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INTRODUCTION 
Thin-walled open section beams are extremely used in engineering applications because of their favourable 

strength/weight ratio, simplicity of erection and installation, ease of fabrication, and economic conditions. This type of 
structure is exposed during service to different physical phenomena; one is the buckling which is a consequence of several 
types of loading. The buckling manner is affected by different variables like the geometry of the cross-section, boundary 
condition (supports and loads), material properties, and dimensions of the structure. [1]. 

An open-lipped channel beams are one of the most common sections. Numerous scholars investigated the behaviour 
of thin-walled beams; most of them used I, C, or Z sections in their investigations as these are widely used sections in 
structures. White et al. [2] examined the maximum strength experimentally and theoretically of two series of the closed-
hat square thin-walled beam with different thicknesses affected by the combined loads bending and torsion. Linear-elastic 
and rigid-plastic approaches were implemented to find interaction equations to estimate the load resistance of the section 
for any combined load (bending – torsional). Javaroni and Goncalves [3] compared experimental results with the direct 
strength method to investigate the distortional buckling of lipped beams. These beams were exposed to bending loading. 
The study indicated that the strength of regional and distortional buckling from the two methods are very similar. Zhang 
and Tong [4] contrasted the flexural-torsional buckling behaviour of thin-walled beams using three theories. One of these 
theories was proposed by the author, whereas the others are traditional; according to these theories, the finite element 
programs were developed. The proposed solution demonstrates a good agreement with the other theories in some cases 
and has an advantage over existing theories represented by simplicity.  

Ye et al. [5] carried out an experimental study to interact with local and flexural buckling mode for cold-formed steel 
columns subjected to an axial compressive load. The experimental outcomes were verified by the Eurocode 3 design 
procedures. The experiments succeeded in realising the interaction between flexural buckling and local buckling. 
Kolakowski and Jankowski [6] investigated analytically the influence of beam length on the load-carrying capacity for 
the steel-lipped beams affected by bending load. They found that the effect of the second global mode on the load capacity 
is most clear for moderate beams. Grenda and Paczos [7] studied experimentally and numerically the local stability of 
thin-walled channel beams with uncommon flanges made of cold-rolled steel sheets subjected to pure bending. The finite 
strip and finite element methods were used in the numerical analysis. The difference between numerical results and 
experimental was small, less than 2%. The results affirmed that the local buckling restricts the load capacity of the beam. 
Moen and Shafer [8] examined the modified Direct Strength Method that was applied to perforated structures. Moreover, 
it estimated the effect of a slotted on the buckling behaviour of a flat plate and cold-form steel structure. A parametric 
study was carried out based on the dimensions of the hole. The finite element method was used for simulation. The elastic 
buckling was analysed by applying the Eigen buckling analysis utilising the finite element software ABAQUS. In 
addition, they expanded their works to test experimentally and numerically the short and intermediate columns under a 
compression load [9]. These studies proved that the holes make the column rely on the flanges to carry on a load under 
distortional failure. Macdonald and Kulatunga et al. [10]-[13] investigated experimentally and numerically the effects of 

ABSTRACT – This work studied the effects of holes on the buckling characteristic of an open thin-
walled lipped channel beam under a bending load. A nonlinear finite element method was utilised 
to examine the buckling behaviour of the beam. Experimental works were carried out to verify the 
finite element simulation. Three factors were chosen to examine their influence on the buckling of 
the beam. These factors namely, the holes’ shape, perforated ratio (hole length to beam height) 
and spacing ratio (centre to centre distance between holes to beam height). The finite elements 
output was analysed by implementing the Taguchi method to distinguish the best group of three 
parameters collections for optimal strength of buckling. Whereas the analysis of variance technique 
(ANOVA) method was applied to specify the impact of each parameter on critical buckling load. 
Outcomes showed that the combination of parameters that gives the best buckling strength is the 
hole with a hexagonal shape, perforated ratio =1.7  and spacing ratio =1.3, and the holes’ shape 
is the most effective factor. In addition, the study demonstrated that the hole's shape factor has the 
greatest influence on the buckling capacity. While the perforated ratio factor is the least influential. 
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perforations’ shape and their positions as well as the boundary conditions of end on the compressive load capacity of 
perforated steel columns with a lipped channel. The outcomes showed that; the ultimate buckling load of the structure 
subjected to compression changed highly with the hole distribution pattern. There is a higher lowering of stiffness related 
to circular holes than slotted holes of the same cross-section area. Grilo et al. [14] suggested a new formulation to find 
the resistance of shear for Web-post buckling of steel cellular beams.  

