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NOMENCLATURE 
NEDC New European Driving Cycle 
BDC  Bangkok Driving Cycle 
HC  Hydrocarbons 
NMHC Non-methane hydrocarbons 
CO  Carbon monoxide 
NOX  Oxides of nitrogen 
CO2  Carbon dioxide 
PM  Particulate matter 
PN Particulate number 
E10  Ethanol content 10% and benzene 90% 
E50  Ethanol content 50% and benzene 50% 
E85  Ethanol content 85% and benzene 15% 

INTRODUCTION 
Air pollution produced by internal combustion engines such as unburned hydrocarbons (HC), carbon monoxide (CO), 

oxides of nitrogen (NOx), and particulate matter (PM) is a major concern worldwide [1]. In addition, carbon dioxide (CO2) 
emission which is one of the main greenhouse gases (GHG) [2] also becomes increasingly significant aware. For all these 
reasons, nations worldwide are striving to develop cleaner alternative fuels from renewable sources. Amongst renewable 
fuels available for the automotive sector, ethanol-gasoline blends (e.g. E10, E20, E85) are recognized as one of the 
essential alternative fuels for SI engines [3, 4, 5]. The vehicles that are designed to operate on any blends of ethanol to 
gasoline up to 85% by volume are called flex-fuel vehicles. Most literatures indicated that comparing between E10 and 
E85 on a flex-fuel vehicle, the amounts of HC, CO, NOx, and CO2 emissions are lower, but fuel consumption is around 
30% higher [6, 7]. These are due to changes in fuel’s chemical properties [8, 9], flame speed [10], heat release, and 
thermal efficiency [11]. Therefore, most engine manufacturers adjusted engine operating conditions to maintain vehicle 
performance by optimizing vehicle emissions to pass emission standards. However, the pattern of driving cycle strongly 
impacts the amounts of vehicle emissions and fuel consumption as well [12]. The driving cycle is a time series of vehicle 
speeds recorded at successive (equally spaced) time points [13]. It represents a typical driving pattern for the population 

ABSTRACT – Ethanol flex-fuel vehicles are introduced to Thailand’s market and believed that they 
provide an alternative way in terms of reducing crude oil and octane booster import. Many 
literatures suggested that they also helped to reduce some emission species including the 
greenhouse gas. However, sufficient proof of this flex-fuel vehicle comparing the conventional 
versus realistic driving cycle tests during cold starts is not clearly identified. This research focuses 
on the comparison of performance, fuel consumption, and emissions of a flex-fuel vehicle using 
Gasohol E10, E50, and E85 tested under the New European Driving Cycle (NEDC) and Bangkok 
Driving Cycle (BDC). Tests were done on a Chassis Dynamometer in the Automotive Emission 
Laboratory of the Pollution Control Department. Considering emission data from both test cycles, 
the more ethanol ratios in gasoline, the more CO, NMHC, NOx, CO2 and PN emissions reductions. 
On the contrary, HC emissions are increased but still under EURO4 standards. Fuel consumptions 
on E85 are increased around 30% compared to E10 for both test cycles. However, the pattern of 
driving cycles significantly impacts the amounts of CO/NOx emissions and fuel consumption.  
During cold start periods, regardless of percentages of ethanol blends, the amounts of HC and CO 
emissions for both test cycles are similar due to running engine in rich conditions by ECU 
management to warm three-way catalyst. On the contrary, NOx emissions are strongly related to 
frequent acceleration and deceleration sequences of the tested driving cycle. 
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of a city. For emission testing, a tested driving cycle in the most general case attempts to synthesize real driving conditions 
with respect to several measures, including speed, acceleration, specific power, trip patterns, road grade, and temperature. 
In [14], tested emissions of modern ethanol light-duty flex-fuel vehicles over different operating and environmental 
conditions by variations of ethanol blends and driving cycles were studied. The results of this study were unable to 
pinpoint which ethanol blends was the best in terms of reducing emissions since the impact of driving cycle pattern also 
greatly affected emissions. In addition, other studies [15, 16] also show a comparison between tests of flex-fuel vehicles 
in New European Driving Cycle (NEDC) and World harmonized Light-duty vehicle Test Cycle (WLTC) and the same 
results were yielded as [14]. Emissions during cold start periods are known that they are relatively high and last 
approximately within the first three minutes of the test. Once the exhaust temperature is high enough, tail-pipe emissions 
are much lower. It is hypothesized that this might cause differences seen in past literatures. However, no research has 
shown and analyzed the emission during this period closely.   

