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NOMENCLATURE 
𝐸𝐸∗ composite elastic modulus 
F a factor depending on ratio of 𝛥𝛥 = ℎ/𝜎𝜎𝑠𝑠 
h oil film thickness  
K elastic factor 
p pressure (unit: ) 
𝛼𝛼 pressure viscosity coefficient 
β radius at asperity summit 
θ clearance fill ratio (unit: -) 
v Poisson’s ratio of the contacting surfaces 
𝜎𝜎𝑠𝑠 composite surface asperity height 
𝜂𝜂0 viscosity at the ambient pressure 
ηS surface density peak on each surface 
Subscript 
s surface 

INTRODUCTION 
Cavitation and wear abrasion are prevalent damages in engine bearing shells. In the event of cavitation erosion, the 

bearing surface is locally damaged because the creation and prompt collapse of small gas bubbles lead to generating 
strong pressure pulses. Due to strong dynamic loading, oil flow turbulence, oscillation of pins and some other factors, 
cavitation failure is observed in the bearings of heavy-duty diesel engines. Regarding the other failure, which is wear, it 
should be noted that wear damage adjusts the bearing geometry and subsequently affects the oil film pressure and the 
bearing shell durability. In the literature, only a few studies have been conducted about bearing step on the lubrication 
characteristics, which are not mainly related to diesel engines, thus lacking detailed study on the effect of bearing step.  

Ushijima et al. [1] applied a wear model for bearing similar to Archard [2] model. In his model, the reaction force 
from asperity contacts was involved in the wear calculation. The bearing wear increased at the edges of bearing length, 
and crack also observed near the edges. Wang et al. [3] derived the relation of wear volume and the change of average 
surface roughness with the assumption of no plastic deformation. The flattening of asperities on a rough engineering 
surface was simulated with numerical techniques to predict dynamic wear in run-in contacts under partial elasto-
hydrodynamic conditions. Their proposed model was based on line contact condition and should be developed for 3D 

ABSTRACT – When two bearing shells are assembled in the bearing housing, it is possible that 
the edges of the two shells do not fit in the radial direction completely and have an offset relative 
to each other. This assembly error, which can have different causes, is called the bearing step in 
this paper. The bearing step can lead to wear damage in bearings. The effects of bearing step on 
the lubrication performance of main bearings and the probable wear damage have been 
investigated. To calculate the bearing lubrication characteristics such as maximum oil film pressure 
and minimum oil film thickness, elasto-hydrodynamic model, which includes the mass conservation 
algorithm, has been applied. The objective of this work is to investigate the effects of bearing steps 
on the lubrication performance of the main bearings and assess the probable wear damage of main 
bearings due to bearing step. The prediction of elasto-hydrodynamic model is very proximate to 
what really happened. The results show that for the under-study 12-cyl engine, main bearing No. 
2 involved with medium wear damage. Wear damage in this main bearing No. 3 is not a concern, 
while main bearing No.4, 5 and 6 do not predict the probability of wear damage. For main bearing 
No.7, it is concluded that considering step and bore relief in simulation has high importance so that 
the solution without step and bore relief does not predict the wear, but with step and bore relief 
predicts medium wear damage. 
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contact condition. The simulated results showed that the variation of wear volume and the change of average roughness 
could be described by a second-order polynomial. 

There are different traditional methods to calculate the main bearing load, as reviewed in [4] and [5]. Cho et al. [6], 
experimentally measured the main bearing force components of a four in-line engine, in vertical and horizontal directions, 
using two different ring type load cells mounted in each main bearing cap bolt. They compared the experimental results 
with the theoretical results obtained by the statically determination method. It is illustrated that the statically determination 
method is not in agreement with the experimental results.  Pratik et al. [7] did a live case study of premature failure of a 
crankcase; selected as per the requirement of the user. This paper focuses on a critical survey of literature and uses 
methodologies to find out the critical area through static analysis. The analysis result validates the point of high stress 
where the crack was initiated. Analysis of crankshaft has also been performed, and its analysis proves to be safe in the 
given working conditions. Rozhdestvensky et al. [8] present the solution to the interconnected problem of main bearings 
dynamics for the forced internal combustion (IC) engine. It analyses not only the influence of macro geometry parameters 
of each main bearing and the influence of non-Newtonian properties of lubricant but also the elastic characteristics of a 
crankshaft and crankcase and supports displacements caused by thermal deformation of an engine crankcase. 

