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INTRODUCTION 
Isotropic plates are utilised as structural elements in a variety of applications, including mechanical and civil 

engineering. Plates are under transverse loading bend in most engineering structures, such as long spans, walkways, and 
platforms. As a consequence, the structural design of the model is based on the analysis of the bends in these plates, and 
this region has received a lot of attention. A growing quantity of research has been devoted to the study of thin rectangular 
plates of uniform thickness over the last few decades, principally based on the classical plate theory, CPT. [1]. It is based 
on the theory that, after deformation, straight lines normal to the mid-surface retain straight. The transverse shear and 
transverse normal strains are both zero according to the CPT’s kinematic assumptions. Subsequently, CPT neglects 
transverse shear deformation, where the effects of shear deformation are more significant. Thus, its appropriateness is 
restricted only to thin plates. Mindlin’s Shear Deformation of First Order, FSDT is regarded as a CPT’s improvement. It 
is based on the theory that the normal to the un-deformed mid-plane stays straight but not necessarily normal to the mid-
plane after deformation, and the displacement field through the thickness for the in-plane displacement is in linear nature. 
FSDT is based on stresses developed [2], which combines shear influence and the displacement-based approach [3]. For 
transversely isotropic plates, a consistent second-order plate theory is derived. Analytically, the theory is validated against 
three-dimensional elasticity theory [4]. In FSDT, the variation of transverse-shear stresses and strains is adjusted by 
including the shear correction factor (SCF). Many higher-order shear deformation theories (HSDTs) are developed by 
eliminating the use of SCF to achieve practical variations in transverse-shear strains and stresses via the direction of 
thickening. Inside a given HSDT [5], parabolic distribution shear stress is accomplished via the thickness of the constant 
thickness layers.  

The comprehensive reviews of various refined theories [6] and a new hypothesis for the plate are used for thick plate 
vibration study through the thickness of the plate. The material properties fluctuate according to the power-law 
distribution [7], and the concept of virtual work is employed to derive the governing equations and model parameters in 
this theory. Navier’s solution approach is used to solve simply supported curvature in elevation beams. Using Reissner’s 
Mixed Variational Theory (RMVT), the author [8] has constructed and tested mixed LW and ESL plate and shell 
structures that can fully satisfy C0s- requirements. Newer reviews on plate bending have been submitted and presented 
[9]. Plenty of problems are solved using trigonometric shear deformation theory [10] and the analytical approach. The 
effect of transverse-shear and normal strain on isotropic stresses in static bending has been investigated for thick plates. 
For the static flexure and free vibration study of isotropic plates, two variable refined plate theories were developed [11], 
and this theory produces frequencies similar to those of the theory of FSDT. Employing two modified Vlasov foundation 
models [12], the effect of soil variability on the bending of circular thin plates is investigated. Several refined shell 
methods [13] were used to assess the static and free vibrations of composite laminates and sandwiched geometrical shapes. 
The exponential shear deformation theory was introduced [13], which later proposed for multilayered beam structures. 

ABSTRACT – In this work, using the new inverse trigonometric kinematic displacement function, 
the bending solution of simply supported isotropic and transversely isotropic thin, moderately thin 
and thick square plates with aspect ratio variations is given. The paper introduces a new inverse 
trigonometric shear deformation theory (nITSDT) for the bi-directional bending study, which is 
variationally compatible. The transverse shear stress can be obtained directly from the constitutive 
relationships on the top and bottom surfaces of the plate that satisfy the shear stress-free surface 
conditions, so the theory does not need a factor for shear correction. The dynamic version of the 
virtual work principle is used to obtain the governing equations and boundary conditions of the 
theory. The finite element solution has been developed using MATLAB code based on the present 
theory for simply supported laminated composite plates. In order to illustrate the efficiency of the 
proposed theory, the results of displacements and stresses are compared with those of other 
refined theories and exact solutions. The findings obtained from the use of the theory are found to 
agree well with the precise results of elasticity. 
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For the bidirectional bending of plates (provided an exact elasticity solution [14]), effective vibration analysis of thick 
rectangular homogeneous plates[15] was carried out.  

The influence of transversely-shear and normal deformation on thermal-mechanical analyses of FG plates was 
investigated, and the results were shown to be valuable as a benchmark [16]. A theory of fifth-order shear deformation 
considering transverse shear deformation effect as well as transverse normal strain deformation effect was proposed [17] 
for static flexure analysis of simply supported isotropic plates. A sixth-order differential equations system has been 
developed [18], and analyses of elastic plates lead to two boundary conditions. 3D elasticity equations of plates on the 
foundations of Pasternak are considered in the formulation of the plate [19]. The exact solution is given on a two-
parameter basis by the displacement potential functions of a simply supported rectangular plate with constant yet arbitrary 
thickness. The assumptions of variance of Young’s moduli (E) and shear moduli (G) [20] through the plates’ thickness 
of plate has been examined. The strategy utilises displacement-based potential functions for transversely isotropic plates 
and 3-D elasticity solutions established. The bending behaviour of transversely isotropic rectangular plates with different 
thicknesses was critically studied [21]. For fulfilment, governing-differential equations are solved using the division of 
variables system, as well as accurate plate boundary conditions. Using novel kinematic functions bending analyses of 
laminated composite plates were carried out for uniformly distributed, and sinusoidal loadings [22-23], in which different 
aspect rations were considered and FE formulation for these problems were devised.  