The aim of this study is to highlight a comparison of vehicle emissions and fuel consumption of a flex-fuel vehicle 
testing between Bangkok Driving Cycle (BDC) and New European Driving Cycle (NEDC). Gasohol E10, E50, and E85 
are used as tested fuels. Emissions during cold start periods from three tested fuels under two distinct driving cycles are 
fully analyzed.  

METHODOLOGY 
A flex-fuel vehicle under Euro 4 emission standard was used to perform the experiment. The key specifications of the 

test vehicle are presented in Table 1. The vehicle was regularly serviced according to its manual. Before performing the 
experiment, the vehicle prepared for each fuel tests (E10, E50, and E85) was filled up in the full tank and driven until the 
fuel tank was empty for three times. This was done to ensure that the ECU of the vehicle learns each fuel type thoroughly 
[17]. After that, the vehicle was parked at least six hours before the cold start test began [18]. Ethanol-gasoline blends 
were prepared by Prakhanong Oil Terminal, PTTOR PLC. Selected important properties are shown in Table 2. The 
procedure of preparing E50 can be found in Ref. [19]. 

Table 1. Technical specifications of the test vehicle 
Properties Specification 
Engine type 4 Cylinder in-line, SOHC 16 valve 
Fuel supply system Electronic fuel injection system 
Capacity (cc.) 1,798 
Bore x Stroke (mm.) 81.0 x 87.3 
Compression ratio 10.6:1 
Max. output EEC net kw (ps)/rpm 104 (141) / 6,500 
Max. torque EEC net Nm (kg-m)/rpm 174/4300 

Table 2. Selected properties of ethanol-gasoline blends. 
Properties Gasohol 95 (E10) Gasohol E50 Gasohol E85 
Ethanol Content, % vol. 9.33 50.23 79.58 
Research Octane Number (RON) 96.0 >100 >100 
Motor Octane Number (MON) 85.0 87.2 88.6 
Dry Vapor Pressure (kPa) 58.4 43.7 38.2 
Density @ 15°C, Average, g/cm3 0.7456 0.7598 0.7807 
HHV (MJ/kg) 40.59 35.34 32.12 
LHV (MJ/kg) 38.82 33.44 28.72 
% of Oxygen Content 9.376 26.734 32.348 
Stoichiometric air/fuel ratio 14.1 10.5 9.4 

Vehicle Performance Test 
Even though this effort does not include in the scope of this work, vehicle performance tests were performed according 

to the full-load power test procedure to investigate the impacts of ethanol fuel blends. The test vehicle was warmed up 
prior to each vehicle performance test. The vehicle was driven at the 5th gear on the chassis dynamometer at a constant 
speed of 80 km/h for 20 minutes. The roller of the chassis dynamometer was controlled at constant speeds from 50 to 140 
km/h. Each test lasted for 3 minutes. During 3 minutes of each vehicle speed, the driver pushed the accelerator pedal at 
full throttle position (engine runs to the maximum speed at 4th and 5th gear). The powers and torque at each speed were 
then recorded. 

BDC vs NEDC Driving Cycles 
Two driving cycle tests are employed in the current study. The first one is called Bangkok Driving Cycle (BDC) which 

represents the actual on-road driving pattern found in Bangkok, Thailand. This cycle was developed by the Automotive 
Emission Laboratory of the Pollution Control Department. The Bangkok driving cycle phase 3-4-5 profile was selected 
for the current study and shown in Figure 1. In general, the obtained driving cycle lasts 1,456 seconds (24.27 minutes) 
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whose average velocity is at 33.38 km/hr. More details on the development of the Bangkok driving cycle can be found in 
the reference [20]. 

 
Figure 1. Bangkok Driving Cycle (BDC) phase 3-4-5. 

The second one is New European Driving Cycle (NEDC) which is composed of four urban driving sequences (ECE), 
and an Extra-Urban Driving Sequence (EUDC). This test cycle is the standard test of which many countries including 
Thailand has currently employed as the legislative driving pattern. The EUDC segment is added after the fourth ECE 
cycle to account for more aggressive and high-speed driving mode as shown in Figure 2. In general, the obtained driving 
cycle lasts 1180 second (19.67 minutes) whose average velocity is at 33.4 km/hr. 