Oil film lubrication analysis in big eye and main bearings of an IC engine was done by Chamani and Karimaei [9] 
using elasto-hydrodynamic technique. They showed that bearing deformation affect the bearing failure such as wear and 
fretting fatigue. Then, they studied cavitation and wear damages in connecting rod big eye bearing of an IC engine using 
elasto-hydrodynamic technique [10]. They considered two different connecting rod structures of an IC engine and 
investigated their effects on wear erosion. They parametrically studied the lubrication characteristics of oil film in big eye 
bearing of an IC engine using elasto-hydrodynamic technique and investigated the effects of different parameters. The 
results showed that oil temperature, rotational speed of the engine, bearing clearance and flexibility of connecting rod big 
eye have considerable effect on lubrication characteristics. They also predicted the wear damage in connecting rod big 
eye bearing of an IC engine using elasto-hydrodynamic analysis. Finally, Chamani et al. [11] implemented the thermo-
elasto-hydrodynamic (TEHD) lubrication model in the big eye bearing of an IC engine and thus considered the influence 
of temperature. The results showed that the TEHD method estimates higher maximum oil film pressure and lower 
minimum oil film thicknesses. 

Karimaei et al. [12] studied the effect of elastic deformations of both crankshaft and crankcase on the load distribution 
in the main bearings. According to the results, the load distribution on the engine main bearings and bearing shell 
deformation were affected by crankcase and crankshaft elasticities. Al-Samieh [13] developed a numerical solution of the 
Reynolds’ equation using Newton- Raphson technique to obtain the film shape and pressure distribution caused by the 
hydrodynamic viscous action in addition to solvation pressure due to inter-surface forces. The numerical results showed 
that the effect of changing rolling speed and surface potential on the formation of ultrathin lubricating film thickness. The 
numerical results showed that the film thickness increase by increasing the rolling speed and surface potential. Mutra et 
al. [14] proposed an effective optimisation-based identification methodology of bearing stiffness and damping 
coefficients using the bearing response data. The flexible rotor is initially analysed by a finite element model with 
nonlinear bearing forces. The dynamic equations of the rotor are solved to obtain the bearing responses in the frequency 
domain at different operating speeds. The modified particle swarm optimisation is converging faster, and it is taking less 
computational time. 

In the present paper, the effects of bearing steps on the lubrication performance of the main bearings and the probable 
wear damage have been deliberated. To calculate the bearing lubrication characteristics such as maximum oil film 
pressure and minimum oil film thickness, elasto-hydrodynamic (EHD) model, which includes a mass conservation 
algorithm, has been applied. In the current study, in order to calculate the wear volume of main bearings, a model based 
on the Archard wear model is implemented. 

Theory of Elasto-Hydrodynamic and Boundary Lubrication Model 
The theory of elasto-hydrodynamic (EHD) model is discussed in the present section. The bearing analysis was carried 

out using elasto-hydrodynamic model. For the bearing analysis, AVL\Excite® software [15] is a potent tool that was 
employed for EHD analysis of connecting rod BE bearing in the current work. EHD model is based on the Reynolds 
equation in Eq. (1) [10] solved in the bearing surface. Equation (1) contains a mass-conserving cavitation model reflected 
by an additional variable, entitled clearance fill ratio θ. If θ=1, the equation becomes the ordinary Reynolds equation. 
Reynolds equation is solved via the mass-conserving technique for pressure p in the lubrication region and fill ratio θ in 
the cavitation region. The fill ratio is defined as the volume fraction filled with oil to the total volume [16]. This parameter 
serves to model the cavitation effect. Fill ratio equal to one specifies the fully-filled gap, and zero specifies the empty gap 
[10]. 
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The influence of elastic displacement of bearing surface should be considered in EHD analysis. The oil film thickness 

h is defined as Eq. (2) considering the elastic deformation, shaft misalignment and initial geometrical clearance. 
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Nodal displacement of the bearing surface is determined by solving the motion equations for the condensed structure 
of the bearing. Using nodal displacement of the bearing surface along circumferential and radial axes, radial deformation 
of the bearing surface is acquired. Here, the oil viscosity is defined using Barus’ equation: 