The modified computer model introduced [24] for the thermal analysis of composite laminates and sandwiches plates 
takes into account the impacts of shear and normal deflections. The numerical solution technique is based on MATLAB 
[25], the symbolic codes are written, and similar types of code are used in the present study also. Several research papers 
are provided in the studies review static, dynamic, and buckling behaviour of plates and shells under thermal and 
mechanical loading conditions [25-26]. A finite element analysis [27] was proposed for the static/dynamic analysis of FG 
plates with cylindrical shells based on higher-order approximation. The bending behaviour of laminated and sandwich 
shells [28-30] was studied with thermo-mechanical load using Carrera’s unified solution. The different shear deformation 
models [31] were used to analyse the thermo-elastic bends of composite laminates. A simplified and accurate plate theory 
taking account for transverse normal strain is offered [12, 16 and 33]. The numerical solution technique is based on 
MATLAB[32], the symbolic codes are written, and similar types of code are used in the present study. 

The present work proposes a displacement-based new inverse trigonometric shear deformation theory (nITSDT) for 
bi-directional bending and assessment of thick isotropic and transversely isotropic plates, which takes into account the 
effects of transverse shear deformation and rotating inertia. MATLAB code developed based on FE formulation for this 
new theory. For the rapid generation of stiffness matrices and to minimise numerical instabilities, symbolic computation 
has been used primarily with FE formulation. For the bending-analyses of isotropic/transversely isotropic plates, the 
demonstrated theory was found to be modest and effective. 

MATHEMATICAL FORMULATION 
In the coordinate scheme x-y-z, the isotropic plate presented in Figure 1 has dimensions (a×b×h). The plate boundaries 

correspond per the x:0˗a and y:0˗b. A transverse load applied to the plate is of SDL and UDL on the plate’s upper surface.  
 

 
Figure 1. Schematic diagram of a square plate. 

Displacement Fields and Associated Strain Terms  
Equation (1) presents the axial-displacements u and v in the x and y-directions, one-to-one, then the transverse- 

displacement:w in conjunction with the z:direction at all points in the entire plate and written in the functional-form, 
according to nITSDT.  

 
𝑢𝑢 = 𝑢𝑢0 + 𝑢𝑢𝑏𝑏 + 𝑢𝑢𝑠𝑠 , 𝑣𝑣 = 𝑣𝑣0 + 𝑣𝑣𝑏𝑏 + 𝑣𝑣𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎  𝑤𝑤 = 𝑤𝑤0 (1) 

 
where 𝑢𝑢0, 𝑣𝑣0 and 𝑤𝑤0 are the mid-pane displacements,𝑢𝑢𝑏𝑏and 𝑣𝑣𝑏𝑏 are the bending components of deformations and 

𝑢𝑢𝑠𝑠 and 𝑣𝑣𝑠𝑠 are the shear components of deformations. The bending components are represented as 𝑢𝑢𝑏𝑏 = −𝑧𝑧 (𝜕𝜕𝑤𝑤0
𝜕𝜕𝜕𝜕)

  & 𝑣𝑣𝑏𝑏 =

−𝑧𝑧 (𝜕𝜕𝑤𝑤0
𝜕𝜕𝜕𝜕)

. The shear components are represented as 𝑢𝑢𝑠𝑠 = 𝜙𝜙𝜙𝜙(𝑧𝑧) & 𝑣𝑣𝑠𝑠 = 𝜓𝜓𝜙𝜙(𝑧𝑧), whereas the 𝜙𝜙(𝑧𝑧), novel kinematic shape-
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function regulates the deviation of shear stress transversely through the plate’s depth and 𝜙𝜙 ,𝜓𝜓 being transverse normal 
rotation components about y and x axes consistently. When u0, v0, w0, “𝑢𝑢0, 𝑣𝑣0,𝑤𝑤0,𝜙𝜙 and 𝜓𝜓” are recognised, the 
displacements “𝑢𝑢, 𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤” at arbitrary points in the plate are calculated. The in-plane and transverse-shear strains, by 
way of indicated by Eq. (2), characterise the state-of-strains at an arbitrary location in the plate. 
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Where 𝜀𝜀 = �𝜀𝜀𝜕𝜕&𝜀𝜀𝜕𝜕� and 𝛾𝛾 = �𝛾𝛾𝜕𝜕𝑧𝑧&𝛾𝛾𝜕𝜕𝑧𝑧� are the normal strains and shear strain transverse vectors, respectively, 

whereas 𝜀𝜀𝜕𝜕𝜕𝜕 being in-plane strains. Table 1 shows the unique kinematic functions presented by different researchers and 
that by the present one. At the top and bottom surfaces, shear stresses should be zero, and this state is flawlessly satisfied 
with the present kinematic function contributed to developing nITSDT. 

Table 1. Kinematic functions. 

Kinematic 
function 

Kirchhoff 
CPT 

Mindlin 
FSDT Reddy HSDT Sayyad et al. SSNDT Present nITSDT 

𝜙𝜙(𝑧𝑧) = 0 𝑧𝑧 𝑧𝑧 −
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Constitutive Relations  
It is able to capture expressions for stresses by substituting strains in the constitutive equation. Equation 3 describes 

the correlation between stresses and strains in the three axes directions.  
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 (3) 

 
where, 𝑄𝑄𝑖𝑖𝑖𝑖  comprises the material stiffness coefficients shown in Eq. (4).  
 

