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INTRODUCTION 
 A promising direction in machine-building technology is the development of operations with the combination of 

several technological passes in time - multi-tool parallel machining, which is performed at the total (for different tools) 
spindle speed with the workpiece and the total machining time [1-2-3]. Multi-tool machining on multi-purpose CNC 
machines of the new generation is most effective. Multi-purpose machines that combine the capabilities of CNC lathes 
and machining centres are currently one of the fastest-growing metalworking concepts. The capabilities of the machine 
to carry out boring without changing tool holes, facing, internal and external grooving, facing on the backside of the 
workpiece, boring step holes on the inside of the workpiece, boring conical holes and holes of other shapes. 

Program control of all movements of working bodies of the machine and automatic tool change with a large number 
of programmable coordinates allows the automated processing of the most complex case parts on all sides from one 
fastening, except for the surfaces on which the workpieces are based and fixed. This helps to achieve the highest accuracy 
of the relative positioning of the machined surfaces. It is known that in the conditions of production of parts in small 
quantities, the proportion of machining time, that is, time of direct metal cutting does not exceed 18-20% in the total time 
of the machining process on traditional machines with manual control. On numerically controlled machines this 
proportion increases to 45-50%, and on multi-operational machines, it reaches 70-75%. The dimensional stability of the 
parts obtained on multi-operational machines allows reducing the number of control operations by 50-70% [4-5]. 
Installation and fixing of the workpiece, as well as the removal of the part, are performed by manual labour. 
 As a result, the productivity of manufacturing parts on multi-purpose machines is 4 to 10 times higher than on 
universal ones. At the same time, the simplicity of adjustment and readjustment of multi-operational machines, as well 
as the elimination of complex and expensive technological equipment (templates, copiers, special devices) create 
conditions that allow the use of such machines in small-scale and pilot production, especially in the case of preparing 
control programs using computers. 

Analysis of Modern Multi-Purpose CNC Machines For Multi-Tool Processing 
 The analysis of technological equipment presented on the market was carried out, on which the implementation of 
multi-tool machining is possible [1]. In the process of this analysis, five types of design of multi-purpose machines were 

ABSTRACT – The article discusses the technology capabilities of multi-purpose CNC machines, 
and possible options for implementing parallel multi-tool processing. It was revealed that the 
technological capabilities of these machines are used at best by 50% in factories. This is due to 
the lack of recommendations for the design and use of such adjustments for these machines. To 
this end, generalised lattice matrix models of the accuracy of multi-tool machining have been 
developed in order to fulfill the requirements of algorithmic uniformity models and their structural 
transparency. The use of lattice matrices greatly simplifies the error in model of multi-tool machining 
and makes it extremely visual. Also, full-factorial distortion models and scattering fields of the 
dimensions of multi-tool machining performed on modern multi-purpose CNC lathe machines have 
been developed to take into account the angular displacements of the workpiece when machining 
parts with prevailing overall dimensions. They take into account the flexibility of the technological 
system for all six degrees of freedom to identify the influence degree of complex of technological 
factors on the machining accuracy (structure of multi-tool adjustment, deformation properties of 
subsystems of a technological system, cutting conditions). A methodology has been developed for 
determining the complex characteristics of compliance of a technological system. On the basis of 
the developed accuracy models in spatial adjustments, it is possible to develop recommendations 
for the design of adjustments for modern multi-purpose machines in CNC turning group (creation 
of CAD of multi-tool machining). Thus, it is possible to achieve a number of ways to control multi-
tool machining, including improving the structure of multi-tool adjustment, calculating the limiting 
cutting conditions. 
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identified and for each type of structure machine models of representatives were selected. Having familiarised with the 
most common types of designs of multi-purpose machines, a detailed analysis of the capabilities of each type of equipment 
was carried out and possible adjustments on them were considered. In the course of the analysis, it turned out that the use 
of multi-tool machining in most plants is impossible due to the lack of equipment on which such machining could be 
performed. Some factories have equipment on which multi-tool machining is possible, but it is used for simultaneous 
machining of several parts (in the spindle and counter spindle), and not for simultaneous machining of several surfaces. 
Summing up, we can say that most enterprises do not have equipment on which parallel multi-tool machining is possible, 
and those few plants that have CNC multi-purpose machines use them at best for 50% of their technological capabilities. 
This situation has arisen due to the fact that there are no recommendations on the design and application of such 
adjustments [2]. 
 Of course, there is a lot of research that characterises the multi-tool machining and technological capabilities of CNC 
multi-purpose machines [6-22]. The specific issues addressed in these studies ultimately do not provide the theoretical 
basis for the application and design of multi-tool adjustments. For example, [6-9] studies have focused on the nature of 
double-tool, double-carriage machining. But here, too, there is no question of complex matrix models, consisting of a 
model of the scattering area of the dimensions during the machining of workpiece sets and distortion of the accuracy of 
dimensions performed in multi-tool adjustments. There are no attempts to develop models based on the balance of force 
effects of the tools, taking into account the arbitrary spatial location of the tools in the adjustment in CNC machines 
during the design of multi-tool machining, if the working space of the machines allows. 
 The basis of the theory of design and optimisation of multi-tool machining, multi-tool adjustment based on force 
interaction of tools, were laid in works [23-24-25-26-27]. However, he considered only two classes of simple flat multi-
tool adjustments when implementing them on automatic machines with cam control. 
 N.D. Yusubov, on the basis of the classification of multi-tool adjustments of modern automatic lathes, developed a 
set of matrix models of the accuracy of the dimensions to be performed, including models of distortion of dimensions and 
models of scattering fields of dimensions when processing a batch of workpieces, where the compliance of the 
technological system along all coordinate axes was taken into account for the first time, and arbitrary spatial arrangement 
of adjustment tools is allowed [23-24-25-26-27]. 

Matrix Models of Distortion for Performed Dimensions In Multi-Tool Two-Carriage Single-Coordinate Adjustments 
 In the models of the accuracy of dimensions [23-24-25-26] performed in multi-tool adjustment, the basis is elastic 

displacements of the vertices of the tool forming the executed dimension relative to the surface of the workpiece machined 
by it in the direction of the performed dimension. These elastic displacements are the result of the combined effect of 
cutting forces from all simultaneously working adjustment tools and the ultimate compliance of the elements of the 
technological system that perceive this force. For multi-tool machining, especially turning, on modern multi-tool 
machines, it is characteristic that complicated spatial arrangement of cutting tools that work simultaneously and placed 
several pieces on one, two or even three carriages. Therefore, in multi-tool machining, the system of forces acting on the 
elements of the technological system is a spatial general form. 

 The elastic displacement of an element of a technological system is a vector, the direction and magnitude of which 
are determined by the resulting vector of forces acting on this element, and the ratio of its compliance over possible 
degrees of freedom. Therefore, the description of distortion equations of the dimensions performed in multi-tool 
adjustment in vector form is natural. Since the full characteristic of the compliance of an element of the technological 
system for all possible degrees of freedom is described by a matrix, we come to the matrix form of models of machining 
accuracy. 