 
𝜂𝜂 = 𝜂𝜂0𝑒𝑒𝛼𝛼𝛼𝛼 (3) 

 
where, 𝜂𝜂0 is the viscosity at the ambient pressure and 𝛼𝛼 is the pressure viscosity coefficient. 
If the fully hydrodynamic lubrication regime in bearings was changed to mix lubrication, clearance of bearing drops 

to an enormously minor level. Therefore, asperities of bearing and shaft surface interact together, subsequently create 
boundary lubrication conditions. Figure 1 illustrates the asperities of two surfaces that slide on top of each other in 
boundary lubrication conditions. 

 

 
Figure 1. Two rough surfaces in contact with each other in boundary lubrication conditions. 

In the mixed-lubrication regime, the boundary lubrication model, according to Greenwood and Tripp [17] is applied 
for the asperity interaction of two rough surfaces. In this model, two nominally flat surfaces are assumed to have interacted 
with each other. It is assumed that their asperity curvatures have a fixed radius and asperity heights have a Gaussian 
distribution. The nominal pressure due to asperities at the region of contact can be defined as below: 

 

𝑃𝑃𝑎𝑎 = 𝐾𝐾𝐸𝐸∗𝐹𝐹(
ℎ
𝜎𝜎𝑠𝑠

) (4) 

 
where, 𝐸𝐸∗ is composite elastic modulus, K is elastic factor, and F is a parameter depending on the ratio of 𝛥𝛥 = ℎ

𝜎𝜎𝑠𝑠
.  𝜎𝜎𝑠𝑠 

is composite surface asperity height defined as square root of sum of squares of asperity height of two surfaces. 
 

𝜎𝜎𝑠𝑠 = �𝜎𝜎12 + 𝜎𝜎22 (5) 

 
The elastic factor of the surfaces describes the surface topography as defined in Eq. (6): 
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where β is the radius at asperity summit, ηS is the surface density peak on each surface and h denotes the nominal 

clearance between the contacting surfaces. If 𝛥𝛥 ≥ 4, F will be zero and if 𝛥𝛥 < 4, F is expressed as Eq. (7): 
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The elastic behaviour of the rough surfaces is given by the composite elastic modulus and can be expressed as follows: 
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1
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where v1 and v2 are the Poisson’s ratio of the contacting surfaces. 
Due to the contact between two mating surfaces, wear has been known as the phenomenon of material removal from 

surfaces. Practically durability and reliability of most machines are affected by wear failure. IC engine connecting rod 
works under high load, therefore, sometimes can cause to form a very thin oil film thickness between crankpin and BE 
bearing. In this kind of circumstances, a fully hydrodynamic lubrication regime changes to mixed lubrication and 
clearance of bearing drops to an enormously minor level. Therefore, the bearing is subject to wear failure. The wear 
damage in connecting rod BE bearing can be observed in Figure 2.  
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Although there are many factors involved in wear failure of bearings especially in running-in, asperity contact stress 
and minimum oil film thickness are two more important parameters that are used during design process to predict the 
probability of wear erosion. Hence, it is crucial to study wear during its progress. 

 

 
Figure 2. Wear failure in BE bearing. 

Mechanism of Wear Failure 
Wear is progressive damage at the surface caused by the relative motion of one surface on another material surface. 

The wear process in bearings is affected by some factors such as sliding speed, load on bearing, oil film thickness, surface 
finishing of mating surfaces and, most importantly, bearing material. However, the processes involved in lubricated wear 
are not yet well understood and the effect of above parameters is not easily measurable. 