𝑄𝑄11,𝑄𝑄22𝑄𝑄12 =
𝐸𝐸1

1 − 𝜇𝜇12𝜇𝜇21
,

𝐸𝐸2
1 − 𝜇𝜇12𝜇𝜇21

𝐸𝐸2
1 − 𝜇𝜇21

𝑄𝑄66,𝑄𝑄44 𝑄𝑄55 = 𝐺𝐺12,𝐺𝐺23𝐺𝐺13
� (4) 

 
where, in the direction of x, y and z the 𝐸𝐸1,𝐸𝐸2,𝐸𝐸3  are the elasticity moduli. And, 𝜇𝜇 with Poisson’s ratios with above 

notations, 𝐺𝐺12,𝐺𝐺13,𝐺𝐺23 are the shear moduli in the planes, respectively. Accordingly, the stress-strain relationships are 
definitive and are the basis for the stiffness/stress analyses of the plate exposed to a top surface transverse load. 

Stress Resultants   
Stress resultants are simplified representations of the stress state in the plate. The constitutive equations relating the 

stress resultants and the strains are expressed in Eq. (5).  
 

�𝑁𝑁𝑖𝑖𝑀𝑀𝑖𝑖
�
6×1

= �
𝐴𝐴𝑖𝑖𝑖𝑖 𝐵𝐵𝑖𝑖𝑖𝑖
𝐵𝐵𝑖𝑖𝑖𝑖 𝐷𝐷𝑖𝑖𝑖𝑖

�
6×6

�
𝜀𝜀0𝑖𝑖
𝑘𝑘𝑖𝑖 �6×1

  (5) 

 
The stiffness matrices are computed by integrating material stiffness coefficients as shown in Eq. (6), 
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𝐴𝐴𝑖𝑖𝑖𝑖
(3×3)𝐵𝐵𝑖𝑖𝑖𝑖

(3×3)𝐷𝐷𝑖𝑖𝑖𝑖
(3×3) = �� 𝑄𝑄𝑖𝑖𝑖𝑖(1, 𝑧𝑧, 𝑧𝑧2)𝑎𝑎𝑧𝑧

𝑍𝑍𝑍𝑍

𝑍𝑍𝑍𝑍−1

𝑁𝑁

𝐼𝐼

 (6) 

 
where i, j=1, 2, 3.., and 𝑁𝑁,𝑀𝑀 is in-plane force and bending moments resultants respectively correspondingly termed 

as stress resultants shown in Figure 2, while 𝐴𝐴,𝐵𝐵,𝐷𝐷 are extensional, coupling and bending moment stiffness matrices 
respectively, whereas 𝜀𝜀0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 are membrane and curvature strains.  

 

 
Figure 2. Force and moment resultants on a plate element. 

Equation (7) shows a set of moment-curvature associations based on an implicit general stress field along the thickness 
derived by integrating the various stresses along with the depth of domain. 
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Equation (8) comprises the membrane and curvature strains.  
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 (8) 

Equilibrium Equations 
Consider a plate domain of an elastic material. Inside the domain, Eq. (9) holds. The virtual work principle states 

equilibrium between the internal virtual work, 𝛿𝛿𝑊𝑊𝑖𝑖 and the external virtual work, 𝛿𝛿𝑊𝑊𝑒𝑒 in the configuration.  
 

𝛿𝛿𝑊𝑊𝑖𝑖 − 𝛿𝛿𝑊𝑊𝑒𝑒 = 0
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Being, v the un-deformed volume, 𝜎𝜎 and 𝛿𝛿𝜀𝜀 the stress and virtual strain vector due to virtual displacement 

𝛿𝛿𝑢𝑢 respectively with p being the surface traction acting over un-deformed area A. Equation (10) is then used to build the 
total virtual work. 
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= �(𝛿𝛿𝑢𝑢0(𝑃𝑃𝜕𝜕)
𝑆𝑆

+ 𝛿𝛿𝑣𝑣0(𝑃𝑃𝜕𝜕))𝑎𝑎𝑠𝑠 + ��𝛿𝛿𝑤𝑤0(𝑞𝑞)�𝑎𝑎𝑎𝑎
𝐴𝐴

 

(10) 

 
The specified global edge tractions in the x and y directions are Px and Py, respectively, and q being the transverse 

load. 

FINITE-ELEMENT MODEL 
The internal and external virtual works can be only maintained, 𝛿𝛿𝑊𝑊𝑖𝑖 = 𝛿𝛿𝑊𝑊𝑒𝑒 for a subset of fields of virtual 

displacement. This will lead to an approximate solution of the actual displacement field. In this sense, the virtual work 
principle is a weak statement of the equilibrium conditions. Finite element models (FE Model) is a way, as illustrated 
below, to build this subset of fields of virtual displacement.  

i. Discretise the given domain using 8-noded serendipity finite elements as shown in Figure 3, being displacement 
vectors as variables at nodes. Serendipity elements are more efficient, and they avoid certain sorts of instabilities 
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since nodes are only added at the element boundary. They are sufficient to produce good agreements with low 
errors. 

ii. Since the internal node is removed, this elimination results in a reduction in the size of the element matrices. 
iii. Use Interpolate model for nodal and virtual nodal displacements through the elements.  
iv. To express the virtual strain field in terms of virtual nodal displacements, control nodal strain-displacement 

relations (Eq. (2)) followed by using the nodal stress-strain relations (Eq. (3))  
v. The maintenance 𝛿𝛿𝑊𝑊𝑖𝑖 = 𝛿𝛿𝑊𝑊𝑒𝑒  of virtual nodal displacements for each set contributes to the solving of such 

algebraic equations. 