 As a rule, in multi-tool adjustments, own compliance of cutting tools is minimised. This is achieved either by selecting 
the appropriate design parameters of the tools or by using special fixtures and holders. Therefore, the movement of the 
tool vertices is ensured, as in the case of one-tool adjustment [28], due to the deformation of the entire block of elements 
of the technological system: carriage - holder - tool. For a multi-tool two-carriage adjustment, the analytical problem is 
reduced to the interaction of a 3-body system. To identify the main features of the effect of the double carriage during 
multi-tool machining, we consider the simplest multi-tool adjustment: on the longitudinal carriage, there is one turning 
cutting tool, on the cross carriage one facing tool (Figure 1). Here the technological system is decomposed into the 
following three subsystems: “workpiece-chuck-spindle” - subsystem 0; “Cutter-holder-longitudinal carriage” subsystem 
1; "Cutter-holder-cross carriage" - subsystem 2. The performed decomposition is based on the assumption that all tools 
have sufficient rigidity and that deformations in the technological system can be considered at the subsystem level. It 
should be noted that a large number of tools on the carriage leads to a system of acting forces, which can be replaced by 
the resultant force. Therefore, the restriction in the form of one tool on each carriage does not in the least reduce the 
generality of the statement and consideration of the problem, while at the same time making the calculation scheme more 
transparent. Even for the case when each carriage has one tool, the scheme of applying forces deforming the system under 
consideration is significantly complicated. In this case, we have two systems of forces - the impact from the tools of each 
carriage (see. Figure 1). Both systems of forces are spatial. In Figure 1 the reaction force 𝑃𝑃𝑧𝑧2 from the impact of the tools 
of the cross carriage is directed upwards. The reaction force 𝑃𝑃𝑧𝑧1 from the impact of the tools of the longitudinal carriage 
is directed downward. Similarly, 𝑃𝑃𝑦𝑦1 which forms force 𝑷𝑷𝟏𝟏 and 𝑃𝑃𝑦𝑦2 which forms force 𝑷𝑷𝟐𝟐 are directed against each other. 
Here, cutting force vectors 𝑷𝑷𝟏𝟏and 𝑷𝑷𝟐𝟐 can be written as 𝑷𝑷𝟏𝟏 = �𝑃𝑃𝑥𝑥1;𝑃𝑃𝑦𝑦1;  𝑃𝑃𝑧𝑧1� and 𝑷𝑷𝟐𝟐 = �𝑃𝑃𝑥𝑥2;  −𝑃𝑃𝑦𝑦2;  −𝑃𝑃𝑧𝑧2� according to the 
layout. 
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Here, 𝑔𝑔1, 𝑔𝑔2 is the displacement of the contact point for each pair of contacting bodies, respectively for bodies 1 and 
2; 𝑃𝑃01 - the reaction force of the 𝑃𝑃1 of body 1 to body 0, thus, the action of body 0 on body 1; 𝑃𝑃02 - the reaction force of the 
𝑃𝑃2of body 2 to body 0, thus, the action of body 0 on body 2;  e0 - compliance characteristic of body 0, thus,  

𝑒𝑒0 = �
𝑒𝑒𝑥𝑥𝑥𝑥0 𝑒𝑒𝑥𝑥𝑥𝑥0 𝑒𝑒𝑥𝑥𝑥𝑥0

𝑒𝑒𝑦𝑦𝑦𝑦0 𝑒𝑒𝑦𝑦𝑦𝑦0 𝑒𝑒𝑦𝑦𝑦𝑦0

𝑒𝑒𝑧𝑧𝑧𝑧0 𝑒𝑒𝑧𝑧𝑧𝑧0 𝑒𝑒𝑧𝑧𝑧𝑧0
�, where, 𝑒𝑒𝑥𝑥𝑥𝑥0  is a movement in the direction of the X axis from the unit force Рх , 𝑒𝑒𝑥𝑥𝑥𝑥0  is a movement 

in the direction of the X axis from the unit force Рy , 𝑒𝑒𝑥𝑥𝑥𝑥0  is a movement in the direction of the X axis from the unit force 
Рz , 𝑒𝑒𝑦𝑦𝑦𝑦0  is a movement in the direction of the Y axis from the unit force Рx , 𝑒𝑒𝑦𝑦𝑦𝑦0  is a movement in the direction of the Y 
axis from the unit force Рy , 𝑒𝑒𝑦𝑦𝑦𝑦0  is a movement in the direction of the Y axis from the unit force Рz, 𝑒𝑒𝑧𝑧𝑧𝑧0  is a movement in 
the direction of the Z axis from the unit force Рx , 𝑒𝑒𝑧𝑧𝑧𝑧0  is a movement in the direction of the Z axis from the unit force Рy , 
𝑒𝑒𝑧𝑧𝑧𝑧0  is a movement in the direction of the Z axis from the unit force Рz ; 𝑒𝑒01, 𝑒𝑒02- are combined compliance matrices for 
two groups of technological subsystems: 𝑒𝑒01 = 𝑒𝑒0 + 𝑒𝑒1;  𝑒𝑒02 = 𝑒𝑒0 + 𝑒𝑒2, where, e1 – is compliance characteristic of body 1; 
e2 - is compliance characteristic of body 2. 

 

 
 

Figure 1. Design scheme of the elastic displacements of technological subsystems during multi-tool two-carriage 
machining. 

Then the equation of the displacement of the contact point for each pair of contacted bodies 𝑔𝑔1and 𝑔𝑔2 according to 
[23-25] in the expanded form is presented as: 
 

𝑔𝑔1 = �
𝑔𝑔1𝑥𝑥
𝑔𝑔1𝑦𝑦
𝑔𝑔1𝑧𝑧

� = �
𝑒𝑒𝑥𝑥𝑥𝑥01 𝑒𝑒𝑥𝑥𝑥𝑥01 𝑒𝑒𝑥𝑥𝑥𝑥01

𝑒𝑒𝑦𝑦𝑦𝑦01 𝑒𝑒𝑦𝑦𝑦𝑦01 𝑒𝑒𝑦𝑦𝑦𝑦01

𝑒𝑒𝑧𝑧𝑧𝑧01 𝑒𝑒𝑧𝑧𝑧𝑧01 𝑒𝑒𝑧𝑧𝑧𝑧01
��

𝑃𝑃𝑥𝑥1
𝑃𝑃𝑦𝑦1
𝑃𝑃𝑧𝑧1

� + �
𝑒𝑒𝑥𝑥𝑥𝑥0  𝑒𝑒𝑥𝑥𝑥𝑥0  𝑒𝑒𝑥𝑥𝑥𝑥0

𝑒𝑒𝑦𝑦𝑦𝑦0  𝑒𝑒𝑦𝑦𝑦𝑦0  𝑒𝑒𝑦𝑦𝑦𝑦0

𝑒𝑒𝑧𝑧𝑧𝑧0  𝑒𝑒𝑧𝑧𝑧𝑧0  𝑒𝑒𝑧𝑧𝑧𝑧0
��

 𝑃𝑃𝑥𝑥2
−𝑃𝑃𝑦𝑦2
−𝑃𝑃𝑧𝑧2

� 

 

(1) 

𝑔𝑔2 = �
𝑔𝑔2𝑥𝑥
𝑔𝑔2𝑦𝑦
𝑔𝑔2𝑧𝑧

� = �
𝑒𝑒𝑥𝑥𝑥𝑥02 𝑒𝑒𝑥𝑥𝑥𝑥02 𝑒𝑒𝑥𝑥𝑥𝑥02

𝑒𝑒𝑦𝑦𝑦𝑦02 𝑒𝑒𝑦𝑦𝑦𝑦02 𝑒𝑒𝑦𝑦𝑦𝑦02

𝑒𝑒𝑧𝑧𝑧𝑧02 𝑒𝑒𝑧𝑧𝑧𝑧02 𝑒𝑒𝑧𝑧𝑧𝑧02
��

 𝑃𝑃𝑥𝑥2
−𝑃𝑃𝑦𝑦2
−𝑃𝑃𝑧𝑧2

� + �
𝑒𝑒𝑥𝑥𝑥𝑥0  𝑒𝑒𝑥𝑥𝑥𝑥0  𝑒𝑒𝑥𝑥𝑥𝑥0

𝑒𝑒𝑦𝑦𝑦𝑦0  𝑒𝑒𝑦𝑦𝑦𝑦0  𝑒𝑒𝑦𝑦𝑦𝑦0

𝑒𝑒𝑧𝑧𝑧𝑧0  𝑒𝑒𝑧𝑧𝑧𝑧0  𝑒𝑒𝑧𝑧𝑧𝑧0
��

𝑃𝑃𝑥𝑥1
𝑃𝑃𝑦𝑦1
𝑃𝑃𝑧𝑧1

�      (2) 
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From Eq.(1), for the dimension distortion along 𝑌𝑌axis, that is, the diametric dimensions formed from the longitudinal 
carriage, we obtain from consideration of the second component of the 𝑔𝑔1: 
 