A parametric analysis was carried out using a developed numerical model in ABAQUS. This model was verified 
experimentally. Based on the numerical model, many cases were done to estimate the new formulation of shear resistance 
calculation for the cellular beams. Ferreira and Martins [15] investigated the torsional- lateral buckling strength in cellular 
beams under three kinds of loading; bending, uniformly distributed load, and mid-span concentrated load. Material and 
geometric nonlinear analyses were used to simulate the buckling behaviour of the beams, and the results were checked 
with the standard of ANSI/AISC 360-16. The comparison showed that the American calculation procedure is ineffective 
under inelastic buckling behaviour. Degtyareva et al.[16] researched the effects of using staggered slotted holes on the 
local buckling behaviour of cold-formed steel beams. Three-dimensional finite element models were employed for 
parametric analysis, which was exercised to estimate the ultimate bending load capacity of beams subjected to the local 
buckling.  

Studying parameters is very important for obtaining the best condition for maximum or minimum. Amongst different 
methods, the Taguchi and analyses of variance (ANOVA) techniques are efficient for optimisation, finding the best and 
most influential parameters. Several scholars discussed these two methods in buckling studies [17] to [22]. In this work, 
numerical and experimental investigations were presented to examine the buckling behaviour of perforated thin-walled 
lipped channel cantilever beams subjected to bending load, and the material of beams is aluminium alloy 6061-0. Three 
factors were selected to evaluate their effect on the buckling behaviour of the beam. These parameters are shapes’ hole, 
hole length to beam height ratio (perforated ratio), and centre to centre distance between holes to beam height ratio 
(spacing ratio). The Taguchi method was used to specify the better set of three factors combinations for the best critical 
buckling load. Furthermore, the (ANOVA) was employed to find the most effective factor on the critical load of buckling. 

THEORY  
Buckling and Finite Element 

Buckling is a state of a structure in which the applied loads are large enough to disturb or destroy its stability. The 
linear buckling analysis determines the theoretical strength of buckling. It is modelled as an eigenvalue equation: 

          
(𝑘𝑘 + 𝜆𝜆𝑘𝑘𝜎𝜎)𝜓𝜓 = 0   (1) 

 
where, 𝑘𝑘𝜎𝜎 is a stress-stiffness matrix, 𝜆𝜆 is the eigenvalue (load factor), 𝑘𝑘 is a stiffness matrix, and  𝜓𝜓 is the eigenvector 

of displacements. The solutions for this formula are the eigenvalues and corresponding eigenvectors. The smallest value 
from the eigenvalues represents the critical load factor of buckling. If the applied load is F, then the critical load will be 
(𝜆𝜆*F). If the load is pure bending, and the cross-section of the structure is symmetric, there will be positive and negative 
load factors, but they have equal absolute values. Therefore, it must take the critical load factor according to the direction 
of the applied load [23] and [24]. 

Nonlinear Buckling Analysis 
Nonlinear buckling analysis gives a greater accuracy than elastic formulation. This analysis is a static method, which 

concerns a nonlinearity of materials and geometrics, and boundaries' nonlinearity. In this type of analysis, the load is 
applied gradually until a small increment of the load makes a big change in displacement; at this point, the state of the 
structure becomes unstable, and the load represents the critical buckling load [25]. This study used the nonlinear analysis 
because it is close to the real behaviour of the structure. 
Taguchi 

Genichi Taguchi founded the Taguchi method in 1949. It is a methodology for acquiring the relationship between the 
input process and output of products. It depends on using an orthogonal array (OA) with a few tests to get the most 
favourable set of parameters for the process. This method is a good tool for better design, gathering the concept of the 
quality loss function and design of experiment theory. It provides a systematic approach for optimising design 
performance, cost, and quality. Moreover, the method employs a statistical measurement named the ratio of the mean 
(called signal) to the standard deviation (called noise) (S/N), which represents a logarithmic function of the wanted output. 
There are three standard types of S/N ratio; higher the best (HB), lower the best (LB) and nominal the better (NB) [19], 
[21] and  [26]. In this study, the higher buckling strength is required; therefore, the higher, the better formula is used: 
 