Equilibrium Equations 
A square plate with simply supported boundary conditions (SS-BCs) plate subjected to unit magnitude sinusoidal and 

uniformly distributed loads (SDL and UDL) is analysed assuming the Poisson ratio μ = 0.25 and 0.3. The geometrical 
information of the complete plate is square with side=1 and with S=4-100. The above symbolic characters are of standard 
meaning. One-quarter of the plate is evaluated as symmetry. Pre-processing is accompanied using a FEM Programme 
developed in MATLAB.  

 

 
Figure 3. Simulated eight noded serendipity element Interpolation scheme. 

This theory’s FE approximation is based on the C0 continuity. Equation 11 shows the displacement-vector:d inside 
the finite-element (FE) as a function of 8-distinct localities using shape functions (𝑁𝑁𝑖𝑖).  

 
(𝑁𝑁𝑖𝑖) = �

(𝑁𝑁1) 0 (𝑁𝑁2) 0 −− −− − − 0
0 (𝑁𝑁1) 0 (𝑁𝑁2) −− −− − − (𝑁𝑁8)� (11) 

 
Shape functions and derivatives are requisites in strain calculations. Equation (12) shows the shape functions for the 

element illustrated in Figure 3 that are derived based on local coordinates "𝜉𝜉 &𝜂𝜂” at a given node. 
 

𝑁𝑁1 = − 0.25(1− 𝜉𝜉)(1 − 𝜂𝜂)(1 + 𝜉𝜉 + 𝜂𝜂),   𝑁𝑁2 = 0.5(1 − 𝜉𝜉)(1 + 𝜉𝜉)(1 − 𝜂𝜂)
𝑁𝑁3 = − 0.25(1 + 𝜉𝜉)(1 − 𝜂𝜂)(1 − 𝜉𝜉 + 𝜂𝜂),   𝑁𝑁4 = 0.5(1 + 𝜉𝜉)(1 + 𝜂𝜂)(1 − 𝜂𝜂)
𝑁𝑁5 = − 0.25(1 + 𝜉𝜉)(1 + 𝜂𝜂)(1 − 𝜉𝜉 − 𝜂𝜂),   𝑁𝑁6 = 0.5(1 − 𝜉𝜉)(1 + 𝜉𝜉)(1 + 𝜂𝜂)
𝑁𝑁7 = − 0.25(1 − 𝜉𝜉)(1 + 𝜂𝜂)(1 + 𝜉𝜉 − 𝜂𝜂),   𝑁𝑁8 = 0.5(1 − 𝜉𝜉)(1 + 𝜂𝜂)(1 − 𝜂𝜂)

� (12) 

 
The displacement vector, 𝑎𝑎𝑒𝑒in the matrix form is an interpolation of nodal displacements, 𝑢𝑢𝑖𝑖 , v𝑖𝑖etc., at a point in the 

element, as shown in Eq. (13). 
 

𝑎𝑎𝑒𝑒 = �𝑁𝑁𝑖𝑖 × {𝑢𝑢𝑖𝑖 , v𝑖𝑖 , w𝑖𝑖 , 𝜙𝜙𝑖𝑖  &𝜓𝜓𝑖𝑖}
8

𝑖𝑖=1

𝑇𝑇

 (13) 

 
Combining Eq. (10) and Eq. (13), PVW equation 𝜒𝜒(𝑎𝑎) as shown in Eq. (14), is found in terms of global displacements 

and shape functions. 
 

𝜒𝜒(𝑎𝑎) = ���𝐵𝐵0𝑇𝑇 × 𝑁𝑁𝑖𝑖� + �𝐵𝐵𝑏𝑏𝑇𝑇 × 𝑀𝑀𝑖𝑖� + �𝐵𝐵𝑠𝑠𝑇𝑇 × 𝑆𝑆��𝑎𝑎𝑎𝑎
𝐴𝐴

 

−��(𝐵𝐵𝑁𝑁𝑇𝑇 × 𝑊𝑊𝑠𝑠)𝑎𝑎𝑎𝑎)�
𝐴𝐴

− ��(𝐵𝐵𝑁𝑁𝑇𝑇 × 𝑊𝑊𝑒𝑒)𝑎𝑎𝑠𝑠)�
𝐴𝐴�����������������������������

𝑅𝑅𝑒𝑒︸

 (14) 
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where B0, Bb, Bs, Ws, and We are namely in-plane, bending, transverse shear, transverse load and in-plane edge 
components. In addition, the successive iteration method is used to solve the assembled equilibrium equations (Eq. (14)). 
Assuming an error of 3 decimal and using the residual equation, Eq. (15), the solution is initialised. by imaginative 𝜒𝜒(𝑎𝑎)𝑖𝑖 
and 𝐾𝐾𝑇𝑇 being tangent K matrix.  

 

𝐾𝐾𝑇𝑇 = �
𝜕𝜕𝜒𝜒(𝑎𝑎. )𝑖𝑖

𝜕𝜕(𝑎𝑎. ) �

(𝑎𝑎. )𝑖𝑖+1 = (𝑎𝑎)𝑖𝑖 + 𝑎𝑎𝑑𝑑𝑑𝑑(𝑎𝑎)𝑖𝑖

{𝜒𝜒(𝑎𝑎. )}𝑖𝑖+1 = 𝜒𝜒(𝑎𝑎. )𝑖𝑖 + 𝐾𝐾𝑇𝑇𝑎𝑎𝑑𝑑𝑑𝑑(𝑎𝑎. )𝑖𝑖

�
(𝜒𝜒𝑇𝑇 × 𝜒𝜒)
�𝑅𝑅𝑒𝑒𝑇𝑇 × 𝑅𝑅𝑒𝑒�

� ≤ 𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝐸𝐸
⎭
⎪⎪
⎬

⎪⎪
⎫

. (15) 

 
The Gaussian Quadrature numerical integration scheme is shown by Eq. (16) for bending, and the membrane is 3×3 

and that of transverse shear is 2×2.  
 