𝑔𝑔1𝑦𝑦 = 𝑒𝑒𝑦𝑦𝑦𝑦01𝑃𝑃𝑥𝑥1 + 𝑒𝑒𝑦𝑦𝑦𝑦01𝑃𝑃𝑦𝑦1 + 𝑒𝑒𝑦𝑦𝑦𝑦01𝑃𝑃𝑧𝑧1 + 𝑒𝑒𝑦𝑦𝑦𝑦0 𝑃𝑃𝑥𝑥2 − 𝑒𝑒𝑦𝑦𝑦𝑦0 𝑃𝑃𝑦𝑦2 − 𝑒𝑒𝑦𝑦𝑦𝑦0 𝑃𝑃𝑧𝑧2 (3) 
 
From (2) for linear dimensions (along the X axis) formed from the cross carriage, we obtain: 
 

𝑔𝑔2𝑥𝑥 = 𝑒𝑒𝑥𝑥𝑥𝑥02𝑃𝑃𝑥𝑥2 − 𝑒𝑒𝑥𝑥𝑥𝑥02𝑃𝑃𝑦𝑦2 − 𝑒𝑒𝑥𝑥𝑥𝑥02𝑃𝑃𝑧𝑧2 + 𝑒𝑒𝑥𝑥𝑥𝑥0 𝑃𝑃𝑥𝑥1 + 𝑒𝑒𝑥𝑥𝑥𝑥0 𝑃𝑃𝑦𝑦1 + 𝑒𝑒𝑥𝑥𝑥𝑥0 𝑃𝑃𝑧𝑧1 (4) 
      
Expression (1) and (2) are generalised matrix models of machining errors in the multi-tool two-carriage adjustment shown 
in Figure 1. 

Thus, model (1) and (2) are matrix models of distortion of shapes and dimensions formed in the multi-tool two-
carriage adjustment shown in Figure 1. As we can see, dimension distortions during two-carriage machining depend on 
all tools of the adjustment. So, the distortion of the diametric dimension 𝑔𝑔𝑦𝑦1 performed from the longitudinal support is 
influenced not only by the cutting depth 𝑡𝑡1, feed 𝑆𝑆1, and other cutting conditions (𝐶𝐶𝑃𝑃𝑦𝑦1;𝑥𝑥𝑝𝑝𝑦𝑦1;𝑦𝑦𝑃𝑃𝑦𝑦1) of the turning cutter 
directly forming this dimension, but also by 𝑡𝑡2,𝑆𝑆2 and others cutting conditions (𝐶𝐶𝑃𝑃𝑦𝑦2;𝑥𝑥𝑝𝑝𝑦𝑦2;𝑦𝑦𝑃𝑃𝑦𝑦2) of a cutting tool standing 
on a cross carriage and machining a completely different surface. The situation is similar for the distortion of the linear 
dimension performed from the cross carriage. Model (1) and (2) allow us to calculate the distortion of the diametric 
dimensions performed from the longitudinal carriage, and linear, performed from the cross carriage, in multi-tool two-
carriage machining. They can be used in the calculation of tuning dimensions. 

LATTICE MATRIX MODELS OF THE ACCURACY OF MULTI-TOOL MACHINING 
 In accordance with the provisions of the matrix theory of machining accuracy for the simplest two-carriage adjustment 

[23-25] - the right turning cutter on the longitudinal carriage and the left facing cutter on the cross-carriage opposite to 
the longitudinal - we have the following two matrix equations: 
 

𝑔𝑔1 = 𝑒𝑒01𝑃𝑃1 + 𝑒𝑒0𝑃𝑃2 
      (5) 

𝑔𝑔2 = 𝑒𝑒02𝑃𝑃2 + 𝑒𝑒0𝑃𝑃1 (6) 
                                              
Where, g1 and g2 are the vectors of elastic displacements relative to the machined surface of the vertices of the turning 
and facing tools, respectively; 
P1 and P2 are the cutting force vectors on the longitudinal and cross carriages, respectively; 
e0 - the compliance matrix of the subsystem workpiece - spindle; 
e01 and e02 - matrices of the total compliance of the complexes of the subsystems longitudinal carriage - turning cutter − 
workpiece - spindle and cross carriage - facing tool − workpiece - spindle, respectively: 
 

𝑒𝑒01 = �
𝑒𝑒𝑥𝑥𝑥𝑥01 𝑒𝑒𝑥𝑥𝑥𝑥01 𝑒𝑒𝑥𝑥𝑥𝑥01

𝑒𝑒𝑦𝑦𝑦𝑦01 𝑒𝑒𝑦𝑦𝑦𝑦01 𝑒𝑒𝑦𝑦𝑦𝑦01

𝑒𝑒𝑧𝑧𝑧𝑧01 𝑒𝑒𝑧𝑧𝑧𝑧01 𝑒𝑒𝑧𝑧𝑧𝑧01
� 

 

(7) 

𝑒𝑒02 = �
𝑒𝑒𝑥𝑥𝑥𝑥02 𝑒𝑒𝑥𝑥𝑥𝑥02 𝑒𝑒𝑥𝑥𝑥𝑥02

𝑒𝑒𝑦𝑦𝑦𝑦02 𝑒𝑒𝑦𝑦𝑦𝑦02 𝑒𝑒𝑦𝑦𝑦𝑦02

𝑒𝑒𝑧𝑧𝑧𝑧02 𝑒𝑒𝑧𝑧𝑧𝑧02 𝑒𝑒𝑧𝑧𝑧𝑧02
�      (8) 

                                                  
The setting, in accordance with the theory of cutting, the coordinate components of the cutting forces in the coordinate 

system of the machine, we transform Eq. (5) and (6) to the form: 
 

𝑔𝑔1 = 𝑒𝑒01 �
𝑃𝑃𝑥𝑥1

𝑃𝑃𝑦𝑦1

𝑃𝑃𝑧𝑧1
� + 𝑒𝑒0 �

𝑃𝑃𝑥𝑥2

−𝑃𝑃𝑦𝑦2

−𝑃𝑃𝑧𝑧2
�      (9) 

𝑔𝑔2 = 𝑒𝑒02 �
𝑃𝑃𝑥𝑥2

−𝑃𝑃𝑦𝑦2

−𝑃𝑃𝑧𝑧2
� + 𝑒𝑒0 �

𝑃𝑃𝑥𝑥1

𝑃𝑃𝑦𝑦1

𝑃𝑃𝑧𝑧1
� (10) 

                                          
where, the lower indices of the constituent cutting forces indicate the coordinate axis, and the upper ones are the carriage 
number. 

From the matrix in Eq. (9) and (10) we obtain the expressions for the relative elastic displacements of the vertices of 
the cutters in all coordinate directions: 
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𝑔𝑔𝑥𝑥1 = 𝑒𝑒𝑥𝑥𝑥𝑥01𝑃𝑃𝑥𝑥1 + 𝑒𝑒𝑥𝑥𝑥𝑥01𝑃𝑃𝑦𝑦1 + 𝑒𝑒𝑥𝑥𝑥𝑥01𝑃𝑃𝑧𝑧1 + 𝑒𝑒𝑥𝑥𝑥𝑥0 𝑃𝑃𝑥𝑥2 − 𝑒𝑒𝑥𝑥𝑥𝑥0 𝑃𝑃𝑦𝑦2 − 𝑒𝑒𝑥𝑥𝑥𝑥0 𝑃𝑃𝑧𝑧2 
 

(11) 

𝑔𝑔𝑦𝑦1 = 𝑒𝑒𝑦𝑦𝑦𝑦01𝑃𝑃𝑥𝑥1 + 𝑒𝑒𝑦𝑦𝑦𝑦01𝑃𝑃𝑦𝑦1 + 𝑒𝑒𝑦𝑦𝑦𝑦01𝑃𝑃𝑧𝑧1 + 𝑒𝑒𝑦𝑦𝑦𝑦0 𝑃𝑃𝑥𝑥2 − 𝑒𝑒𝑦𝑦𝑦𝑦0 𝑃𝑃𝑦𝑦2 − 𝑒𝑒𝑦𝑦𝑦𝑦0 𝑃𝑃𝑧𝑧2 
 

