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ABSTRACT 

 

The main objective of this paper is the formulation of analytical expressions for the direct 

calculation of fracture parameters for the case of an orthotropic material with elastic 

behaviour. Numerical simulation by finite element method is performed to evaluate the 

singular and non-singular terms of William's series. Based on the obtained results, a 

fitting procedure is performed to propose an analytical formulation involving the 

geometric parameters of the plate and the crack in the approximate estimation of these 

parameters. The importance of the proposed analytical expressions is that they do not 

require a complex and time-consuming numerical analysis for the computation of the 

stress intensity factors and T-stresses for such an orthotropic cracked panel. A 

comparative study between the results obtained by the proposed equations and those 

obtained by finite element procedure has shown a good correlation. 

 

Keywords: Orthotropic materials; stress intensity factor, T-stress, FEM; centre cracked 

plate. 

 

INTRODUCTION 

 

Orthotropic materials are increasingly used in different fields of engineering. These 

materials are often subjected to cyclic loadings that cause damage. This is manifested by 

the nucleation, then the appearance of propagation of cracks lead to the complete rupture 

of the structure. 

At the beginning of the 20th century, Griffith's energetic analysis of cracks is 

considered as a basis for the mechanics of fracture [1,2]. This latter proposed a failure 

criterion to compensate for Inglis infinite stress prediction while making direct use of his 

linear elastic solution [3]. More than two decades later, the mechanic of linear elastic 

fracture was introduced by Irwin establishing the theory of stress intensity factor (SIF) 

[4]. Later in 1948, motivated by the insufficiency of the linear fracture theory, Rice 

defined the J-Integrale independent of the integration path to solving two-dimensional 

cracking problems in non-linear elastic materials [5,6]. It is well established that J is 

equivalent to the rate of energy restitution defined by Griffith. Thus, J-integral can be 

used for deduction of SIF [7]. 

In addition to the SIF, the elastic T-stress provides another parameter to identify 

the severity of stress and displacement fields near a crack tip [8-10]. In this context, 
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Cotterell worked on the singular term T-stress to predict crack growth paths under Mode 

I condition [11]. In fact, Cotterell and Rice concluded in [12], that for  0T   the crack 

path is always stable, whereas for T > 0 the propagation becomes unstable. Similar results 

had been obtained previously in [13, 14], although experimental tests showed the 

presence of a positive threshold Tth > 0 above which instability of crack propagation 

occurs [15,16]. In the same context, the role of T-stress in brittle fracture for linear elastic 

materials under mixed-mode loading has aroused an extensive works [17-19], where, 

Smith et al. had shown that brittle fracture could be controlled by a combination of 

singular stresses (characterised by K) or non-singular stress (T-stress) [20-22]. Moreover, 

the T-stress is stated to influence brittle fracture when the singular stress field is a result 

of mode II loading [21, 22]. 

Similarly to isotropic materials, linear elastic fracture mechanics concepts [9] 

(LEFM) are used in fracture analysis of orthotropic materials [23-25]. However, unlike 

isotropic materials where a crack grows perpendicularly to the direction of maximum 

tension [26], the direction of crack growth in orthotropic materials is governed by the 

material strength and the stress state [27, 28]. Nevertheless, the SIF and the T-stresses as 

parameters independent of the crack growth direction and governing the crack stability, 

respectively, find practical significance in the fracture analysis of such materials [29].  

In this paper, a fitting procedure was performed to develop an analytical 

formulation giving stress intensity factor and different non-singular terms, namely T11, 

T13 and T33 characterising a failure parameters in linear elastic fracture mechanic. A 

numerical analysis is used to evaluate stress intensity factor and T-stress along the crack 

front in elastic orthotropic panel [8].  