𝑆𝑆/𝑁𝑁  = −10 log ( 1
𝑛𝑛
∑ 1

𝑦𝑦2
𝑛𝑛
𝑖𝑖=1   )  (2) 

 
where, 𝑦𝑦 represents the read data, and 𝑛𝑛 is the observations’ number.  
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Analysis of Variance (ANOVA) 
Analysis of variance (ANOVA) is an efficient statistical technique, which specifies the important parameters and 

demonstrates the percentage contribution of each parameter. In this research, the ratio (S/N) was used for making the 
decision. The technique of ANOVA is based on the total sum of squared deviations (𝑆𝑆𝑆𝑆𝑆𝑆) which is equal to [27] :  

 
𝑆𝑆𝑆𝑆𝑇𝑇 =  � (𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑚𝑚)2

𝑛𝑛

𝑖𝑖=1
 (3) 

 
The percentage of contribution P could be calculated as: 

 

𝑃𝑃 =  
𝑆𝑆𝑆𝑆𝑑𝑑
𝑆𝑆𝑆𝑆𝑇𝑇

 (1) 

  
𝑑𝑑. 𝑜𝑜. 𝑓𝑓 𝑜𝑜𝑓𝑓 𝑎𝑎𝑛𝑛𝑦𝑦 𝑝𝑝𝑎𝑎𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑓𝑓𝑎𝑎𝑓𝑓𝑝𝑝𝑜𝑜𝑝𝑝) = 𝑘𝑘 − 1 (5) 

  
𝑆𝑆𝑜𝑜𝑝𝑝𝑎𝑎𝑇𝑇 𝑑𝑑. 𝑜𝑜.𝑓𝑓 = 𝑛𝑛 − 1 (6) 

  

𝑑𝑑. 𝑜𝑜. 𝑓𝑓 𝑜𝑜𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝 = 𝑝𝑝𝑜𝑜𝑝𝑝𝑎𝑎𝑇𝑇 𝑑𝑑. 𝑜𝑜. 𝑓𝑓 −  �𝑑𝑑. 𝑜𝑜. 𝑓𝑓 𝑜𝑜𝑓𝑓 𝑝𝑝𝑎𝑎𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (7) 
  

𝑉𝑉 =  
𝑆𝑆𝑆𝑆𝑑𝑑
𝑑𝑑. 𝑜𝑜.𝑓𝑓 (8) 

  

𝐹𝐹 =  
𝑉𝑉
𝑉𝑉𝐸𝐸

 (9) 

 
where, 𝑛𝑛 is the number of trails (observation) in the orthogonal array, 𝑛𝑛𝑖𝑖 is mean of S/N ratio for the ith observation, 

𝑛𝑛𝑚𝑚 is mean of all parameters, 𝑆𝑆𝑆𝑆𝑑𝑑 is a summation of the squared deviations, 𝐾𝐾 is levels’ number for each parameter, 𝑃𝑃 is 
contribution’s percentage, 𝑉𝑉 is parameter’s (factor) variance, 𝑉𝑉𝐸𝐸 is error’s variance, 𝑑𝑑. 𝑜𝑜. 𝑓𝑓 is the degree of freedom, and 
𝐹𝐹 is  𝐹𝐹 - test, which is an indicator of the quality characteristic of the process. 

EXPERIMENTAL PROGRAM 
Material Properties 

Aluminium alloy 6061-0 sheets with 1.6 mm thickness were used to manufacture the specimens. Tensile tests were 
performed to validate the mechanical properties of sheets. Tests were done on the tensile specimens with dimensions 
according to ASTM specifications B557M-02a [28], as indicated in Figure 1. Table 1 lists the test results from an average 
of three specimens. 
 

 
All dimensions in mm 

G: Gage length 57 
W: Width 12.5 
T: Thickness 1.6 
R: Radius of fillet 12.5 
A: Length of reduced section 60 
L: Overall length 180 
B: Length of the grip section 50 
C: Width of the grip section 20 

 

 
Figure 1. Tensile test specimens. 

 



D.S Khazaal et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 18, Issue 3 (2021) 

8930   journal.ump.edu.my/ijame  

Table 1. Properties of aluminium alloy 6061-0 

Aluminium alloy 6061-0 Experimental measured 
Young modulus, E (Gpa) 68.9 
Poisson's ratio, ʋ 0.33 
Yield stress, σy (Mpa) 70 
Ultimate stress, σu (Mpa) 109 

Specimen Geometry 
The cross-section dimensions were designed according to the design constraints of Eurocode (EN-1993-1-3) [29], as 

shown in Figure 2. The beam length is assumed to be 500 mm for all specimens. The design constraints of the lipped 
channel beam are given as follows.  