   (12) 

𝑔𝑔𝑧𝑧1 = 𝑒𝑒𝑧𝑧𝑧𝑧01𝑃𝑃𝑥𝑥1 + 𝑒𝑒𝑧𝑧𝑧𝑧01𝑃𝑃𝑦𝑦1 + 𝑒𝑒𝑧𝑧𝑧𝑧01𝑃𝑃𝑧𝑧1 + 𝑒𝑒𝑧𝑧𝑧𝑧0 𝑃𝑃𝑥𝑥2 − 𝑒𝑒𝑧𝑧𝑧𝑧0 𝑃𝑃𝑦𝑦2 − 𝑒𝑒𝑧𝑧𝑧𝑧0 𝑃𝑃𝑧𝑧2 
 

          (13) 

𝑔𝑔𝑥𝑥2 = 𝑒𝑒𝑥𝑥𝑥𝑥0 𝑃𝑃𝑥𝑥1 + 𝑒𝑒𝑥𝑥𝑥𝑥0 𝑃𝑃𝑦𝑦1 + 𝑒𝑒𝑥𝑥𝑥𝑥0 𝑃𝑃𝑧𝑧1 + 𝑒𝑒𝑥𝑥𝑥𝑥02𝑃𝑃𝑥𝑥2 − 𝑒𝑒𝑥𝑥𝑥𝑥02𝑃𝑃𝑦𝑦2 − 𝑒𝑒𝑥𝑥𝑥𝑥02𝑃𝑃𝑧𝑧2 
 

   (14) 

𝑔𝑔𝑦𝑦2 = 𝑒𝑒𝑦𝑦𝑦𝑦0 𝑃𝑃𝑥𝑥1 + 𝑒𝑒𝑦𝑦𝑦𝑦0 𝑃𝑃𝑦𝑦1 + 𝑒𝑒𝑦𝑦𝑦𝑦0 𝑃𝑃𝑧𝑧1 + 𝑒𝑒𝑦𝑦𝑦𝑦02𝑃𝑃𝑥𝑥2 − 𝑒𝑒𝑦𝑦𝑦𝑦02𝑃𝑃𝑦𝑦2 − 𝑒𝑒𝑦𝑦𝑦𝑦02𝑃𝑃𝑧𝑧2 
 

   (15) 

𝑔𝑔𝑧𝑧2 = 𝑒𝑒𝑧𝑧𝑧𝑧0 𝑃𝑃𝑥𝑥1 + 𝑒𝑒𝑧𝑧𝑧𝑧0 𝑃𝑃𝑦𝑦1 + 𝑒𝑒𝑧𝑧𝑧𝑧0 𝑃𝑃𝑧𝑧1 + 𝑒𝑒𝑧𝑧𝑧𝑧02𝑃𝑃𝑥𝑥2 − 𝑒𝑒𝑧𝑧𝑧𝑧02𝑃𝑃𝑦𝑦2 − 𝑒𝑒𝑧𝑧𝑧𝑧02𝑃𝑃𝑧𝑧2    (16) 
 

Here, the first three expression, (11) to (13) describe the relative elastic displacements of the turning tool, and 
expression (14) to (16) describe the facing tool. Moreover, only two of them are important for technology and controlled: 

𝑔𝑔𝑦𝑦1 - is the distortion of the diametric dimension formed from the longitudinal carriage with turning cutter; 
𝑔𝑔𝑥𝑥2 - is the distortion of the linear dimension formed from the cross carriage with a facing cutter. 
The scalar Eq. (12) and (14), even for the simplest considered adjustment, are quite complicated for analysis. 

Therefore, the matrix theory of accuracy is initially focused on the use of computer technology. In this case, the 
requirements of algorithmic uniformity of models and their structural transparency come first. 

To ensure algorithmic uniformity, it is proposed that the set of scalar Eq. (11) to (15) be presented in matrix form in 
six-dimensional hyperspace: 
 

⎝

⎜
⎜
⎜
⎛

𝑔𝑔𝑥𝑥1

𝑔𝑔𝑦𝑦1

𝑔𝑔𝑧𝑧1

𝑔𝑔𝑥𝑥2

𝑔𝑔𝑦𝑦2

𝑔𝑔𝑧𝑧2⎠

⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎛

𝑒𝑒𝑥𝑥𝑥𝑥01 𝑒𝑒𝑥𝑥𝑥𝑥01 𝑒𝑒𝑥𝑥𝑥𝑥01 𝑒𝑒𝑥𝑥𝑥𝑥0 𝑒𝑒𝑥𝑥𝑥𝑥0 𝑒𝑒𝑥𝑥𝑥𝑥0

𝑒𝑒𝑦𝑦𝑦𝑦01 𝑒𝑒𝑦𝑦𝑦𝑦01 𝑒𝑒𝑦𝑦𝑦𝑦01 𝑒𝑒𝑦𝑦𝑦𝑦0 𝑒𝑒𝑦𝑦𝑦𝑦0 𝑒𝑒𝑦𝑦𝑦𝑦0

𝑒𝑒𝑧𝑧𝑧𝑧01 𝑒𝑒𝑧𝑧𝑧𝑧01 𝑒𝑒𝑧𝑧𝑧𝑧01 𝑒𝑒𝑧𝑧𝑧𝑧0 𝑒𝑒𝑧𝑧𝑧𝑧0 𝑒𝑒𝑧𝑧𝑧𝑧0

𝑒𝑒𝑥𝑥𝑥𝑥0 𝑒𝑒𝑥𝑥𝑥𝑥0 𝑒𝑒𝑥𝑥𝑥𝑥0 𝑒𝑒𝑥𝑥𝑥𝑥02 𝑒𝑒𝑥𝑥𝑥𝑥02 𝑒𝑒𝑥𝑥𝑥𝑥02

𝑒𝑒𝑦𝑦𝑦𝑦0 𝑒𝑒𝑦𝑦𝑦𝑦0 𝑒𝑒𝑦𝑦𝑦𝑦0 𝑒𝑒𝑦𝑦𝑦𝑦02 𝑒𝑒𝑦𝑦𝑦𝑦02 𝑒𝑒𝑦𝑦𝑦𝑦02

𝑒𝑒𝑧𝑧𝑧𝑧0 𝑒𝑒𝑧𝑧𝑦𝑦0 𝑒𝑒𝑧𝑧𝑧𝑧0 𝑒𝑒𝑧𝑧𝑧𝑧02 𝑒𝑒𝑧𝑧𝑧𝑧02 𝑒𝑒𝑧𝑧𝑧𝑧02⎠

⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛

𝑃𝑃𝑥𝑥1

𝑃𝑃𝑦𝑦1

𝑃𝑃𝑧𝑧1

𝑃𝑃𝑥𝑥2

−𝑃𝑃𝑦𝑦2

−𝑃𝑃𝑧𝑧2⎠

⎟
⎟
⎟
⎞

 (17) 

 
Here the vector on the left side of the equation describes all coordinate movements of the points in question; the vector 

on the right side describes the force loading scheme of technological subsystems; the matrix characterises the compliance 
of the participating technological subsystems. It is easy to see that the multiplication of the matrix and the vector on the 
right side of Eq. (17) gives all scalar Eq. (11) to (16). 

Thus, Eq. (17) in its simplest form, is a generalised matrix equation for the machining error describing the whole 
complex of dimension distortions performed in a two-carriage two-tool adjustment. Equation (17) is algorithmically 
elementary, but not very obvious. To ensure the clarity of the generalised matrix equation of machining error (17), it is 
proposed to use the apparatus of lattice matrices [23]. 