 

GEOMETRICAL MODEL AND MATERIAL PROPERTIES 

 

The present work is based on the Chung-Yi model [8], respecting all the boundary 

conditions. This allowed us to validate the results and then address our main objective, 

which is the elaboration of analytical expressions for a direct calculation of the fracture 

parameters of a central fissure orthotropic plate. Figure 1 shows the entire plate. It has a 

total length of 2l =2.032 m, a total width of 2w =1.016 m, and a total thickness of 2t 

=0.0084m. The origin of the global Cartesian coordinate system is located at the centre 

of the plate as it was modelled by [8].  

 

 
 

Figure 1. 3D geometric model and loading definition. 
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The X-axis is parallel to the crack surface, and the Y-axis is normal to the crack 

surface. The Z-axis is normal to the X-Y plane. A uniform displacement u equivalent to 

a strain value of 0.1% is prescribed on the far ends at Y =± l [8]. The studied plate is a 

composite material known as AS4 used in the aeronautic industry. Table 1 presents the 

mechanical properties of such material.  

 

Table 1. Mechanical properties of the orthotropic plate [8]. 

 

E1 

(GPa) 

E2 

(GPa) 

E3 

(GPa) 

G23 

(GPa) 

G13 

(GPa) 

G12 

(GPa) 
ν23 ν13 ν12 

35.591 81.172 10.549 4.413   3.930   17.092 0.22 0.29 0.18 

 

FINITE ELEMENTS MODEL 

 

Symmetrical boundary conditions are imposed in the XY, YZ and ZX planes as illustrated 

by Figure 2. The origin of the local coordinate system x1x2x3 is defined on the crack tip. 

The x1-axis is parallel to the crack surface and collinear with the global X-axis. The x2-

axis is normal to the crack surface, and the x3-axis lies on the crack front and is parallel 

to global Z-axis (Figure 2). A commercial finite element code ANSYS-12.1 was used for 

the simulation purpose. Readers can see [8], for a more detailed explanation of the finite 

element model. Figure 3 shows the generated mesh around the crack domain. As 

indicated, mesh refinement is used near the crack front, where quadratic wedge elements 

are surrounding the crack tip. A quadratic brick element was used far away from the crack 

region as shown in Figure 3(a) and 3(b).   

 

 
 

Figure 2. The model symmetry and the local coordinate system definition. 

 

 
(a)     (b) 

 

Figure 3. (a) Complete FE model and; (b) mesh refinement near the crack front region. 
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As modelled in [8], the element radial size e0 is kept as e0 ≤ 0.01× lc where, lc is 

defined as lc =min [a, w- a, t], i.e., e0 ≤ 0.01× lc; shown in Figure 4(b). The crack front 

region is divided to 12 parts, each one contains 12 elements. The width of the element 

increases as one move away from the crack line. The thickness is divided into 20 layers 

that gradually decrease in size.  

 

 
(a)     (b) 

  

Figure 4. The mesh around the crack front (a) as viewed in the plane and; (b) along with 

the thickness. 

 

RESULTS AND DISCUSSION 

 

Model Validation 

 

The numerical results obtained in this work are in excellent agreement with those obtained 

by Chung-Yi Li in [8]. This allows us to proceed with the analysis and validation of the 

studied model. In addition, for consolidation of this analysis, the present results are also 

compared to those published by Yuan and Yang [31]. These researchers used methods 

based on Betti's reciprocal theorem and the equivalent domain integral (EDI) to extract 

SIF and T-stress for centre-cracked tension (CCT) specimens of stitched warp-knit fabric 

composites [31, 32]. Present results are in accordance with those given by Yuan and 

Yang. The largest deviations are 2.16% for stress intensity factor KI and 2.41% for T11 

stress (Table 2). 

 

Table 2. Comparison of fracture parameters for CCT specimens. 

 

a/w 
Thickness 

(mm) 

End 

Disp 

(mm) 

KI [31] 

(MPa 

m0.5) 

Actual 

KI 

(MPa 

m0.5) 

Error 

(%) 

T[31] 

(MPa) 

Actual 

T (MPa) 

Error 

(%) 

0.26 8.712 0.594 60.766 60.645 0.20 -308.89 -308.04 0.28 

0.34 8.788 0.569 65.711 66.384 1.02 -295.10 -298.18 1.04 

0.25 8.280 0.869 61.865 62.037 0.28 -226.15 -228.18 0.90 

0.34 8.255 0.848 69.007 70.497 2.16 -219.25 -224.53 2.41 

 

Thus, as indicated by the relative errors, acceptable numerical results are obtained by the 

model.  
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Finite Element Results 

 

The interaction integral and EDI were implemented into a Fortran 90 computer program. 