𝐼𝐼 = � 𝜙𝜙𝑎𝑎(𝑧𝑧)𝑎𝑎𝑧𝑧
+1

−1
= �𝑤𝑤𝑁𝑁, 𝑘𝑘𝜙𝜙𝑎𝑎(𝜕𝜕𝑁𝑁, 𝑘𝑘) (16) 

 
where 𝜕𝜕𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑁𝑁are the sampling points and weights, respectively. The application of the reduced integration only 

to transverse shear terms with full integration kept for remaining terms resulted in the selective integration scheme. Table 
2 shows the Gauss Legendre integration weights and sampling points. 

Table 2. Gauss Legendre integration weights and sampling points. 

Scheme Two-point Three-point 
𝜕𝜕𝑁𝑁  (−0.05773),  (+0.05773) (−0.7754),  (0), (+0.7754) 
𝑤𝑤𝑁𝑁 (1), (1) (0.555), (0.888), (0.555) 

Illustrative Examples 
Two examples are followed to validate the findings of the FE. Table 3 displays the material properties used on 

isotropic and transversely isotropic plates to achieve numerical results. The plate’s upper surface is subjected to transverse 
load. As seen in Figure 4(a) and 4(b), the term 𝑞𝑞0 reflects the load intensity at the plate midpoint, with m and n being odd 
numbers. The given transverse load is expanded in a double trigonometric Fourier series on the plate surface. The 
sinusoidal and uniformly distributed loads (SDL and UDL) are taken into account for plate study and shown in Table 4. 
Simply supported type of boundary conditions along all edges are associated for the plate, and the same is specified in 
Table 5. 

Table 3. Material properties [10]. 

Examples 𝐸𝐸1 𝐸𝐸2 𝐸𝐸3 𝐺𝐺12 𝐺𝐺13 𝐺𝐺23 µ12 µ13 µ23 
Isotropic 1 1 1 0.38 0.38 0.38 0.3 0.3 0.3 
Transversely isotropic 0.04 0.04 0.5 0.06 0.016 0.06 0.25 0.25 0.25 

Table 4. Types of load. 
Load q m, n 

SDL ��𝑞𝑞0 𝑠𝑠𝑠𝑠𝑎𝑎 �
𝑆𝑆𝜋𝜋
𝑎𝑎
� 𝑠𝑠𝑠𝑠𝑎𝑎 �

𝑎𝑎𝜋𝜋
𝑎𝑎
�

∞

𝑛𝑛

∞

𝑚𝑚

 1 

UDL ��
16𝑞𝑞0
𝑆𝑆𝑎𝑎𝜋𝜋2 𝑠𝑠𝑠𝑠𝑎𝑎

�
𝑆𝑆𝜋𝜋
𝑎𝑎
� 𝑠𝑠𝑠𝑠𝑎𝑎

∞

𝑛𝑛

∞

𝑚𝑚

�
𝑎𝑎𝜋𝜋
𝑎𝑎
� 1, 3, 5… 

Table 5. Boundary conditions. 
BCs Simply-supported (SS:BCs) 

At y, x=0 ,a 𝑢𝑢0 = 𝑤𝑤0 = 𝜓𝜓 = 𝑀𝑀𝜕𝜕 =
𝜕𝜕𝑤𝑤0
𝜕𝜕𝜕𝜕

= 0  

At x, y=0,b 𝑢𝑢0 = 𝑤𝑤0 = 𝜙𝜙 = 𝑀𝑀𝜕𝜕 =
𝜕𝜕𝑤𝑤0
𝜕𝜕𝜕𝜕

= 0  
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Figure 4. Load distribution on plate: (a) sinusoidal (SDL), and (b) uniform (UDL). 

The displacements and stresses as shown in Eq. (17) to Eq. (19) are presented in the next non-dimensional forms that 
are widely presented in the prose for comparison and validation purposes. In MATLAB, a family of computer 
programmes has been written using the FEM formulation of nITSDT, a developed theory-of-plate for the linear bending 
analysis of plate structure. The organisation of the computer programmes established follows the standards introduced by 
Bathe [33] for the FEM algorithms. To promote the solution and reduce the computational time [28], the symbolic words 
in MATLAB are also implemented. 

Transverse displacement: 
�̄�𝑤 𝑎𝑎𝑎𝑎 0 =

102𝑤𝑤 h 𝐸𝐸3
𝑞𝑞0𝑆𝑆3

(17) 

Normal stresses: 
�̄�𝜎𝜕𝜕  

𝑎𝑎𝑎𝑎 ±ℎ2
=

𝜎𝜎𝜕𝜕
𝑞𝑞0
�

1
𝑆𝑆�

2

&  �̄�𝜎𝜕𝜕 
𝑎𝑎𝑎𝑎 ±ℎ2

=
𝜎𝜎𝜕𝜕
𝑞𝑞0
�
ℎ
𝑆𝑆�

2
(18) 