Having selected the matrix in Eq. (17) the blocks of elements that have an independent technological meaning, we 
come to the lattice-matrix model in which the elements of the matrices themselves are matrices and, accordingly, the 
elements of vectors are vectors: 
 

�
𝑔𝑔1
𝑔𝑔2� = �

𝑒𝑒01 𝑒𝑒0
𝑒𝑒0 𝑒𝑒02� �

𝑃𝑃1
𝑃𝑃2
�           (18) 

 
A block of the first three components of the displacement vector in Eq. (17) formed a vector - the first component of 

the block displacement vector in the lattice-matrix model (18). The second three components of the displacement vector 
in Eq. (17) formed a vector - the second component of the block displacement vector in equation (18). As a result, the 
block displacement vector has two components - the displacement vector on the longitudinal carriage and the 
displacement vector on the cross carriage, that is, it has an extremely transparent structure. The situation with the 
description of the force load is similar. By combining the coordinate components of the forces of the longitudinal and 
cross carriages, respectively, the six-component load vector of Eq. (17) was transformed into a two-component block 
vector of Eq. (18), where each component is the force vector of the corresponding carriage. Also, in the sixth-order 
compliance matrix, four semantic blocks are identified that correspond to the compliance matrices of the selected 
technological subsystems (7) to (8). 

 Obviously, from the lattice-matrix model (18) by multiplying the block compliance matrix by the block load vector, 
we obtain the well-known matrix equations of dimension distortion for each carriage (5)-(6). So, the use of lattice matrices 
greatly simplifies the error model of multi-tool machining and makes it extremely visual. However, the lattice compliance 
matrix contains the constituent elements — the 𝑒𝑒01 and 𝑒𝑒02 matrices, which characterise the total compliance of the 
complex of two subsystems. It is more practical to operate with the own characteristics of technological subsystems – 
𝑒𝑒1and 𝑒𝑒2. From the theory of matrices, we get the relation: 
 

�
𝑒𝑒01 𝑒𝑒0
𝑒𝑒0 𝑒𝑒02� = �𝑒𝑒0 + 𝑒𝑒1 𝑒𝑒0

𝑒𝑒0 𝑒𝑒0 + 𝑒𝑒2
� = 𝑒𝑒0𝐾𝐾 + �𝑒𝑒1 0

0 𝑒𝑒2
�    (19) 
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where 𝐾𝐾 = �1 1

1 1� is the square matrix of the corresponding order. Taking into account the relation (19), the lattice-matrix 
model is reduced to the canonical form: 
 

�
𝑔𝑔1
𝑔𝑔2� = 𝑒𝑒0𝐾𝐾 �

𝑃𝑃1
𝑃𝑃2
� + �𝑒𝑒1 0

0 𝑒𝑒2
� �𝑃𝑃1𝑃𝑃2

�   (20) 
 

Here, the first term characterises the contribution to the error of the two-tool two-carriage machining of the entire 
complex of cutting forces through the compliance of the spindle, the second - through the compliance of the carriages. 
Let us consider how the proposed scheme for converting traditional matrix models of machining errors into block-matrix 
ones is implemented using examples of multi-tool adjustments. 

Adjustment 2 - three carriages, one tool on each carriage. Decomposition of the technological system into four 
subsystems is natural: spindle and carriages. For each subsystem, a compliance matrix is specified: 𝑒𝑒0, 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3. In 
accordance with the matrix theory of accuracy, by analogy with (5 - 6), we obtain the expressions for the dimension 
distortion vectors on each carriage: 
 

𝑔𝑔1 = (𝑒𝑒0 + 𝑒𝑒1)𝑃𝑃1 + 𝑒𝑒0(𝑃𝑃2 + 𝑃𝑃3) 
    (21) 

𝑔𝑔2 = (𝑒𝑒0 + 𝑒𝑒2)𝑃𝑃2 + 𝑒𝑒0(𝑃𝑃1 + 𝑃𝑃3) 
 (22) 

𝑔𝑔3 = (𝑒𝑒0 + 𝑒𝑒3)𝑃𝑃3 + 𝑒𝑒0(𝑃𝑃1 + 𝑃𝑃2) (23) 
 

Turning to hyperspace (9-dimensional) and forming blocks in matrices, we obtain, by analogy with (18), the lattice-
matrix model: 
 

�
𝑔𝑔1
𝑔𝑔2
𝑔𝑔3
� = �

𝑒𝑒0 + 𝑒𝑒1 𝑒𝑒0 𝑒𝑒0
𝑒𝑒0 𝑒𝑒0 + 𝑒𝑒2 𝑒𝑒0
𝑒𝑒𝑜𝑜 𝑒𝑒0 𝑒𝑒0 + 𝑒𝑒3

��
𝑃𝑃1
𝑃𝑃2
𝑃𝑃3
�    (24) 

 
which is reduced to the canonical form: 
 

�
𝑔𝑔1
𝑔𝑔2
𝑔𝑔3
� = 𝑒𝑒0𝐾𝐾 �

𝑃𝑃1
𝑃𝑃2
𝑃𝑃3
� + �

𝑒𝑒1 0 0
0 𝑒𝑒2 0
0 0 𝑒𝑒3

��
𝑃𝑃1
𝑃𝑃2
𝑃𝑃3
�    (25) 

 
The structural identity of Eq. (20) and Eq. (25) is obvious. Adjustment 3 - two tools on one carriage. Here, 

decomposition into two subsystems is sufficient: spindle and carriage with ductility matrices 𝑒𝑒0, 𝑒𝑒1. In accordance with 
the matrix theory of accuracy, we obtain the simplest matrix equation: 
 

𝑔𝑔 = (𝑒𝑒0 + 𝑒𝑒1)(𝑃𝑃1 + 𝑃𝑃2) (26) 
 
where 𝑃𝑃1 and 𝑃𝑃2 are the cutting force vectors from each tool. 

Adjustment 4 - two tools on the same carriage, but the tools are non-rigid. In this case, the decomposition of the 
technological system into four subsystems is required: spindle, carriage and each tool. For the selected subsystems, we 
set the compliance matrices: 𝑒𝑒0, 𝑒𝑒𝑐𝑐, 𝑒𝑒1, 𝑒𝑒2. Unlike the previous case, here, each tool gives its distortion to the executed 
dimension. In accordance with the matrix theory of accuracy of expression for distortion vectors on each tool: 
 

𝑔𝑔1 = (𝑒𝑒0 + 𝑒𝑒𝑐𝑐 + 𝑒𝑒1)𝑃𝑃1 + (𝑒𝑒0 + 𝑒𝑒𝑐𝑐)𝑃𝑃2 
 

(27) 

𝑔𝑔1 = (𝑒𝑒0 + 𝑒𝑒𝑐𝑐 + 𝑒𝑒1)𝑃𝑃1 + (𝑒𝑒0 + 𝑒𝑒𝑐𝑐)𝑃𝑃2    (28) 
 

Acting by analogy with adjustment 1 and adjustment 2, we get the lattice-matrix model: 
 

�
𝑔𝑔1
𝑔𝑔2� = �𝑒𝑒0 + 𝑒𝑒𝑐𝑐 + 𝑒𝑒1 𝑒𝑒0 + 𝑒𝑒𝑐𝑐

𝑒𝑒0 + 𝑒𝑒𝑐𝑐 𝑒𝑒0 + 𝑒𝑒𝑐𝑐 + 𝑒𝑒2
� �𝑃𝑃1𝑃𝑃2

� (29) 
 
which also converts to canonical form: 
 

�
𝑔𝑔1
𝑔𝑔2� = (𝑒𝑒0 + 𝑒𝑒𝑐𝑐)𝐾𝐾 �𝑃𝑃1𝑃𝑃2

� + �𝑒𝑒1 0
0 𝑒𝑒2

� �𝑃𝑃1𝑃𝑃2
�    (30) 

Here, as in model (21) and (25), the first term characterises the contribution to the error of compliance of the 
subsystems common for the dimensions being formed, the second term is the individual contribution of each tool to its 
size. 
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Adjustment 5 - two carriages, one tool on each carriage, non-rigid tools. Here, decomposition into five subsystems is 
necessary: a spindle, two carriages, two tools, with the corresponding ductility matrices: 𝑒𝑒0, 𝑒𝑒𝑐𝑐1, 𝑒𝑒𝑐𝑐2, 𝑒𝑒1, 𝑒𝑒2. In accordance 
with the matrix theory of accuracy, for each tool, we obtain two distortion vectors of the performed dimensions: 
 