The ECAPE2 program (Fortran 90) was adapted to determine the SIF and T-stress fields. 

ECAPE2 uses six data files generated by the Ansys program in Batch mode. These data 

files contain stresses, deformations, displacements, node coordinates, and mechanical 

properties. The normalised SIF has the form )/( aKK II = , while the normalised terms 

T are defined as 
= σ/1111 TT  ,

 
= σ/1313 TT and 

= σ/3333 TT . Where, σ  is the stress 

equivalent to the imposed displacement
u . For this case, )/(wtF=σ . The position 

through the plate thickness is also normalised as  txt /3=  to investigate the KI and the 

T-stresses over the half thickness of the panel. These parameters are first calculated from 

each of the three adjacent rows of elements surrounding the crack front (Rings #2, #3, 

and #4 as shown in figure 4.a) by the equivalent domain integral and interaction integral. 

Then an average value is calculated over three domains. 

Figure 5 presents the normalised SIF curves over half of the thickness for different 

crack aspect ratios. One can note the symmetry in the distribution of the SIF concerning 

x3=0. It can be mentioned that IK  is relatively stable through the thickness; an exception 

is noted in the region near the free surface where the latter decreases slightly. This is due 

to the free surface singularity. The same trend is observed for all analysed crack lengths 

(Figure 6). The normalised SIF IK  increases from 1.00 to 2.54 as the a/w ratio increases 

as shown by figure 6. The superposition of the curve of different thickness indicates that 

IK  is insensitive to the variation of the plate thickness. 

 

 
 

Figure 5. Distribution of the normalised SIF along the crack front for various a/w ratios 

(case of t/w=0.00825). 
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Figure 6. Normalised SIF versus normalised crack lengths at the crack centre for 

different thicknesses. 

 

In the following, the results relating to the non-singular terms of the William series 

are presented. For the thinner plate (t/w=0.00825), figure 7 indicates that the distribution 

of the 11T  over half of the thickness for different crack aspect ratios is symmetric with 

respect to x3=0. Relative monotonous distribution of 11T is noted over a half of the 

thickness. An exception is noted in the region near the free surface ( 85.0t ). This is valid 

for all plate widths (Figure 7).  

 

 
 

Figure 7. Normalised T11 stresses versus the normalised thickness for different lengths 

(case of t/w=0.00825). 

 

Figure 8 indicates that the value of 11T   at the centre of the thickness decreases 

gradually from –0.66 to –3.22 as the a/w ratio increases from 0.1 to 0.9. Identical trends 
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are noted for all plate thicknesses indicating the non-dependency of 11T  the term of the 

plate thickness. 

 

 
 

Figure 8. Normalised T11 stresses at the centre of crack front versus the normalised 

crack length for different thicknesses. 

 

Figure 9 summarises the distribution of the normalised T13 stresses over the half 

crack front thickness for the case of the thinner plate (t/w=0.00825) for different a/w 

ratios. Unlike 11T , 13T  decreases along the crack front thickness. Note that the trend is anti-

symmetric with respect to x3=0 (front centre). Instead, the magnitude of the normalised 

T13 stresses decreases gradually from zero at the centre of thickness to a much smaller 

value near the free surface. This latter back to zero, to satisfy the free surface condition. 

 

 
 

Figure 9.  Normalised T13 stresses versus the normalised thickness for different lengths 

(case of t/w=0.00825). 