Transverse stresses: 
�̄�𝜏𝜕𝜕𝜕𝜕 

𝑎𝑎𝑎𝑎 ±ℎ6
=
𝜏𝜏𝜕𝜕𝜕𝜕
𝑞𝑞0

�
1
𝑆𝑆�

2

, �̄�𝜏𝜕𝜕𝑧𝑧 𝑎𝑎𝑎𝑎 0 =
𝜏𝜏𝜕𝜕𝑧𝑧
𝑞𝑞0

�
1
𝑆𝑆�    & �̄�𝜏𝜕𝜕𝑧𝑧 𝑎𝑎𝑎𝑎 0 =

𝜏𝜏𝜕𝜕𝑧𝑧
𝑞𝑞0

�
1
𝑆𝑆� (19) 

RESULTS AND DISCUSSION 
Mesh-Convergence Study 

The mesh-convergence comparative analysis in non-dimensional transverse displacement results was obtained in [10] 
and [16], and the sample case of the present analysis is in Table 6. The results using a free mesh show that the mesh size 
(10 ×10) is converged and has an excellent correlation with benchmark results [16]. The equilibrium equations are solved 
using an Iterative method with a convergence tolerance of three decimals. All the illustrative examples and cases are 
solved by mesh size (10×10), and these are discussed in the preceding section.  

Table 6. Convergence study on non-dimensional transverse displacements �̄�𝒘 for isotropic plate subjected to SDL. 

S Approach Hypothesis �̄�𝑤 

4 

Analytical [10] 3.6534 
Exact [16] 3.6630 

FEM Present 

Mesh size 
4×4 3.6789 
6×6 3.66354 
8×8 3.66312 

10×10 3.66312 

Bi-directional Bending Analyses: Isotropic Plates 
The efficacy of nITSDT’s in bending analysis of thick to thin isotropic plates under SDL/UDL loadings is 

demonstrated in this section. Properties of the isotropic material described in Table 3 are referred. The non-dimensional 
central-displacement, in-plane/transverse-stresses through the thickness subjected to SDL with different side-to-thickness 
(S=a/h) ratios are presented in Table 7. The outcomes obtained are contrasted with the analytical solution [10] and the 
exact elasticity result [16]. 

Table 8 shows non-dimensional central displacements, in-plane stresses, and transverse stresses as a function of plate 
thickness with different values of S subjected to UDL. The model is verified to the analytical solution [10] and exact 
solution [16]. Table 7 and Table 8 also shows the per cent of errors computed for non-dimensional central displacements, 
in-plane stresses, and transverse stresses. For example, in Table 7, the per cent error for non-dimensional central 
displacements at S=4 may simply estimate that this error is 0.0027 for the current work, which is smaller than 0.2620 for 
other researchers. Examination of Table 7 and Table 8 show this new theory estimates the displacements correctly while 
overestimating the normal in-plane stresses for thick to thin plates. In the literature, there are no exact outcomes for in-
plane shear stresses. When utilising constitutive relations, the current hypothesis overvalues the values of transverse shear 
stresses, but once employing equations of equilibrium from the elasticity theory, it appropriately predicts such stresses. 
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Table 7. Isotropic square plate subjected to SDL: Non-dimensional central displacements and stresses. 

  S Hypothesis Model �̄�𝑤 
(0. ) %-Error 

�̄�𝜎𝜕𝜕&�̄�𝜎𝜕𝜕 

�−
ℎ
2

. � 
%-Error 

�̄�𝜏𝜕𝜕𝜕𝜕 

�−
ℎ
2

. � 
�̄�𝜏𝜕𝜕𝑧𝑧&�̄�𝜏𝜕𝜕𝑧𝑧 
(0. ) %-Error 

  4 Present. nITSDT 3.6631 0.0027 0.2102 3.0392 0.1118 0.2392 1.3130 
[10] SSNDT 3.6534 0.2620 0.2267 11.127 0.1063 0.2444 3.515 
[16] Exact 3.6630 0 0.2040 0 – 0.2361 0 

  10 Present. nITSDT 2.9742 1.0773 0.2003 0.7545 0.1065 0.2401 0.7553 
[10] SSNDT 2.9333 0.3126 0.2125 6.8913 0.1060 0.2454 2.9794 
[16] Exact 2.9425 0 0.1988 0 – 0.2383 0 

  20 Present. nITSDT 2.8342 0.12334 0.1988 0.4547 0.1058 0.2426 1.6764 
[10] SSNDT 2.8286 0.32061 0.2105 6.3668 0.1060 0.2455 2.8918 
[16] Exact 2.8377 0 0.1979 0 – 0.2386 0 

  50 Present. nITSDT 2.8108 0.0925 0.1984 0.4048 0.1055 0.2403 0.7124 
[10] SSNDT 2.7991 0.3240 0.2100 6.2753 0.1060 0.2456 2.9337 
[16] Exact 2.8082 0 0.1976 0 – 0.2386 0 

  100 Present. nITSDT 2.8060 0.0713 0.1984 0.4048 0.1055 0.2403 0.6702 
[10] SSNDT 2.7949 0.3245 0.2099 6.2246 0.1060 0.2456 2.8906 
[16] Exact 2.8040 0 0.1976 0 – 0.2387 0 

Table 8. Isotropic square plate subjected to UDL: Non-dimensional central displacements and stresses. 

