect at 14.8 s at the speed of 19 m/s (denoting 95% from the desired speed of 20 m/s). A similar finding as 
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the previous section can be observed where for the unconstrained system, the PID controller requires higher tractive force 
(7382 N) than PFC (6000 N) to get a similar response. Besides, PFC converges and settles faster and smoother to the 
desired speed with less overshoot compared to the PID controller.  

 

 
(a)       (b) 

Figure 5. Unconstrained response of PID and PFC controller. 

Besides, some quantitative comparisons are presented as shown in Table 3. These parameters are the rise time τr, the 
settling time τs , the minimum settling, the maximum settling, the percentage of overshoot 𝑀𝑀p %, the peak value (m/s), 
the peak time τp, and the RMSE. These quantitative values are measured in the duration of the first 120s for tracking  
20 m/s from rest and will be the controllers' performance indices. As discussed in the earlier finding of Figure 5, it can be 
observed that the PID controller for the unconstrained closed-loop response requires longer settling times (84.6833 s) as 
compared to PFC (19.3390 s). These are due to the overshoot percentage produced by the PID controller (8.2902 %), 
which is comparably higher than PFC (0.0159 %). The PFC controller demonstrates the best-fit response curve to the 
desired speed of 20 m/s with a lower RMSE of (2.9200) compared to the PID controller’s RMSE of (3.2110). 

Table 3. Performance indices for both controllers (Unconstrained Case). 
Performance Criteria PID PFC 
Rise time, τr 12.5358 10.9190 
Settling time, τs 84.6833 19.3390 
Settling Min., (m/s) 18.2266 18.0234 
Settling Max., (m/s) 21.8780 20.0069 
Overshoot, 𝑀𝑀p % 8.2902 0.0159 
Peak, (m/s) 21.8780 20.0069 
Peak time, τp 35.6000 54.0000 
RMSE 3.2110 2.9200 

Constrained Closed-Loop Response 
For this case, only one input constraint will be considered where the maximum tractive force is limited to 2500 N for 

both PID and PFC. Figure 6 shows that both PFC and PID responses become slower due to the implemented input 
constraints from 0 to 100 s. However, PFC provides a better response where it takes less time to converge and settle with 
minimum overshoot compared to the PID controller. In extreme cases, PID controller may provide oversaturation or 
integral wind up since no information regarding the constraints is known a priori which is quite different from predictive 
controller methodology.  

 

 
(a)       (b) 

Figure 6. Constrained performance in terms of tractive force for PID and PFC controller. 
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In addition, Table 4 shows the numerical performance comparison of both PFC and PID controllers. In the first 120 
seconds for tracking 20 m/s from rest, the PID controller requires longer settling times (92.0214 s) than the PFC (20.4469 
s) for the constrained closed-loop response. These are due to the overshoot percentage produced by the PID controller 
(11.5468 %), which is comparably higher than PFC (1.1181 %). Although both controller responses become slower due 
to the implemented input constraints of 2500 N the PFC controller managed to demonstrate the best-fit response curve to 
the desired speed of 20 m/s with a lower RMSE of (3.9525) compared to the PID controller’s RMSE of (4.2166). 

Table 4. Performance indices for both controllers (Constrained Case). 
Performance Criteria PID PFC 
Rise time, τr 13.6247 13.2790 
Settling time, τs 92.0214 20.4469 
Settling Min., (m/s) 18.2657 18.2006 
Settling Max., (m/s) 22.6360 20.4190 
Overshoot, 𝑀𝑀p % 11.5468 1.1181 
Peak, (m/s) 22.6360 20.4190 
Peak time, τp 36.4000 37.8000 
RMSE 4.2166 3.9525 

Closed-Loop Response in the Presence of Disturbances. 
Figure 7 shows the performance comparison where both controllers manage to handle all the disturbances. However, 

when there is an inclination disturbance, PID speed drop lower than PFC yet converge faster to the desired speed. This 
response, in return, requires large over actuation as seen in the input graph at 400s which may lead to more fuel 
consumption.  

 

 
(a)       (b) 
Figure 7. Constrained performance in the presence of disturbance. 

CONCLUSION 
In summary, this work provides a closed-loop comparison between PID and PFC that are simulated using a simplified 

nonlinear vehicle longitudinal dynamics model. The main highlight that can be pointed out is that the tuning scheme of 
PFC is more intuitive and significant in nature compared to the PID. Besides, when both controllers are tuned to achieve 
a similar closed-loop time response, PFC converges and settles to the desired target faster with less overshoot than the 
PID controller. Similar observation can be seen when input constraint is implemented. As for the disturbance rejection 
capability, since PFC considered the constraint information a priory, the speed drops less than PID and converges slower 
to the target setpoint, which uses less fuel consumption. Future work will investigate the capability of a nonlinear PFC 
controller for the cruise control system to further improve the closed-loop performance in a different speed driving range. 
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