In general, the duration and average speed of these two driving cycles are similar. However, NEDC is the simpler test 
pattern since it contains straight acceleration, constant speed, and deceleration profiles which is not reflect real-world 
driving behavior. BDC, on the contrary, contains more transient speed variations which reflect real-world driving 
conditions. Another observation is that during the first three minutes of the NEDC test, one ECE sequence is already 
finished whereas during the same window period, the BDC test is more idle and has low vehicle speed conditions. These 
two distinct patterns reflect greatly in vehicle emissions which are discussed more in the further section. Table 3 includes 
a summary of parameters for both ECE and EUDC cycles [12]. 

 

 
 Figure 2. New European Driving Cycle (NEDC). 

Table 3. Characteristics of ECE and EUDC driving cycle. 
Characteristics Unit ECE 15 EUDC 
Distance km 4x1.013 = 4.052 6.955 
Duration s 4x 195 = 780 400 
Average Speed km/hr 18.7 (with idling) 62.6 
Maximum Speed km/hr 50 120 

Sampling and Analytical Systems 
The experiments were performed at the Automotive Emission laboratory, Department of Pollution Control, Ministry 

of Natural Resources and Environment. The laboratory is fully equipped to measure vehicle emissions, fuel consumption, 
and performance as shown in Figure 3. Surrounding temperature and absolute humidity of air in the laboratory room were 
maintained at the specified ranges during test periods to avoid any effects on the measurements. The equipment and its 
technical specifications are described in the following sections.  

i.  Chassis dynamometer: consisting of roller and cooling fan. 
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ii.  Exhaust gas sampling system: collecting samplers for measuring emissions drawn by direct sampler and constant 
volume sampler (CVS). 

iii. Emissions analyzer: composing of equipment as shown in Table 4. 
iv. Vehicle emission test control system: consisting of control room and driver’s aid processor. 
v.  Calibration equipment. 
vi. Calibration and operating gas. 

 

 
Figure 3. Schematic diagram of the automotive emission laboratory. 

Table 4. Emissions measuring equipment. 
Measurement Pollutants Analyzer 

CVS measurement 
CO/CO2 Non-Dispersive Infrared (NDIR) 

THC (Total HC) Flame Ionization Detector (FID) 
NOx Chemiluminescence Detector (CLD) 

Weighing Particulate Matter (PM) Micro Balance 
 
The quantities of each emission species are calculated by Eq. (1) [21]. Fuel consumption (FC) are calculated by Eq. 

(2) to (4) [22]. 
 

Mi =
Vmix ×  Qi ×  kH ×  Ci  × 10−3

d  (1) 

 
where, 

Mi is mass emission of the pollutant ‘i’ in grams per kilometer, 

Vmix is volume of the diluted exhaust gas expressed in liter per test and corrected to standard conditions (273.2 K 
and 101.33 kPa), 

Qi 
is density of the pollutant ‘i’ in grams per liter at normal temperature and pressure (273.2 K and 101.33 
kPa), 

kH is humidity correction factor used for the calculation of the mass emissions of nitrogen oxides, 

Ci 
is concentration of the pollutant ‘i’ in the diluted exhaust gas expressed in ppm and corrected by the amount 
of the pollutant ‘i’ contained in the dilution air, 

d is actual distance corresponding to the operating cycle in km. 
 

FC of E10 (liter/100km) = � 0.1202
Density

�(0.832*THC+0.429*CO+0.273*CO2) (2) 

  
FC of E50 (liter/100km) = � 0.1441

Density
�(0.694*THC+0.429*CO+0.273*CO2) (3) 
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FC of E85 (liter/100km) = � 0.1744

Density
�(0.573*THC+0.429*CO+0.273*CO2) (4) 

RESULTS AND DISCUSSION 
Vehicle Performance 

Figure 4 shows test results on the vehicle performance when operating on various ethanol fuel blends at full load 
condition tests. The result of the vehicle operating on E50 and E85 shows that there is a significant increase in engine 
performance relative to the baseline E10 when testing in full-load power tests under the engine speed of 3500 rpm. This 
should benefit from higher octane number leads to more advanced spark timing during low engine speeds. Beyond the 
engine speed of 3500 rpm, there is no significant difference in terms of engine performance. For full load power tests, 
E85 provides the best performance which corresponds to reference [23].  

 

 
 

Figure 4. Power and torque curves of the test vehicle at full load conditions. 