When two contacting surfaces slide against each other, if the oil film thickness is less than the summation of roughness 
of two surfaces, all asperities in contact with each other break during each cycle.  This damage is known as abrasive wear 
because each asperity slides across several other asperities alongside the opposing surface. Some damages such as sliding 
wear of lubricated surface (abrasive wear), fatigue of asperities under cyclic loading and subsequent cyclic plastic 
deformation the following damages may occur under boundary or mixed lubrication regimes which are known as wear. 
Both fatigue and sliding wear of bearing material should be considered in realistic model of wear. Here, just abrasive 
wear of the bearing material is evaluated. 

When the bearing becomes worn, the thickness amount of minimum oil film is extremely correlated with the surface 
topology of sliding surfaces. There are many surfaces with different morphologies but the same Rmax and Ra values. Rmax 
is defined as the largest single roughness depth within the evaluation length, and Ra is defined as arithmetical mean surface 
roughness. By providing only Rmax and Ra amounts, diverse morphologies are possible for the surface. Only the surface 
with a very small number of peaks in contact with the sliding surface represents a desirable running surface. As well the 
surface has some valleys which allow the bearing to retain the oil. Accordingly, the wear model must not only be able to 
consider the topology of the two sliding surfaces but also be able to consider the changes in the roughness of surfaces 
during the wear progression. 

 The bearing area curve (BAC) can be applied as a key parameter to study the wear. A sample of BAC for main 
bearing is displayed in Figure 3. When the wear damage progresses, the updated BAC of main bearing can be calculated 
and utilised in the subsequent calculation step. For example, if the sum of surface roughness for the main bearing shell 
and crankshaft is 2.00 µm, the oil film thickness above this value is related to hydrodynamic lubrication regime and oil 
film thickness below this value is related to boundary lubrication regime. If lubrication regime goes to boundary 
lubrication, then that region would be prone to wear damage.  

 

 
Figure 3. Bearing area curve (BAC) of main bearing. 

METHODOLOGY 
Using the measurement of the inner diameter of main bearing shells and bearing steps, one can generate the profile of 

the inner diameter of bearing and then employ the bearing profile in EHD analysis to find the lubrication performance 
and probable wear and cavitation damage due to bearing shape and bearing step. To reduce the complexity of FE model 
and computation time, only the crankcase section surrounding the main bearing was modelled. The force and moment 
were extracted from the global dynamic analysis of the V12 crank train and applied for each main bearing shell. 
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Modelling 
About the modelling approach, it should be noted that the crankshaft flexibility is taken into account. The crankshaft 

stiffness is altered by a change in Young’s modulus of its material. Very flexible crankshaft is denoted as a soft crankshaft, 
while very stiff crankshaft is denoted as a stiff crankshaft. Soft crankshaft causes the higher crank throw deformation, 
therefore, leads to force on the crank pin. The force is distributed on adjacent main bearings, and thus the maximum main 
bearing forces increase. But, the stiff crankshaft leads to lower deformation of the crank throw. In this case, the applied 
force on the crank throw distributes over all the main bearings, and thus the maximum main bearing forces decrease. 
Crankshaft flexibility has a major effect on the main bearing force and moment and, therefore, it influences the lubrication 
performance of engine main bearings. For this reason, the crankshaft flexibility must be considered in the dynamic 
analysis of the engine crank train. Table 1 presents the different Young’s modulus of the material to consider soft, base 
and stiff crankshaft. 

Table 1. Young’s modulus of the material to consider soft and stiff crankshaft 

Case Young’s Modulus (GPa) 
Soft 102.5 
Base 205 
Stiff 410 

 
Figure 4 shows the schematic representation of the main bearing model in AVL\Excite®. Journal pin was modelled 