 



Mode I Stress Intensity Factor and T-Stress Solutions for Centre Cracked Orthotropic Plates 

6548 

Figure 10 presents the values of 
13T  at the crack front centre versus the crack 

length ratios for different thickness to width ratios. It can be mentioned that the T13 

absolute values increase gradually with respect to a/w ratio. Furthermore, it is indicated 

that T13 is sensitive to the change in thickness of the plate. 

 

 
 

Figure 10. Normalised T13 stresses at the centre of crack front versus the 

normalised crack length for different thicknesses. 

 

Figure 11 resumes the obtained results of the third normalised term T33. It can be 

seen that the trend of 
33T  stress is symmetrical with respect to x3=0 and it is almost 

constant when x3/t < 0.40, but decreases behind this position because of boundary effects.  

 

 
 

Figure 11. Distribution of the normalised T33 stresses through half of the crack front for 

various a/w ratios (t/w=0.00825). 
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Figure 12 presents the normalised T33 at the middle position of the crack front as 

a function of the crack lengths with respect to different plate thickness. 

 

 
 

Figure 12. Normalised T33 stresses (x3/t=0) for different thicknesses. 

 

One can see that T33-stress increases in absolute value as the crack length increases 

as well. Figure 12 also indicates that 33T  is dependent on the plate thickness. This 

dependency becomes non-significant for large thicknesses. At this stage, it is possible to 

fit the various curves presented above. The goal is to formulate analytical expressions, 

including the geometric parameters of crack and plate as variables. These combine 

different factors of rupture such as SIF and T stresses with the a/w and t/w. 

 

ANALYTICAL FORMULATION 

 

Based on the numerical results of the different simulation, analytical expressions have 

been developed for the convenience of engineering applications. The choice of analytical 

functions is based on curve fitting trends. A more detailed discussion about the fitting 

method can be found in [33, 34]. 

The range of applicability of the formulated expressions is 0.1 ≤ a/w ≤ 0.9 and 

0.00825 ≤t/w≤0.512. As imposed by the trends of the presented curves in Figure 9, The 

normalised stress intensity factor IK solutions at x3/t=0 (mid-plan) can be fitted with 

polynomial equations which are given by cubic form as follows:  

 

( ) ( ) ( )33

2

210I a/wAa/wAa/wAAK +++=                (1) 

 

where Ai is polynomial factors. These factors are obtained by closely adjusting the curves 

presented in Figure 9. The coefficients Ai vary slightly in relation to the t/w ratios 

(Table3). Thus, by grouping the different ratio of thickness t /w in curves of Ai as a 

function and making the adjustment, the following expression was obtained. 
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Table 3. Parameters of polynomial equation fitted for normalised stress intensity 

factors. 

 

t/w A0 A1 A2 A3 

0.00825 0.82522 2.3449 -7.1736 7.4135 

0.016 0.82859 2.3138 -7.0849 7.3505 

0.064 0.82377 2.3121 -7.032 7.2936 

0.256 0.82433 2.2693 -6.9364 7.2213 

0.512 0.8229 2.2788 -7.0081 7.2888 

 

In the same way as for IK , the normalised T-stresses solutions at x3/t=0 (mid-plan) can 

be fitted with polynomial equations and written as: 

 

( ) ( ) ( )33

2

21011 /// waBwaBwaBBT +++=                                                                    (3) 

 

( ) ( ) ( )3

3

2

21013 /// waCwaCwaCCT +++=                                                                 (4) 

 

( ) ( ) ( )3

3

2

21033 /// waDwaDwaDDT +++=                                                                (5) 

 

Where, Bi , Ci and Di are polynomial factors which are given in Tables 4, 5 and 6, 

respectively.  

 

Table 4. Parameters of polynomial equations fitted for normalised T11-stresses. 

 

t/w B0 B1 B2 B3 

0.00825 -0.20699 -6.0497 19.064 -17.768 

0.016 -0.25206 -5.5348 17.594 -16.73 

0.064 -0.26848 -5.3722 17.164 -16.434 

0.256 -0.26506 -5.4926 17.591 -16.814 

0.512 -0.26032 -5.5503 17.712 -16.898 

 

Table 5. Parameters of polynomial equations fitted for normalised T13-stresses. 