  S Hypothesis Model �̄�𝑤 
(0. ) %-Error 

�̄�𝜎𝜕𝜕&�̄�𝜎𝜕𝜕 

�−
ℎ
2

. � 
%-Error 

�̄�𝜏𝜕𝜕𝜕𝜕 

�−
ℎ
2

. � 
�̄�𝜏𝜕𝜕𝑧𝑧&�̄�𝜏𝜕𝜕𝑧𝑧 
(0. ) %-Error 

  4 Present. nITSDT 5.7047 0.1756 0.3008 2.0352 0.2194 0.4751 3.1480 
[10] SSNDT 5.6799 0.2591 0.3185 8.0393 0.2082 0.4833 4.9283 
[16] Exact 5.6947 – 0.2948 – – 0.4606 – 

  10 Present nITSDT 4.6376 0.0452 0.2980 3.2571 0.1978 0.4857 0.2874 
[10] SSNDT 4.6252 0.3125 0.3071 6.4102 0.1954 0.5044 3.5516 
[16] Exact 4.6397 – 0.2886 – – 0.4871 – 

  20 Present. nITSDT 4.4832 0.0869 0.3011 4.6940 0.1943 0.4977 0.9328 
[10] SSNDT 4.4727 0.3209 0.3054 6.1891 0.1942 0.5083 3.0825 
[16] Exact 4.4871 – 0.2876 – – 0.4931 – 

  50 Present. SSNDT 4.4499 0.1282 0.2950 2.6443 0.1941 0.4947 0.0202 
[10] nITSDT 4.4644 0.4545 0.3132 8.9770 0.1933 0.4983 0.7480 
[16] Exact 4.4442 – 0.2874 – – 0.4946 – 

  100 Present. nITSDT 4.4377 0.0090 0.2830 1.4966 0.1932 0.4950 0.0202 
[10] SSNDT 4.4238 0.3221 0.3049 6.1260 0.1941 0.5092 2.8894 
[16] Exact 4.4381 – 0.2873 – – 0.4949 – 

Figure 5 displays the surface plot of bending of the mid-plane of an isotropic plate subjected to SDL. For a few cases, 
this has been plotted. But a case of SDL with S=4 is pursued only to see the nature of the bending behaviour of the plate. 
From the nature and results reported on it, the peak value of non-dimensional �̄�𝑊is 3.6631 at the centre of the plate, and 
the same is seen in Table 7. For SDL and UDL, Figure 6 displays the  non-dimensional central deflection �̄�𝑤 versus length-
thickness ratio (a/h). The variation of �̄�𝑤 for a/h=4, 6, 8, 10, 14, 20, 50 and 100 is very precise. The value of �̄�𝑤 of UDL 
for all a/h is approximately 1.5 times greater than that of SDL. This is due to UDL is constant over the top surface of 
plate. 

Figure 7 depicts in-plane normal stress, �̄�𝜎𝜕𝜕 variations as a function of thickness at S=4 for both SDLand UDL. The 
behaviour of this plot is accurate when compared with renowned literature. Here also maximum non-dimensional�̄�𝜎𝜕𝜕 for 
UDL is 1.5 times more than that of SDL because the former is at constant load over the surface. Figure 7(a) to Figure (c) 
illustrate the through thickness in-plane normal stress �̄�𝜎𝜕𝜕, in-plane shear stress �̄�𝜏𝜕𝜕𝜕𝜕, and transverse shear stress �̄�𝜏𝜕𝜕𝑧𝑧, 
respectively. These plots are drawn at S=4 for both SDL and UDL. The behaviour of these plots is accurate when 
compared with renowned literature. Here also, maximum non-dimensional stresses for UDL are 1.5 to 2 times more than 
that of SDL because the former is at constant load over the surface.   
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Figure 5. Surface plot for transverse bending of mid-plane of an isotropic plate subjected to SDL at S=4, (maximum 
W̄=3.6698, Table 1). 

The through thickness �̄�𝜏𝜕𝜕𝑧𝑧and transverse shear stress plots of SDL for S=4, 10, 20, 50 and 100 are shown in Figure 8. 
The behaviour of these curves show a small difference in the maximum value of �̄�𝜏𝜕𝜕𝑧𝑧 at mid-plane of the plate. Thus, 
increasing S more than 25 becomes redundant. The superlative results are found in the thick plate than that of the thin 
one.  

Figure 6. Surface plot comparison of non-dimensional central deflection  w̄ versus length–thickness ratio(a/h). 

(a) non-dimensional in-plane normal stress σ̄x (b) non-dimensional in-plane shear stress normal stress
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(c) non-dimensional transverse shear stress �̄�𝝉𝒙𝒙𝒙𝒙

Figure 7. Isotropic square plate subjected to UDL and UDL. 

Figure 8. Isotropic and transversely isotropic plates subjected to SDL: Non-dimensional transverse shear stress τ̄xz 
(S=4-100). 

Bi-directional Bending Analysis: Transversely Isotropic Plates 
The efficacy of the present hypothesis for the bi-directional bending in transversely isotropic plates under SDL/UDL 

is validated in this section. Properties of the material described in Table 3 are included. Table 9 and Table 10 present the 
non-dimensional central displacements, in-plane/transverse stresses through the depth in plates with different values of S 
subjected to SDL and UDL. Because an exact-elasticity solution is not accessible in the literature, the findings obtained 
are compared to an analytical solution by SNDT[10], HSDT[5], FSDT[4] and CPT[1], and these are included in Table 9 
and Table 10. The findings obtained by current theory and by HSDT [5] are almost the same. While, results in [1] and [5] 
appears similar at the highest value of S. 

Table 9. Non-dimensional displacements and stresses: Transversely-isotropic plate subjected to SDL. 