𝑏𝑏
𝑝𝑝 ≤ 60,      

𝑎𝑎
𝑝𝑝 ≤ 50,      ℎ/𝑝𝑝 ≤ 500 

 
0.2 ≤ 𝑎𝑎/𝑏𝑏 ≤ 0.6 

 
𝑎𝑎 ≤ 25 

 
where t represents the thickness, h is the cross-section’s depth, and b is the width of the flange and a is the width of 

the lip.   
 

 
Figure 2. Specimen cross-section dimensions. 

Three shapes of holes were chosen to be made in the web, as demonstrated in Figure 3, with dimensions according to 
the recommendations for web openings into cellular beams provided by Eurocode (BS-5950) [30]: 

 
1.25 < 𝐷𝐷/𝐷𝐷_𝑂𝑂 < 1.75 

 
1.08 < 𝑆𝑆/𝐷𝐷𝑂𝑂 < 1.5 

 

 
Figure 3. Types of holes shapes. 

Table 2 shows the chosen parameters in three levels for analysis: holes’ shape (SH), perforated ratio (𝐷𝐷/𝐷𝐷𝑜𝑜) and 
spacing ratio [𝑆𝑆/𝐷𝐷𝑜𝑜]. Four specimens were tested in this work to verify the numerical solution. One of them is without 
holes as a reference beam (RB), and others have five holes with common shapes of (hexagonal, circular and square), as 
shown in Figure 4. The cross-section of lipped beams was made by flexing the Aluminium alloy 6061-0 sheet. The water 
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jet process was used to make holes on the web of the beam to get a good surface finishing and to minimise any residual 
stresses at the area of the holes. Two cubes from Teflon were mounted at the two ends of the beam to prevent any local 
distortion of a cross-section. The dimensions are 96.5×34.5×20 mm at the load application and 96.5×34.5×50 mm at the 
fixed end. The specimens were fixed using a fixture stand, as indicated in Figure 5.  

Table 2. Parameters and levels. 

Symbols Parameters Levels 
Level 1 Level 2 Level 3 

A Shape of holes Hexagonal Circular Square 
B 𝐷𝐷/𝐷𝐷𝑜𝑜 1.7 1.6 1.5 
C 𝑆𝑆/𝐷𝐷𝑜𝑜 1.5 1.4 1.3 

 

 
(a) 

 

 
(b) 

Figure 4. (a) Test specimens, and (b) fixture stand. 

Buckling Test  
The computer-controlled electronic universal testing machine type WDW-200E was used for the bending buckling 

test, as shown in Figure 6. Four specimens of thin-walled lipped channel beams were tested as cantilever beams under a 
bending load. The bending load was applied at the free end gradually with the rate of 3 mm/min, as indicated in Figure 
7. The load-displacement curves for the tested beams were recorded by the controlling computer. 

FINITE ELEMENT ANALYSIS 
Modelling 

The perforated beams were modelled and analysed using ANSYS 15 software. SHELL181- element was utilised for 
meshing model, which is suitable for thin structure. It is featured with four nodes having three degrees of freedom for 
translations and three for rotations. Moreover, SHELL181 is fit with linear, large strain nonlinear and large rotation 
applications [31]. Figure 8 shows the finite element model of the cantilever beams with the three shapes of holes. The 
force F is applied in the downward direction on the top edge at the free end. To prevent flange deformation at where the 
load was acting, a solid cube of size (96.5×34.5×20) was added between the upper and lower flanges, as in Figure 9. The 
cube and the beam are assumed made from the same material.  
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(a)                  (b) 

Figure 5. (a) Arrangement of the buckling test, and (b) buckling test. 

 
Figure 6. Models of the beam. 

Convergence Study 
The mesh convergence was established by increasing the mesh density in each part of the model and comparing the 

variation in the buckling load. Different dimensions of elements were tested. The elements dimensions between 10 and 5 
mm showed no significant differences in load, whereas the processing time was considerable. Any increment in mesh 
density was unnecessary, as highlighted in Figure 10. Therefore, an element size of 10 mm (3322 elements) was used in 
subsequent analyses.  

 

 
Figure 7. Load and boundary conditions. 
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Figure 8. Critical load vs number of elements (mesh density). 