with a stiff solid pin, and then a section of the crankcase was considered as the housing of the main bearing and condensed 
into entire surface nodes of bearing shell. Figure 5 illustrates the FE mesh of a section of crankcase and EHD joint between 
the crankcase and main bearing. Translational and rotational movements of the crankcase are fixed using displacement 
constraints on the symmetry planes. About the FE mesh of crankcase, the bearing shell and two row of elements around 
them were meshed by linear hexahedral elements, which have higher flexibility in comparison to tetrahedral elements. 
Therefore, linear hexagonal elements are used for meshing the journal bearings, and their housings and the rest of 
crankcase are meshed using the linear tetrahedral elements. One main bearing wall is meshed and constrained at the top 
and side of cutting faces, then its condensed model is generated using sub-structure analysis. The condensed mass and 
stiffness matrix of one main bearing wall is used for all main bearing walls. To model the engine block, engine or bearing 
wall elements can be used. For modelling of the simplified crankshaft model, shaft can also be used. To make a connection 
between the crankshaft and the engine block in the location of main bearing, an EHD connection can be used, which 
connects the inner surface of the main bearing (engine block) to five nodes of the crankshaft. Engine block and crankshaft 
journal pin are small motion (SMOT) element. The engine block has very small movements; therefore, it is modelled as 
SMOT. With the help of the SMOT model, an elastic body with only small general motions is modelled based on a 
condensed finite element model typically used for engine block structure.  

 

 
Figure 4.  Schematic representation of the main bearing model in AVL\Excite®. 
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Figure 5. FE mesh of a section of crankcase and EHD joint between the crankcase and main bearing. 

Assembled Main Bearing Profile and Bearing Step 
Measurement of main bearings comprised of AA, BB, CC, DD and EE bore diameter measurements as well as step 

measurement at the two banks. Figure 6 illustrates the position of bearing bore measurements. One of the cause roots of 
the bearing step is the bolt tightening sequence. In this paper, only the results of measured data were used for EHD 
analysis. Because more explanation about the cause root of bearing step is beyond the scope of this paper, and therefore, 
it has not been further addressed. 

The difference between the A3A3 and E3E3 measures should be approximately equal to the sum of bearing steps of 
A and B bank side. It should be noted that in all of V12 main bearings except for main bearing No. 4, the step shape is 
similar to Figure 7. The bearings are numbered from the flywheel side. That is, the bearing closest to the flywheel is 
called bearing No. 1. During measuring, the deviation of the actual bearing shell profile from the base circle is usually 
measured just in some positions (e.g. AA, BB, etc.). Therefore, for the main bearings (except for No. 4), a linear average 
between bearing step sizes (at side A and B) for the upper shell is applied to generate the bearing profile. For the lower 
shell, a sinusoidal distribution is used. For main bearing No. 4 step shape is like Figure 7(b); a linear average is assumed 
for both upper and lower shells. Bearing diameter and step measurements were performed for both the front and rear of 
bearing shell, and consequently, the average of these values was set for computations. 

 

 
Figure 6.  Position of bearing bore measurements. 

    
(a)       (b) 

Figure 7. Schematic shape of (a) main bearings with an exception of bearing No. 4, and (b) main bearing No. 4. 

Base circle
Crankshaft rotation

Base circle
Crankshaft rotation
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RESULTS AND DISCUSSION 
EHD Analysis of Main Bearings with Step and Bore Relief 

Figure 8 illustrates the exaggerated bearing profile of the main bearing No. 1. Peak oil film pressure (POFP), minimum 
oil film thickness (MOFT), peak asperity contact pressure (PASP), angular position of MOFT and axial position of MOFT 
are shown in Figure 9. This amount is almost 3 MPa at 417 degree of crank angle (405° to 450°) in bearing angle of 259 
degree, i.e. lower shell A-bank side near the bore relief. Because 3 MPa is relatively low pressure, therefore, low wear 
damage is predicted in this region for main bearing No. 1. The MOFT that takes place in POFP location is 0.8 µm; 
therefore, the lubrication regime would be boundary lubrication. In addition, the axial position of MOFT in critical region 
in terms of wear is at the shell edges. 

PASP for main bearing No. 2 is almost 8.5 MPa at 690 degree of crank angle (680° to 710°) in bearing angle of 99 
degree, i.e. lower shell B-bank side near bore relief. Because 8.5 MPa is relatively medium pressure, therefore, medium 
wear damage is predicted in this region. The MOFT is 0.6 µm, therefore, lubrication regime would be boundary 
lubrication. Also, axial position of MOFT in the critical region for wear damage is at the edge of shells. 