S Hypothesis Model �̄�𝑤 
(0. ) % Error 

�̄�𝜎𝜕𝜕&�̄�𝜎𝜕𝜕 

�−
ℎ
2 . � 

%-Error 
�̄�𝜏𝜕𝜕𝜕𝜕 

�−
ℎ
2 . � 

�̄�𝜏𝜕𝜕𝑧𝑧&�̄�𝜏𝜕𝜕𝑧𝑧  
(0. ) %-Error 

4 Present. nITSDT 38.954 0.00514 0.1936 0.05163 0.1149 0.2378 0.0420 
[10] SNDT 39.146 0.49933 0.1936 0.05163 0.1153 0.2377 0.0840 
[5] HSDT 38.952 0 0.1937 0 0.1147 0.2379 0 
[4] FSDT 39.257 0.7850 0.1900 1.9101 0.1140 0.2387 0.3362 
[1] CLPT 36.091 7.3638 0.1900 1.9101 0.1140 0.2387 0.3362 

10 Present. nITSDT 36.307 0.0330 0.1912 0.1044 0.1138 0.2387 0.0418 
[10] SSNDT 36.578 0.7797 0.1909 0.2612 0.1142 0.2385 0.0419 
[5] HSDT 36.295 0 0.1914 0 0.1133 0.2386 0 
[4] FSDT 36.598 0.83482 0.1900 0.7314 0.1140 0.2388 0.0410 
[1] CLPT 36.091 0.56206 0.1900 0.7314 0.1140 0.2389 0.0411 
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Table 10. Non-dimensional displacements and stresses: Transversely-isotropic plate subjected to UDL. 

S Hypothesis Model �̄�𝑤 
(0. ) %-Error 

�̄�𝜎𝜕𝜕&�̄�𝜎𝜕𝜕 

�−
ℎ
2 . � 

%-Error 
�̄�𝜏𝜕𝜕𝜕𝜕 

�−
ℎ
2 . � 

�̄�𝜏𝜕𝜕𝑧𝑧&�̄�𝜏𝜕𝜕𝑧𝑧 
(0. ) %-Error 

4 Present. nITSDT 61.289 0.0636 0.2805 0.0356 0.2179 0.4917 2.1073 
[10] SSNDT 61.577 0.5338 0.2803 0.1069 0.2180 0.4686 2.6993 
[5] HSDT 61.250 0 0.2806 0 0.2178 0.4816 0 
[4] FSDT 61.732 0.7869 0.2763 1.53243 0.2086 0.4951 2.7823 
[1] CLPT 57.127 6.7313 0.2763 1.5324 0.2086 0.4951 2.7823 

10 Present nITSDT 57.403 0.0313 0.2781 0.0359 0.2113 0.4925 0.0405 
[10] SSNDT 57.835 0.7841 0.2775 0.2516 0.2098 0.4917 0.2029 
[5] HSDT 57.385 0 0.2782 0 0.2136 0.4927 0 
[4] FSDT 57.864 0.8347 0.2763 0.6829 0.2086 0.4951 0.4668 
[1] CLPT 57.127 0.4495 0.2763 0.6829 0.2086 0.4951 0.4668 

Table 9 and 10 also show the per cent of errors computed for central displacements, in plane stresses, and transverse 
stresses. For example, Table 8 shows that the per cent error for transverse shear stresses at S=4 is 0.0420, which is smaller 
than the 0.0840 and 0.3362 reported by other researchers. The in-plane normal stress �̄�𝜎𝜕𝜕 through thickness in the 
transversely isotropic plate is shown in Figure 9(a). Also in Figure 9(b) displays the evaluation of in-plane normal stresses 
�̄�𝜎𝜕𝜕 for through thickness in isotropic and transversely isotropic at S=4. All these behaviour of these plots are accurate 
when compared with prominent literature. Here also the maximum value of �̄�𝜎𝜕𝜕 for isotropic plate is around 1.2 times than 
that of transversely isotropic. Similarly, comparison of through thickness in-plane shear stress �̄�𝜏𝜕𝜕𝜕𝜕 for the isotropic and 
transversely isotropic plate at S=4 is shown in Figure 10. The maximum value of �̄�𝜏𝜕𝜕𝜕𝜕 for isotropic plate is around two 
times than that of transversely isotropic. This is due to the more bending stiffness of isotropic material than that of 
transversely isotropic material plate. 

(a) Transversely isotropic-plate subjected to SDL/UDL (b) isotropic/ transversely isotropic plate subjected SDL

Figure 9. Non-dimensional in-plane normal stress σ̄x (S=4). 

Figure 10. Non-dimensional in-plane shear  stress τ̄xy: Isotropic/ transversely isotropic plate subjected SDL (S = 4). 
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CONCLUSION 
The finite element formulation for bending analysis of isotropic and transversely isotropic plate has been developed 

based on a new inverse trigonometric shear deformation theory (nITSDT. The implications of both transverse-shear and 
normal-shear deformations are considered in this theory. In-plane and transverse deformations use an inverse 
trigonometric shape function expanded to account for the effects of transverse shear and normal deformations. This theory 
does not need a problem-dependent shear correction factor since it uses constitutive relationships to satisfy traction free 
boundary conditions at the top and bottom surfaces of the plate. Using FE based MATLAB solution method, the plate is 
analysed for simply supported-boundary conditions. The combination of numerical and symbolic aspects of the problem-
solving method is also important, as MATLAB  has proven to be a flexible software that allows numerical and symbolic 
computation to be combined. It is inferred from the computational analysis and discussion of findings that the current 
theory, when compared to other HSDTs for Isotropic and transversely isotropic plates available in the literature, yields 
precise predictions of displacements and stresses. For all loading instances, the findings of displacements and stresses 
derived by this theory are in great agreement with those obtained by precise solutions. 
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