RESULTS AND DISCUSSION 
Experimental tests revealed that the beams (with and without holes) deformed under the lateral-torsional buckling 

mode (LTB), as displayed in Figure 11. Figure 12 demonstrates the load-displacement curves resulted from the 
experimental test, and the results of the critical buckling load were listed in Table 3. The experimental results showed 
that the buckling strength of the thin-walled beam decreases with the presence of holes on the web when subjected to 
bending load.  

 

 
Figure 9. Deformed specimens. 

Table 3. Experimental results. 

Shape of holes 𝐷𝐷/𝐷𝐷𝑜𝑜 𝑆𝑆/𝐷𝐷𝑜𝑜 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸 (N) 
Without holes (Ref.) ----- ----- 710 
Hexagonal 1.7 1.5 590 
Circular 1.7 1.5 560 
Square 1.7 1.5 520 

Finite Elements Analysis 
The ANSYS analysis and the experimental results gave good compatibility. Table 4, Figure 12 and Figure 13 show 

the comparison between the experimental and numerical results for the buckling. Figure 14 proves the similarity between 
the buckling behaviours of experimental and numerical simulation, as well as indicates that the LTB is the mode of failure 
for the perforated beams. The hexagonal beam has a higher strength than the other shapes. The superiority of the 
hexagonal shape over the other might be attributed to the mechanism of LTB failure. The mechanism of LTB states that 
if the reference beam is under a bending load, the load will be resisted by the compression flange and tension flange. The 
compression flange tends to be displaced laterally away from its axis and to undergo rotation.  

Table 4. Experimental and FEM critical loads. 

Shape of holes 𝐷𝐷/𝐷𝐷𝑜𝑜 𝑆𝑆/𝐷𝐷𝑜𝑜 𝑃𝑃FEM (N) 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸 (N) PEXP / PFEM 
Without holes ---- ---- 730 710 0.97 
Hexagonal 1.7 1.5 610 590 0.97 
Circular 1.7 1.5 589.9 560 0.95 
Square 1.7 1.5 529.88 520 0.98 
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         (a) ref beam without hole                  (b) hexagonal holes 

  

 
            (c) circular holes                 (d) square holes 

Figure 10. The experimental vs FEM load-displacement curves of the beams. 

 
Figure 11. Experimental and numerical critical loads. 

Nonlinear buckling finite element analyses were conducted to obtain the value of critical buckling load. Based on the 
three parameters and three levels, an orthogonal array from 27 combinations (L27) was set up, as indicated in Table 6. 
For each combination, the critical buckling load value was calculated. Furthermore, the weight of the beam (W) and the 
strength to weight ratio ( P/W) are also represented in Table 6. 
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(a) simulation mode for hexagonal hole  (b) experimental and simulation modes  

       for hexagonal hole. 
 

  
(c) simulation mode for circular  hole   (d) simulation mode for square hole 

Figure 12. Experimental and simulation buckling failure in beam. 

On the other hand, the tension flange tends to stay at its original position. This difference in the two flanges behaviour 
causes stresses to be exerted along the beam section. The web transfers these stresses between the flanges by which the 
tension flange try to restrain the compression flange. This restraint strengths the beam against the lateral buckling torsional 
effect. For a perforated beam, the vertical web for transferring internal forces will be the solid region (web post) that 
remains between the holes; whereas, the upper and lower tee regions (along the beam’s span) will be the tension and 
compression members, as shown in Figure 15. Accordingly, the strength of the perforated beam is less than the reference 
beam. This strength is influenced by the shape and size of holes and the space between them (the distance S ) [32], [14], 
[33] and [34]. 

 

 
Figure 13. Web regions. 
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Table 5. Orthogonal array with the critical load. 

Test 
no. 

Holes 
shape 𝐷𝐷/𝐷𝐷𝑜𝑜 𝑆𝑆/𝐷𝐷𝑜𝑜 P (N) W 

(N) P/W Test 
no. 