PASP for main bearing No.3 is almost 1.2 MPa at 236 degree of crank angle (230° to 245°) in bearing angle of 259 
degree, i.e. lower shell A-bank side near bore relief. Because 1.2 MPa is relatively low pressure, therefore low wear 
damage is predicted in this region for main bearing No.3. The MOFT is 1 µm; therefore, lubrication regime would be 
boundary lubrication. Also, axial position of MOFT in the critical region for wear damage is at the edge of shells.  

 

  
Figure 8.  Exaggerated bearing profile of main bearing No. 1 . 

                
(a) POFP 

 

          
(b) MOFT 
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(c) PASP 

 
(d) angular position of MOFT 

 

 
(e) axial position of MOFT 

Figure 9. Lubrication analysis results of main bearing No. 1. 

Figure 10 illustrates the exaggerated bearing profile of the main bearing No. 4. PASP is shown in Figure 11, which is 
zero at whole crank angles. Therefore, no wear damage is predicted in main bearing No. 4. The MOFT is 4 µm; is a 
sufficient oil film thickness not to change the hydrodynamic lubrication regime to mix or boundary lubrication regime. 

 

  
Figure 10. Exaggerated bearing profile of main bearing No. 4. 
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(a) POFP 

 

 
(b) MOFT 

      
      (c) PASP 

     
  (d) angular position of MOFT 

Figure 11. Lubrication analysis results of main bearing No. 4. 

In a similar way, for main bearing No.5, the amount of PASP is zero at whole crank angles. Therefore, no wear damage 
is predicted in main bearing No.5. The MOFT is 3.1 µm that is appropriate oil film thickness not to change the 
hydrodynamic lubrication regime to mix or boundary lubrication regime. Condition for main bearing No.6 is also the 
same as No.5. MOFT is 2.1 µm that is sufficient oil film thickness for the hydrodynamic lubrication regime. 

For main bearing No.7, the amount of PASP is almost 7.3 MPa at 50 degree of crank angle (35° to 130°) in bearing 
angle of 259 degree, i.e. lower shell A-bank side near bore relief. 7.3 MPa is relatively medium pressure; therefore, 
medium wear damage is predicted in this region. The MOFT is 0.7 µm; therefore, lubrication regime would be boundary. 
Besides, axial position of MOFT in critical region for wear damage is at the edge of shells. Overall, wear damage in 
bearing No. 1, 2, 3 and 7 happened in bore relief location; for the reason that this location is the first region that the shaft 
involves to the bearing shell. 
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EHD Analysis of Main Bearings without Step and Bore Relief 
Peak asperity contact pressure in main bearing No.2 is shown in Figure 12. This amount is zero at whole crank angles. 

Therefore, no wear damage is predicted in main bearing No.2 in case of without step and bore relief. The MOFT is 2.9 
µm, which is appropriate oil film thickness not to change the hydrodynamic lubrication regime to mix or boundary 
lubrication regime. Beforehand, in case of with step and bore relief, medium wear damage was predicted but without step 
and bore relief, the results do not show any wear. However, in case of without step and with bore relief, high wear damage 
is also predicted. Consequently, to correctly predict the damages, using EHD model considering bore relief is essential. 
 

      
(a) POFP 

 
(b) MOFT 

     
(c) PASP 

    
(d) angular position of MOFT 

Figure 12. Lubrication analysis results of main bearing No. 2. 
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PASP in main bearing No. 6 is zero at whole crank angles. Therefore, no wear damage is predicted in main bearing 
No.6 in case of without step and bore relief. The MOFT is 3.7 µm that is sufficient oil film thickness not to change the 
hydrodynamic lubrication regime. Main bearing No.6, moreover than the main bearing No.2, has a high dynamic load 
too; therefore, this main bearing has a critical situation too and must be quietly checked. In both cases, wear damage is 
not predicted. 

PASP in main bearing No. 7 is zero at whole crank angles; therefore, no wear damage is predicted in case of without 
step and bore relief. The MOFT is 2.7 µm that is appropriate oil film thickness to remain in the hydrodynamic lubrication 
regime. Main bearing No.7 in case of with step and bore relief shows medium wear damage; therefore, it is checked for 
the case of without step and bore relief. In both cases, wear damage is not occurred. 