𝑔𝑔1 = (𝑒𝑒0 + 𝑒𝑒𝑐𝑐1 + 𝑒𝑒1)𝑃𝑃1 + 𝑒𝑒0𝑃𝑃2 
 

   (31) 

𝑔𝑔2 = (𝑒𝑒0 + 𝑒𝑒𝑐𝑐2 + 𝑒𝑒2)𝑃𝑃2 + 𝑒𝑒0𝑃𝑃1 (32) 
 

Forming, by analogy with Eq. (17), the combined matrix equation in 6-dimensional hyperspace and highlighting 
semantic blocks, we obtain a lattice-matrix model: 
 

�
𝑔𝑔1
𝑔𝑔2� = �

𝑒𝑒0 + 𝑒𝑒𝑐𝑐1 + 𝑒𝑒1 𝑒𝑒0
𝑒𝑒0 𝑒𝑒0 + 𝑒𝑒𝑐𝑐2 + 𝑒𝑒2

� �𝑃𝑃1𝑃𝑃2
�    (33) 

 
In a canonical form, this model has three terms: 
 

�
𝑔𝑔1
𝑔𝑔2� = 𝑒𝑒0𝐾𝐾 �𝑃𝑃1𝑃𝑃2

� + �𝑒𝑒𝑐𝑐1 0
0 𝑒𝑒𝑐𝑐2

� �𝑃𝑃1𝑃𝑃2
� + �𝑒𝑒1 0

0 𝑒𝑒2
� �𝑃𝑃1𝑃𝑃2

�    (34) 
 

Each reflects its peculiarity of the formation of machining errors. The first term characterises the contribution of the 
ductility of the technological subsystem, which is the same for all carriages and tools - Spindle and the whole complex of 
cutting forces. The second term characterises the contribution of the ductility of the carriage, on which the executed 
dimension is formed, and the cutting forces acting on this carriage. The third term is the contribution of the compliance 
of the actual tool that forms this dimension. 

Adjustment 6 - two carriages, two tools on each carriage, non-rigid tools. Here decomposition is already necessary 
for seven subsystems: spindle, two carriages, four tools. For each of the subsystems, a compliance matrix is defined: 𝑒𝑒0, 
𝑒𝑒𝑐𝑐1, 𝑒𝑒11, 𝑒𝑒12, 𝑒𝑒𝑐𝑐2, 𝑒𝑒21, 𝑒𝑒22. In tool ductility matrices, the first index specifies the carriage number; the second specifies the 
tool number on this carriage. Matrix models of dimension distortion vectors for each of the tools have the form: 
 

𝑔𝑔11 = (𝑒𝑒0 + 𝑒𝑒𝑐𝑐1 + 𝑒𝑒11)𝑃𝑃11 + (𝑒𝑒0 + 𝑒𝑒𝑐𝑐1)𝑃𝑃12 + 𝑒𝑒0(𝑃𝑃21 + 𝑃𝑃22) 
 

(35) 

𝑔𝑔12 = (𝑒𝑒0 + 𝑒𝑒𝑐𝑐1 + 𝑒𝑒12)𝑃𝑃12 + (𝑒𝑒0 + 𝑒𝑒𝑐𝑐1)𝑃𝑃11 + 𝑒𝑒0(𝑃𝑃21 + 𝑃𝑃22) 
 

(36) 

𝑔𝑔21 = (𝑒𝑒0 + 𝑒𝑒𝑐𝑐2 + 𝑒𝑒21)𝑃𝑃21 + (𝑒𝑒0 + 𝑒𝑒𝑐𝑐2)𝑃𝑃22 + 𝑒𝑒0(𝑃𝑃11 + 𝑃𝑃12) 
 

(37) 

𝑔𝑔22 = (𝑒𝑒0 + 𝑒𝑒𝑐𝑐2 + 𝑒𝑒22)𝑃𝑃22 + (𝑒𝑒0 + 𝑒𝑒𝑐𝑐2)𝑃𝑃21 + 𝑒𝑒0(𝑃𝑃11 + 𝑃𝑃12)    (38) 
 

In accordance with the proposed approach (the combined matrix model in 12-dimensional hyperspace, the allocation 
of semantic blocks), we obtain the lattice-matrix model: 
 

�

𝑔𝑔11
𝑔𝑔12
𝑔𝑔21
𝑔𝑔22

� = �

𝑒𝑒0 + 𝑒𝑒𝑐𝑐1 + 𝑒𝑒11 𝑒𝑒0 + 𝑒𝑒𝑐𝑐1 𝑒𝑒0 𝑒𝑒0
𝑒𝑒0 + 𝑒𝑒𝑐𝑐1 𝑒𝑒0 + 𝑒𝑒𝑐𝑐1 + 𝑒𝑒12 𝑒𝑒0 𝑒𝑒0
𝑒𝑒0 𝑒𝑒0 𝑒𝑒0 + 𝑒𝑒𝑐𝑐2 + 𝑒𝑒21 𝑒𝑒0 + 𝑒𝑒𝑐𝑐2
𝑒𝑒0 𝑒𝑒0 𝑒𝑒0 + 𝑒𝑒𝑐𝑐2 𝑒𝑒0 + 𝑒𝑒𝑐𝑐2 + 𝑒𝑒22

��

𝑃𝑃11
𝑃𝑃12
𝑃𝑃21
𝑃𝑃22

� (39) 

 
In a canonical form, this model also has three terms, each of which reflects its own mechanism for generating errors: 

 

�

𝑔𝑔11
𝑔𝑔12
𝑔𝑔21
𝑔𝑔22

� = 𝑒𝑒0𝐾𝐾 �

𝑃𝑃11
𝑃𝑃12
𝑃𝑃21
𝑃𝑃22

� + �

𝑒𝑒𝑐𝑐1 𝑒𝑒𝑐𝑐1 0 0
𝑒𝑒𝑐𝑐1 𝑒𝑒𝑐𝑐1 0 0
0 0 𝑒𝑒𝑐𝑐2 𝑒𝑒𝑐𝑐2
0 0 𝑒𝑒𝑐𝑐2 𝑒𝑒𝑐𝑐2

��

𝑃𝑃11
𝑃𝑃12
𝑃𝑃21
𝑃𝑃22

� + �

𝑒𝑒11 0 0 0
0 𝑒𝑒12 0 0
0 0 𝑒𝑒21 0
0 0 0 𝑒𝑒22

��

𝑃𝑃11
𝑃𝑃12
𝑃𝑃21
𝑃𝑃22

�   (40) 
 

 
Thus, the use of lattice matrices allows to lead the model of machining accuracy for different types of multi-tool 

adjustments to the simplest form from the standpoint of algorithmic (24), (29), (33), (39). 
The canonical lattice-matrix model (25), (30), (34), (40) is more transparent from the standpoint of the mechanism of 

formation of machining error in a multi-carriage multi-tool setup. The first term in it reflects the influence of the common 
subsystem for all tools - the spindle. The following describes the influence of the second-level subsystems - carriages, 
which in turn are common subsystems for carriage tools. And the third term reflects the influence of the tools that form 
the executed dimensions. The degree of influence of each subsystem is determined by its compliance, which is determined 
by the corresponding matrix. Tool compliance matrices of tools are arranged in a diagonal lattice matrix of tools. Carriage 
compliance matrices form a lattice-diagonal block carriage matrix. Obviously, for the case of absolute rigidity of any of 
the subsystems, the corresponding matrix degenerates into zero. Therefore, model (40) can be considered a generalised 
lattice-matrix model of machining accuracy for a multi-carriage multi-tool adjustment. 
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Full-Factor Model - Distortion of Executed Dimensions in Multi-Tool Two-Carriage Machining 
 The machining error models generated in Eq. (23)-(25) take into account only plane-parallel displacements of the 

subsystems of the technological system along the coordinate axes of the Cartesian coordinate system X, Y, Z. Such an 
approach to modelling the process of formation of machining errors is permissible for parts having overall dimensions of 
the same order in all coordinate directions. 