Holes 
shape 

𝐷𝐷
/𝐷𝐷𝑜𝑜 𝑆𝑆/𝐷𝐷𝑜𝑜 P (N) W 

(N) P/W 

1 Hex. 1.7 1.5 610 3.63 168.2 15 Sq. 1.6 1.4 530 3.27 161.9 
2 Cir. 1.7 1.5 589.9 3.53 167.3 16 Hex. 1.5 1.4 579.84 3.49 166.1 
3 Sq. 1.7 1.5 529.88 3.37 157.3 17 Cir. 1.5 1.4 548 3.36 163.0 
4 Hex. 1.6 1.5 587.97 3.56 164.9 18 Sq. 1.5 1.4 500 3.16 158.2 
5 Cir. 1.6 1.5 569.96 3.46 165.0 19 Hex. 1.7 1.3 627.66 3.63 173.1 
6 Sq. 1.6 1.5 507.84 3.27 155.1 20 Cir. 1.7 1.3 609.85 3.53 172.9 
7 Hex. 1.5 1.5 559.94 3.49 160.4 21 Sq. 1.7 1.3 569 3.37 168.9 
8 Cir. 1.5 1.5 539.99 3.36 160.6 22 Hex. 1.6 1.3 609.95 3.56 171.1 
9 Sq. 1.5 1.5 470.95 3.16 149.0 23 Cir. 1.6 1.3 590 3.46 170.8 
10 Hex. 1.7 1.4 617.99 3.63 170.4 24 Sq. 1.6 1.3 540.02 3.27 164.9 
11 Cir. 1.7 1.4 599.94 3.53 170.1 25 Hex. 1.5 1.3 587.99 3.49 168.4 
12 Sq. 1.7 1.4 555 3.37 164.7 26 Cir. 1.5 1.3 560 3.36 166.5 
13 Hex. 1.6 1.4 599.74 3.56 168.2 27 Sq. 1.5 1.3 507.95 3.16 160.7 
14 Cir. 1.6 1.4 577.99 3.46 167.3        

Taguchi and ANOVA  
The effect of one parameter on the response might be changed at different levels of the other parameter due to the 

interaction between these parameters. To determine whether two parameters interact or not, the interaction graph is used. 
The interaction graph is a graph between two parameters corresponding to their responses, keeping the other parameters 
at constant values. Figure 16 to Figure 18 include the graphs for the interaction for parameters based on the results in 
Table 6. Figure 16 contains three graphs for the interaction between the parameters 𝑆𝑆 𝐷𝐷𝑂𝑂⁄  and the 𝐷𝐷 𝐷𝐷𝑂𝑂⁄  , each graph 
corresponds to an invariant value for the holes’ shape (SH) factor. The graphs indicate that the effect of 𝑆𝑆 𝐷𝐷𝑂𝑂⁄   at different 
levels of 𝐷𝐷 𝐷𝐷𝑂𝑂⁄  is almost the same (the same behavour).  

 

 
(a) hexagonal shape    (b) circular shape 

 
(c) square shape 

Figure 14. Interaction graphs between D/DO and S/DO 
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Furthermore, the lines are almost parallel, which reveals that there is a little interaction between these two factors. 
The same is true for the interaction between the SH and 𝐷𝐷 𝐷𝐷𝑂𝑂⁄  at each constant value of 𝑆𝑆 𝐷𝐷𝑂𝑂⁄ , as displayed in Figure 17. 
Whereas, Figure 18 indicated that there is some kind of interaction between the parameters of the SH and S/Do due to the 
presence of deviation of the curves from being parallel. Also, it can be seen that the effect of S/D on the critical load at 
three different levels of SH is not the same, especially in the low level of SH. The outcomes of the finite element analysis 
were used in Taguchi method calculations. The orthogonal array and values of S/N are listed in Table 7, and the mean 
based on S/N are presented in Table 8 and Figure 19.  

(a) S/Do = 1.5 (b) S/Do = 1.4

(c) S/Do = 1.3

Figure 15. Interaction graphs between the SH and D/Do. 

(a) D/Do = 1.7 (b) D/Do = 1.5
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(c) D/Do = 1.6

Figure 16. Interaction graphs between the SH and S/Do 

Table 6. Orthogonal array and S/N. 
Test 
no. 