Fuel Consumption 
Fuel consumption of all test conditions is shown in Figure 5. Within the same driving cycle either BDC or NEDC, 

E85 yields the lowest fuel consumption with 30% reductions compared to E10 [15]. This is due to its lowest heating value 
and stoichiometric air/fuel ratio as seen from many suggestions in literatures [6, 7, 9, 22]. However, when comparing 
each fuel type between two driving cycles, all BDC tests yield lower fuel consumption. This should be because BDC has 
more sharp acceleration and deceleration sequences than NEDC as seen in Figure 1 and Figure 2.  

 

 
 

Figure 5. Fuel consumption of the test vehicle under specified driving cycles. 
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Effects of Ethanol on Vehicle Emissions under BDC and NEDC Tests 
Vehicle emissions including HC, CO, NOx, NMHC, CO2, and PN (particle numbers) under BDC and NEDC tests 

are shown in Figure 6(a) to 6(f), respectively. Results in bar chart formats are compared to EURO 4 emission standards 
which are the regulated standard for Thailand. Notify that CO2 is currently not considered as the polluted emission specie 
in the EURO emissions standard. NMHC and PN are regulated as one of the control emission species since EURO 5 and 
6 emission standards, respectively.  

 

 
(a)       (b) 

 

 
(c)       (d) 

 

 
(e)      (f) 

 
Figure 6. Emissions data of the tested vehicle operated over the applied driving cycles: (a) HC emissions (b) CO 

emissions (c) CO2 emissions (d) NOx emissions and (e) NMHC and (f) Particulate number (PN). 

Overall, higher ethanol fuel blends obviously help reducing NOx, NMHC, and PN emissions as seen from Figure 6(c), 
6(d), and 6(f) for both cycles. These results had been observed in past literature such as [15, 23]. It was speculated that 
lower heating value of higher ethanol fuel blends should reduce the combustion temperature resulting in lower NOx 
emissions. This trend is not clearly seen in HC and CO emissions (see Figure 6(b)). However, when considering NMHC 
in Figure 6(c), higher ethanol blends clearly reduce NMHC emissions. More investigations should be done in future work 
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to identify detailed hydrocarbon emissions with Fourier transform infrared spectroscopy (FTIR) measurements as 
suggested in [24, 25].  

Effects of Ethanol on Vehicle Emissions under BDC and NEDC Tests during Cold Start 
An example of real-time HC emissions data during BDC and NEDC tests are shown in Figure 7(a) and 7(b), 

respectively. It is clearly seen that HC emissions from both cycles are very high at the beginning and drastically reduced 
after 200 seconds. This operation window is considered as a cold start period [6] when the operation of a three-way 
catalytic converter (TWC) is ineffective during this instant of time. The same trends are observed for CO and NOx 
emissions. Table 5 shows the tabulated data of Figure 6 during cold start periods under two specified cycles. 

Overall, the amounts of each emission species and fuel consumption in mg/km and km/l, respectively, from BDC are 
much higher than those from NEDC.  This is because during cold start periods, as seen in Figure 7(a) and 7(b), the driving 
pattern in BDC has much more idling periods than NEDC resulting in less driving distances. Comparisons of each emitted 
species during cold start periods between two driving cycles will be discussed in the next section.    

 

 
(a) 

 

 
(b) 

 
Figure 7. The relationship between HC emissions and velocity under (a) BDC and (b) NEDC of each fuel type. 

HC emissions during cold start periods 

Figure 8(a) and 8(b) shows the comparison of HC emissions between both investigated driving cycles during cold 
start periods.  In general, both tests produce similar HC emission patterns even though the driving cycles are significantly 
different that is BDC has much longer idling conditions than NEDC.  HC emissions increase rapidly, and after 80 seconds, 
reduce significantly. It is believed that running engine in rich conditions by ECU management to warm three-way catalyst 
should be the cause of these HC emission behaviors, not the driving pattern. When comparing with the same cycle, 
interestingly, E50 produces less HC emissions than the other two fuel types. This observation should be investigated with 
various ethanol fuel blends.  
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Table 5. Emissions of the tested vehicle under specified driving cycles during cold start. 
 BDC NEDC 

 E10 E50 E85 E10 E50 E85 
Fuel consumption 
(km/l) 2.36 1.77 1.74 8.91 8.8 5.11 

HC (ppm) 9,121 7,414 8,965 10,743 5,122 10,672 
HC (mg/km) 2,790 2,260 2,590 870 410 870 
CO (ppm) 18,898 27,442 16,603 17,707 19,147 17,508 
CO (mg/km) 11,990 17,050 9,730 2,910 3,110 2,900 
NOx (ppm) 757 380 201 1,901 1,721 647 
NOx (mg/km) 800 380 190 540 460 170 
CO2 (ppm) 961,737 1,020,330 998,368 956,822 780,917 1,206,236 
CO2 (mg/km) 934,990 996,550 920,650 247,660 199,870 314,500 
PN (#/cm3) 3.52E+6 2.86E+6 5.29E+6 1.01E+7 9.49E+6 3.23E+6 
PN (#/km) 1.32E+07 1.07E+07 1.87E+07 2.53E+06 3.21E+06 9.54E+06 
 