 However, in practice, it is not uncommon for parts to be machined with overall dimensions significantly different in 
different directions. For example, long shafts (predominant linear size), discs and flanges (predominant diametric size). 
In these cases, a significant contribution to the machining error can be made by turns of the workpiece, especially in the 
directions of the prevailing overall dimensions. The need to take into account angular displacements of workpiece under 
the action of cutting forces was indicated in [3, 29-42]. They even proposed the simplest analytical relationships for 
calculating these angular displacements. 

 However, all these dependencies are private, including a number of parameters, the determination of which in practice 
is fraught with insurmountable difficulties. For example, the centre of rotation of the spindle is generally a virtual object 
that cannot be practically measured. Most importantly, these models do not agree with the general laws of mechanics of 
elastically deformable systems. Therefore, they cannot be used to construct a unified theory of machining accuracy when 
taking into account the possible angular displacements of the subsystems of the technological system. 

Considering a three-body system (as applied to two-carriage adjustments) with 6 degrees of freedom for each body 
and introducing compliance characteristics for each degree of freedom, the plane-parallel model of elastic displacements 
[23-24] is transformed into a full-factorial one: 
 

𝑤𝑤1 = �𝑒𝑒01 − �𝑎𝑎𝑂𝑂1
1 𝜉𝜉1𝑎𝑎𝑂𝑂1

1 + 𝑎𝑎𝑂𝑂0
0 𝜉𝜉0𝑎𝑎𝑂𝑂0

0 ��𝑃𝑃1 + �𝑒𝑒0 − 𝑎𝑎𝑂𝑂0
0 𝜉𝜉0𝑎𝑎𝑂𝑂0

0 �𝑃𝑃2 (41) 

𝑤𝑤2 = �𝑒𝑒02 − �𝑎𝑎𝑂𝑂2
2 𝜉𝜉2𝑎𝑎𝑂𝑂2

2 + 𝑎𝑎𝑂𝑂0
0 𝜉𝜉0𝑎𝑎𝑂𝑂0

0 ��𝑃𝑃2 + �𝑒𝑒0 − 𝑎𝑎𝑂𝑂0
0 𝜉𝜉0𝑎𝑎𝑂𝑂0

0 �𝑃𝑃1    (42) 

Here: 𝑒𝑒0 and 𝜉𝜉0 are the matrices of plane-parallel and angular compliance of body 0, respectively  

(𝜉𝜉0 = �
𝜉𝜉0𝑥𝑥𝑥𝑥 𝜉𝜉0𝑥𝑥𝑥𝑥 𝜉𝜉0𝑥𝑥𝑥𝑥
𝜉𝜉0𝑦𝑦𝑦𝑦 𝜉𝜉0𝑦𝑦𝑦𝑦 𝜉𝜉0𝑦𝑦𝑦𝑦
𝜉𝜉0𝑧𝑧𝑧𝑧 𝜉𝜉0𝑦𝑦𝑦𝑦 𝜉𝜉0𝑧𝑧𝑧𝑧

�); 𝑒𝑒01 and 𝑒𝑒02 are the total matrices of plane-parallel compliance of the contacting bodies 

(subsystems 01 and 02); 𝜉𝜉0, 𝜉𝜉1and 𝜉𝜉2are the matrices of the angular compliance for contacting bodies; 𝑃𝑃1and 𝑃𝑃2 are vector 
of forces applied respectively to body 1 and 2; 𝑎𝑎00

0 , 𝑎𝑎01
1  and 𝑎𝑎02

2 are matrices defining coordinating vectors of the point of 
application of the 𝑃𝑃1 and 𝑃𝑃2 forces relative to the base points of 𝑂𝑂0, 𝑂𝑂1 and 𝑂𝑂2, around which angular movements of the 
contacting bodies are carried out. 𝐴𝐴1 and 𝐴𝐴2 are the points of application of force 𝑃𝑃1 and 𝑃𝑃2 respectively; 𝑤𝑤1 and 𝑤𝑤2 - size 
distortions taking into account both plane-parallel and angular displacements. 

Full-Factor Matrix Models Of Scattering Fields Of Executive Dimensions In Multi-Tool Two-Support Adjustments 
 Considering a three-body system (as applied to two-carriage adjustments) with 6 degrees of freedom for each body 

and introducing compliance characteristics for each degree of freedom, the plane-parallel model of elastic displacements 
is transformed into a full-factor one. By the nature of the force interaction, Yusubov identified two limiting cases of multi-
tool adjustments [23-24]: opposed and non-opposed. In the opposing adjustment, all the cutting forces of one carriage are 
directed against the corresponding cutting forces of the other carriage. Such adjustments are traditional for turning-turret 
and turning multi-spindle automatic machines with cam control. In non-opposed adjustment, all the corresponding 
components of the cutting forces of both carriages are directed in the same direction. On modern CNC lathe machines, 
both types of adjustments are equally used. 

 The mechanism of the formation of the scattering field in a two-carriage opposed adjustment is more complicated 
than with single-adjustment machining. The dispersion of the rigidity of the technological system 𝑗𝑗𝐹𝐹 ∈ 𝑗𝑗𝑁𝑁 �1 −

𝜀𝜀
2

; 1 + 𝜀𝜀
2
� and 

the strength properties of the workpiece material 𝐶𝐶𝐹𝐹 ∈𝐶𝐶𝑁𝑁 �1 −
𝜈𝜈
2

; 1 + 𝜈𝜈
2
� determine the scale of the interval of dispersion of 

distortions in the dimensions of 𝑤𝑤1 and 𝑤𝑤2. The influence of fluctuations of allowances  𝑡𝑡𝐹𝐹 ∈ �𝑡𝑡 −
𝛥𝛥𝛥𝛥

2 𝑡𝑡 +𝛥𝛥𝛥𝛥2
� on the carriages 

is ambiguous. Since the cutting forces on the longitudinal and cross carriages are directed against each other, fluctuations 
in the allowances 𝛥𝛥𝑡𝑡1and 𝛥𝛥𝑡𝑡2  can also lead to a change in the balance of forces. As a result of this, the scattering intervals 
of the performed dimensions have three layout options. 

Option I is characterised by the predominant influence of the longitudinal carriage, i.e. displacements from the action 
of the forces of the longitudinal carriage are so much more displacements from the forces of the cross carriage that the 
entire interval of dispersion of distortions is located on the positive axis: 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚. Option II is characterised by the 
predominant influence of the cross carriage, i.e. displacements from the action of the forces of the cross carriage are so 
much greater than displacements from the forces of the longitudinal carriage that the entire interval of scattering of 
distortions is located on the negative axis: 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚. Option III is characterised by a balanced effect of the longitudinal 
and cross carriages. The nominal distortion of the performed size is located in the vicinity of zero, and the interval of 
dispersion of distortions includes the origin: 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚. 
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 The orientation of the scattering field relative to the nominal value is determined by the ratio of cutting depths on the 
carriages. So in option I, the allowance on the longitudinal carriage is maximum, and on the cross - minimum. The 
maximum value of the scattering interval is achieved with a maximum strength of the workpiece material and maximum 
flexibility of the technological system. 