 

t/w C0 C1 C2 C3 

0.00825 0.00033938 -0.015998 0.03997 -0.03512 

0.016 0.00012799 -0.010274 0.025105 -0.022396 

0.064 0.0001231 -0.0033759 0.007383 -0.0070505 

0.256 0.00012157 -0.0033238 0.0071333 -0.0056852 

0.512 0.00029119 -0.0040754 0.0097606 -0.0082748 
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Table 6. Parameters of polynomial equations fitted for normalised T33-stresses 

 

t/w D0 D1 D2 D3 

0.00825 -0.0040984 -2.4953 5.6168 -5.2521 

0.016 -0.0093321 -1.7621 3.9716 -3.7357 

0.064 -0.022163 -0.82278 1.8909 -1.8231 

0.256 -0.40026 -0.50691 1.55 -1.5535 

0.512 -0.041195 -0.57417 1.9442 -1.9061 

  

In the same way, as for normalised SIF, the analytic expressions of normalised 

T11, T13 and T33 are given by writing the different factors Bi, Ci and Di as adjusted by a 

power law. As a result, expressions of normalised T11, normalised T13 and T33 are obtained 

as follows: 
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VALIDATION OF THE PROPOSED ANALYTICAL EXPRESSIONS 

 

To consolidate the validation of the proposed expressions in this work, it is preceded to 

complementary modelling of the orthotropic fissured plate. Different parameters were 

used compared to the first analysis. Thus, comparison of the FEM results to those given 

by the proposed expressions was made. Figures 13(a) and 13(b) shows an example of the 

normalised KI calculated by FEM compared to that calculated analytically using equation 

2.  

The proposed solution fits well with the values obtained numerically. Typical 

results of T-stresses from finite element analysis and analytical equations for t/w=0.00825 

and 0.016 are shown in Figure 14. All the results of the non-singular terms (T-stresses) 

calculated numerically by FEM are in good correlation with results obtained by the 

proposed analytical solutions given by Eq. (6) to (8).  
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(a) t/w=0.00825     (b) t/w=0.016 

 

Figure 13. Comparison of FEM results and the proposed analytical expression for 

normalised SIF. 

 

 
(a) normalised T11 for t/w=0.00825  (b) normalised T11 for t/w= 0.016 

 

 
(c) normalised T13 for t/w=0.00825  (d) normalised T13for t/w=0.016 
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(e) normalised T33 for t/w=0.00825 (f) normalised T33 for t/w=0.016 

 

Figure 14. Comparison of FEM results and the proposed expressions for normalised T-

stresses. 

 

CONCLUSION 

 

A 3D finite element models have been realised to compute the SIF and components of 

nonsingular terms T-stress for orthotropic centre-cracked plates. A parametric study has 

been conducted, and analytical formulations giving KI, T11, T13 and T33 were proposed. 

The relative crack depth a/w is varied by 0.1, 0.3, 0.5, 0.7 and 0.9. And the relative 

thickness of the specimen t/w is chosen as 0.00825, 0.016, 0.064, 0.256 and 0.512. The 

main conclusions are as follows: 

 

i. Stress intensity factor (KI) is independent of the thickness. 

ii. The distribution of SIF adopts the same trend regardless of the thickness in the 

studied range. 

iii. The same observations were made for the T11. 

iv. The T13 is dependent on the thickness. The latter is antisymmetric. 

v. The T33 is dependent on the thickness but adopts a trend similar to that of KI and 

T11. In other words, T33 is distributed similarly for the different thicknesses of the 

orthotropic plate. 

vi. Adequate adjustments can be used to develop simple and easy-to-use expressions 

for calculating break parameters. 

vii. As indicated by the different comparisons, all the results of fracture parameters 

from analytical expressions are in very good agreement with those performed by 

the finite element analysis. Thus, for reasons of simplicity, these analytical 

formulations can be used for the encountered engineering applications dealing 

with the case of cracked orthotropic structures. 
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