EHD Analysis of Main Bearings without Step and with Bore Relief 
Peak oil film pressure, minimum oil film thickness, peak asperity contact pressure and angular position of MOFT in 

main bearing No. 2 are shown in Figure 13. This amount is almost 27.5 MPa at 715 degree of crank angle (700° to 720°) 
in bearing angle of 72 degree, i.e. upper shell B-bank side. 27.5 MPa is relatively high pressure; therefore, high wear 
damage is predicted in this region for this main bearing. MOFT that takes place in the POFP is 0.37 µm; therefore, 
lubrication regime would be as boundary lubrication. Also, axial position of MOFT in critical region for wear damage is 
at the edge of shells.  

 

              
(a) POFP 

 

       
(b) MOFT 

 

             
(c) PASP 
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(d) angular position of MOFT 

Figure 13. Lubrication analysis results of main bearing No. 2. 

HD Analysis of Main Bearings without Step and Bore Relief 
Using hydrodynamic (HD) solution, peak asperity contact pressure (PASP) in main bearing No. 2 is obtained as Figure 

14. This amount is zero at whole crank angles. Therefore, no wear damage is predicted for that, whereas based on EHD 
solution, medium wear damage was predicted. Minimum oil film thickness (MOFT) that takes place in POFP location is 
obtained at 2.3 µm which is sufficient oil film thickness not to change the hydrodynamic lubrication regime to mix or 
boundary lubrication regime.  
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(b) MOFT 

      
(c) PASP 
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(d) angular position of MOFT 

      
(e) axial position of MOFT 

Figure 14. Lubrication analysis results of main bearing No. 2. 

This solution shows that HD model presents more optimistic results than EHD model to predict the wear damage. 
Thus, EHD solution in such cases is strongly recommended. Here, for main bearing No.2, EHD solution predicts wear 
damage but HD solution not. Based on HD solution, MOFT location is around the middle of axial position, whereas based 
on EHD solution, MOFT location is at the edge of shells. Table 2 represents the results summary. 

Table 2. Summary of the results. 

Bearing no. Step Relief HD EHD Level of wear damage 
1 • •  • low 
2 • •  • medium 

   • not 
 •  • high 
  •  not 

3 • •  • low 
4 • •  • not 
5 • •  • not 
6    • not 

• •  • not 
7 • •  • medium 
7    • not 

CONCLUSION 
Considering real condition (with step and bore relief) in simulation, the main bearing No.1 is not at risk of wear 

damage. For the main bearing No. 2, because of higher dynamic load, solution was repeated with different considerations, 
based on both hydrodynamic and elasto-hydrodynamic analyses. Using hydrodynamic analysis, no wear is predicted 
either without step and bore relief, or with step and bore relief. Based on elasto-hydrodynamic analysis, it is concluded 
that considering step and bore relief in simulation has a significant effect on the prediction of wear damage. Whereas, 
hydrodynamic analysis does not make evident for wear damage. Therefore, elasto-hydrodynamic analysis to correctly 
predict the probable failure is vital. Based on the results, the main bearing No. 2 involved with medium wear damage. 
The results of elasto-hydrodynamic analysis from main bearing No. 3 show that wear damage in this main bearing isn’t 
dangerous, and for main bearing No. 4, 5 and 6, they do not predict the probability of wear damage. In main bearing No.7, 
considering step and bore relief in simulation has high importance so that the solution without step and bore relief does 
not predict the wear, but with step and bore relief predicts medium wear damage. 

Consequently, hydrodynamic analysis is not appropriate for the prediction of wear damage in bearings. Therefore, an 
analysis based on elasto-hydrodynamic model is necessary and important for that. In fact, the prediction of elasto-
hydrodynamic model is very proximate to what happens. The reason is that  in the hydrodynamic model, the profile of 
bearing shells and flexibility of housing under dynamic load is not considered, but in the elasto-hydrodynamic, both o are 
considered and then the clearance between the bearing and its axis is continuously updated. 
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