Shape of 
holes, A 

(𝐷𝐷/𝐷𝐷𝑜𝑜) 
B 

(𝑆𝑆/𝐷𝐷𝑜𝑜) 
C P/W S/N Test 

no. 
Shape of 
holes, A 

(𝐷𝐷/𝐷𝐷𝑜𝑜) 
B 

(𝑆𝑆/𝐷𝐷𝑜𝑜) 
C P/W S/N 

1 Hex. 1.7 1.5 168.2 44.52 15 Sq. 1.6 1.4 161.9 44.18 
2 Cir. 1.7 1.5 167.3 44.47 16 Hex. 1.5 1.4 166.1 44.41 
3 Sq. 1.7 1.5 157.3 43.93 17 Cir. 1.5 1.4 163.0 44.24 
4 Hex. 1.6 1.5 164.9 44.35 18 Sq. 1.5 1.4 158.2 43.98 
5 Cir. 1.6 1.5 165.0 44.35 19 Hex. 1.7 1.3 173.1 44.77 
6 Sq. 1.6 1.5 155.1 43.81 20 Cir. 1.7 1.3 172.9 44.76 
7 Hex. 1.5 1.5 160.4 44.10 21 Sq. 1.7 1.3 168.9 44.55 
8 Cir. 1.5 1.5 160.6 44.11 22 Hex. 1.6 1.3 171.1 44.67 
9 Sq. 1.5 1.5 149.0 43.46 23 Cir. 1.6 1.3 170.8 44.65 
10 Hex. 1.7 1.4 170.4 44.63 24 Sq. 1.6 1.3 164.9 44.35 
11 Cir. 1.7 1.4 170.1 44.62 25 Hex. 1.5 1.3 168.4 44.53 
12 Sq. 1.7 1.4 164.7 44.34 26 Cir. 1.5 1.3 166.5 44.43 
13 Hex. 1.6 1.4 168.2 44.52 27 Sq. 1.5 1.3 160.7 44.12 
14 Cir. 1.6 1.4 167.3 44.47 

From Table 7 and Figure 19, it can be seen that the optimum set of levels is (A1 B1 C3), which gives the best strength 
to weight ratio. The combination of the parameters is the hole with a hexagonal shape, 𝐷𝐷/𝐷𝐷𝑜𝑜 = 1.7 and 𝑆𝑆/𝐷𝐷𝑜𝑜 =  1.3. 
Delta column refers to the difference between the maximum and minimum level values. It showed that the shape of the 
holes has more effect on the buckling strength than the other parameters. ANOVA was employed to verify the results of 
Taguchi and confirming the more influential factor on the buckling strength. The significance of the test was 5%. The 
null hypothesis was that the three factors have no worthy effects on buckling strength, and the alternate hypothesis was 
that the parameters have considerable effects. Table 8 contained the results of the ANOVA. By comparing the value of F 
(F-static test) with the F- distribution table (with 5% confidence) in reference [35], it was found that the null hypothesis 
is rejected, and the most influential factor is the shape of holes, and the low effect is the 𝐷𝐷/𝐷𝐷𝑜𝑜. F- test result agrees with 
a percentage (P), where the SH has the highest contribution (38.95%), and the lowest effect is the opening ratio 𝐷𝐷/𝐷𝐷𝑜𝑜 
(23.42%). 

Table 7. The analysis of mean results based on S/N. 
Symbol Factor Level1 Level 2 Level3 Delta Rank 
A Shape 44.5 44.45 44.08 0.42 1 
B 𝐷𝐷/𝐷𝐷𝑜𝑜 44.51 44.37 44.15 0.36 3 
C 𝑆𝑆/𝐷𝐷𝑜𝑜 44.12 44.38 44.53 0.41 2 
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Figure 17. Main effect plot of S/N ratios. 

Table 8. The results of ANOVA. 
Source Sum sq. d.o.f. Mean sq. F P % 
 Shape 0.9476 2 0.4738 68.67 38.95 
 𝐷𝐷/𝐷𝐷𝑜𝑜 0.5697 2 0.2849 41.29 23.42 

  𝑆𝑆/𝐷𝐷𝑜𝑜 0.7762 2 0.3881 56.24 31.91 
 Error 0.1393 20 0.0069 
 Total 2.4328 26 

CONCLUSION 
In the current study, a finite element method was implemented to study the buckling behaviour of a holed thin-walled 

lipped beam under a bending load. The finite element models were validated by experimental experiences. Three 
variables, namely; the spacing ratio of S/Do , perforated ratio D/Do, and the shape of holes were designated to recognise 
the optimum combination set of them for the best critical load value. Taguchi and ANOVA methods were applied to 
analyse the outcomes of the finite element to specify the effect of the three parameters and their combinations. The results 
of these methods presented that the combination of factors that produces the best buckling strength value is the hole with 
a hexagonal shape, D/Do = 1.7 and S/Do =  1.3, and the shape of holes has more effect than the others on the buckling 
behaviour.  
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