 
(a) 

 

 
(b) 

Figure 8. The relationship between HC emissions and velocity under (a) BDC and (b) NEDC of each fuel type during 
cold start period. 

CO emissions during cold start periods 

Figure 9(a) and 9(b) show the comparison of CO emissions between both investigated driving cycles during cold start 
periods. In general, similar trends are observed as seen in HC emissions, that is, CO emissions increase rapidly at the 
beginning, and after 80 seconds, reduce significantly. BDC tests produce much higher CO emissions in mg/km unit than 
NEDC tests (Table 5) due to longer idling conditions. Differences in driving patterns of BDC and NEDC do not seem to 
affect the amount of HC and CO emissions. When comparing within each cycle, E50 produces more CO emissions than 
the other two fuel types. This observation corresponds to the trend observed in HC emissions.  
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(a)  

 

 
(b) 

 
Figure 9. The relationship between CO emission and velocity under (a) BDC and (b) NEDC of each fuel type during 

cold start periods. 

NOx emissions during cold start periods 

Figure 10(a) and 10(b) show the behavior of NOx emissions between both investigated driving cycles during cold start 
periods. Interestingly, BDC provides fewer NOx emissions than NEDC for all types of fuel during cold start periods. The 
small appearance of NOx emissions during idle periods in BDC compared to a sharp increase during the 1st and 2nd loop 
of NEDC indicate that NOx emissions are directly proportional to changes in vehicle speeds. The more ethanol blend 
ratios, the less NOx emissions. This is due to the lower temperature of combustion and shorter combustion durations in 
E85 compared to E50 and E10, respectively [27].  

 

 
(a)  
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(b)  

 
Figure 10. The relationship between NOx emissions and velocity under (a) BDC and (b) NEDC of each fuel type during 

cold start periods. 
Particulate number (PN) emissions during cold start periods 

Figure 11(a) and 11(b) show the behavior of PN emissions between both investigated driving cycles during cold start 
periods. Comparing both cycles, PN emissions are strongly related to the acceleration and deceleration patterns as seen 
in NOx emissions. Since E85 contains higher percentages of oxygen contents than E10 and E50, this should help 
enhancing oxidization effects resulting in fewer PN emissions [27, 28].   

 

 
(a) 

 

 
(b) 

 
Figure 11. The relationship between PN emissions and velocity under (a) BDC and (b) NEDC of each fuel type during 

cold start periods. 
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Since BDC is not legally adopted as the regulated procedure on testing vehicle emissions in Thailand, our take on this 
study is to use it as the other parameter to better understand emissions under cold start periods. We can see that the 
amounts of HC and CO emissions during this period more likely depends on engine control management regardless of 
fuel types. However, the amounts of NOx and PN emissions are more sensitive to the driving pattern. With higher ethanol 
blending ratios, these amounts are drastically decreased. 

CONCLUSION 
The emissions of a flex-fuel vehicle are investigated under various ethanol fuel blends by performing on two driving 

cycles, namely, BDC and NEDC.  Based on the results found in the current study, the following conclusions are made.  
i. The results from both cycles show that higher ethanol fuel blends help reduce CO, NOx, NMHC, and PN 

emissions. However, HC emissions are substantially higher. This is due to methane emissions from ethanol fuel 
blends. 

ii. When comparing among same fuel types, more aggressive driving patterns of BDC result in higher CO, CO2 and 
PN emissions but HC and NOx emissions are reduced.     

iii. Differences in driving patterns of BDC and NEDC and ethanol blend ratios do not affect the amount of HC and 
CO emissions during cold start periods. The amounts of HC and CO emissions more likely depends on engine 
control management  

iv. The amounts of NOx and PN emissions during cold start periods are directly influenced by acceleration and 
deceleration sequences in the tested driving cycle. The more changes in the velocities, the more the amount of 
NOx and PN emissions. For both driving cycles, higher ethanol blend ratios help reduce the amount of NOx and 
PN emissions.  
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