The analysis results from all options of the scattering field location and taking into account the known methodology 
for determining the scattering area [23-26], a unified model of the scattering field of dimensions is formed, which is 
performed from the longitudinal carriage in a two-carriage opposed adjustment. 
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(43) 

 
Auxiliary vectors are entered here: 
 

𝑝𝑝𝑡𝑡1 =

⎝

⎜
⎛
𝐶𝐶𝑃𝑃𝑥𝑥1𝑡𝑡1

𝑥𝑥𝑃𝑃𝑥𝑥1−1𝑆𝑆1
𝑦𝑦𝑃𝑃𝑥𝑥1𝑉𝑉1

𝑧𝑧𝑃𝑃𝑥𝑥1

𝐶𝐶𝑃𝑃𝑦𝑦1𝑡𝑡1
𝑥𝑥𝑃𝑃𝑦𝑦1−1𝑆𝑆1

𝑦𝑦𝑃𝑃𝑦𝑦1𝑉𝑉1
𝑧𝑧𝑃𝑃𝑦𝑦1

𝐶𝐶𝑃𝑃𝑧𝑧1𝑡𝑡1
𝑥𝑥𝑃𝑃𝑧𝑧1−1𝑆𝑆1

𝑦𝑦𝑃𝑃𝑧𝑧1𝑉𝑉1
𝑧𝑧𝑃𝑃𝑧𝑧1 ⎠

⎟
⎞

   𝑝𝑝𝑡𝑡2 =

⎝

⎜
⎛
𝐶𝐶𝑃𝑃𝑦𝑦𝑡𝑡2

𝑥𝑥𝑃𝑃𝑦𝑦2−1𝑆𝑆2
𝑦𝑦𝑃𝑃𝑦𝑦2𝑉𝑉2

𝑧𝑧𝑃𝑃𝑦𝑦2

𝐶𝐶𝑃𝑃𝑥𝑥2𝑡𝑡2
𝑥𝑥𝑃𝑃𝑥𝑥2−1𝑆𝑆2

𝑦𝑦𝑃𝑃𝑥𝑥2𝑉𝑉2
𝑧𝑧𝑃𝑃𝑥𝑥2

𝐶𝐶𝑃𝑃𝑧𝑧2𝑡𝑡2
𝑥𝑥𝑃𝑃𝑧𝑧2−1𝑆𝑆2

𝑦𝑦𝑃𝑃𝑧𝑧2𝑉𝑉2
𝑧𝑧𝑃𝑃𝑧𝑧2⎠

⎟
⎞

 

 

   (44) 

𝑝𝑝𝛥𝛥𝛥𝛥1 =

⎝

⎜
⎛
𝑥𝑥𝑃𝑃𝑥𝑥1𝑡𝑡1

𝑥𝑥𝑃𝑃𝑥𝑥1−1𝐶𝐶𝑃𝑃𝑥𝑥1𝑆𝑆1
𝑦𝑦𝑃𝑃𝑥𝑥1𝑉𝑉1

𝑧𝑧𝑃𝑃𝑥𝑥1

𝑥𝑥𝑃𝑃𝑦𝑦1𝑡𝑡1
𝑥𝑥𝑃𝑃𝑦𝑦1−1𝐶𝐶𝑃𝑃𝑦𝑦1𝑆𝑆1

𝑦𝑦𝑃𝑃𝑦𝑦1𝑉𝑉1
𝑧𝑧𝑃𝑃𝑦𝑦1

𝑥𝑥𝑃𝑃𝑧𝑧1𝑡𝑡1
𝑥𝑥𝑃𝑃𝑧𝑧1−1𝐶𝐶𝑃𝑃𝑧𝑧1𝑆𝑆1

𝑦𝑦𝑃𝑃𝑧𝑧1𝑉𝑉1
𝑧𝑧𝑃𝑃𝑧𝑧1 ⎠

⎟
⎞

  𝑝𝑝𝛥𝛥𝛥𝛥2 =

⎝

⎜
⎛
𝑥𝑥𝑃𝑃𝑦𝑦2𝐶𝐶𝑃𝑃𝑦𝑦2𝑡𝑡2

𝑥𝑥𝑃𝑃𝑦𝑦2−1𝑆𝑆2
𝑦𝑦𝑃𝑃𝑦𝑦2𝑉𝑉2

𝑧𝑧𝑃𝑃𝑦𝑦2

𝑥𝑥𝑃𝑃𝑥𝑥2𝐶𝐶𝑃𝑃𝑥𝑥2𝑡𝑡2
𝑥𝑥𝑃𝑃𝑥𝑥2−1𝑆𝑆2

𝑦𝑦𝑃𝑃𝑥𝑥2𝑉𝑉2
𝑧𝑧𝑃𝑃𝑥𝑥2

𝑥𝑥𝑃𝑃𝑧𝑧2𝐶𝐶𝑃𝑃𝑧𝑧2𝑡𝑡2
𝑥𝑥𝑃𝑃𝑧𝑧2−1𝑆𝑆2

𝑦𝑦𝑃𝑃𝑧𝑧2𝑉𝑉2
𝑧𝑧𝑃𝑃𝑧𝑧2 ⎠

⎟
⎞

    (45) 

 
𝑝𝑝𝑡𝑡  vector characterises the degree of influence of the cutting depth 𝑡𝑡, vector 𝑝𝑝𝛥𝛥𝛥𝛥 - the degree of influence of fluctuations 

in stock allowance 𝛥𝛥𝛥𝛥, 𝜔𝜔 = 𝜀𝜀 + 𝜈𝜈 - values of the total scatter of the properties of the technological system. The cutting 
force, as a function of the parameter 𝑡𝑡, is determined by a well-known formula 𝑝𝑝𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑡𝑡𝑥𝑥𝑖𝑖𝑠𝑠𝑦𝑦𝑦𝑦𝑣𝑣𝑧𝑧𝑧𝑧  𝑖𝑖 = 𝑥𝑥;  𝑦𝑦;  𝑧𝑧. 

The model of the scattering field of dimensions performed in the opposite adjustment from the cross carriage is similar: 
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(46) 

 
In the non-opposed adjustment [23, 24] there is no counteraction of cutting forces. Therefore, the distortion scattering 

interval has a unique position - positive. The maximum is achieved with the largest allowances on both carriages, the 
maximum strength of the workpiece and the minimum compliance of the technological system, the minimum - in the 
opposite situation. As a result, for scattering fields of the dimensions performed in non-opposed adjustment, we obtain 
for longitudinal and cross carriages, respectively: 
 
𝛥𝛥𝑤𝑤1 = 𝜔𝜔[𝑒𝑒01𝑡𝑡1𝑝𝑝𝑡𝑡1 + 𝑒𝑒0𝑡𝑡2𝑝𝑝𝑡𝑡2] + [𝑒𝑒01𝛥𝛥𝑡𝑡1𝑝𝑝𝛥𝛥𝛥𝛥1 + 𝑒𝑒0𝛥𝛥𝑡𝑡2𝑝𝑝𝛥𝛥𝛥𝛥2 ] + 𝜔𝜔�−�𝑎𝑎𝑂𝑂1

1 𝜉𝜉1𝑎𝑎𝑂𝑂1
1 + 𝑎𝑎𝑂𝑂0

0 𝜉𝜉0𝑎𝑎𝑂𝑂0
0 �𝑡𝑡1𝑝𝑝𝑡𝑡1 − 𝑎𝑎𝑂𝑂0

0 𝜉𝜉0𝑎𝑎𝑂𝑂0
0 𝑡𝑡2𝑝𝑝𝑡𝑡2� + 

+�−�𝑎𝑎𝑂𝑂1
1 𝜉𝜉1𝑎𝑎𝑂𝑂1

1 + 𝑎𝑎𝑂𝑂0
0 𝜉𝜉0𝑎𝑎𝑂𝑂0

0 �𝛥𝛥𝑡𝑡1𝑝𝑝𝛥𝛥𝛥𝛥1 − 𝑎𝑎𝑂𝑂0
0 𝜉𝜉 𝑎𝑎0 𝑂𝑂0

0 𝛥𝛥𝑡𝑡2𝑝𝑝𝛥𝛥𝛥𝛥2 �; 
 

    (47) 
 

𝛥𝛥𝑤𝑤2 = 𝜔𝜔[𝑒𝑒02𝑡𝑡2𝑝𝑝𝑡𝑡2 + 𝑒𝑒0𝑡𝑡1𝑝𝑝𝑡𝑡1] + [𝑒𝑒02𝛥𝛥𝑡𝑡2𝑝𝑝𝛥𝛥𝛥𝛥2 + 𝑒𝑒0𝛥𝛥𝑡𝑡1𝑝𝑝𝛥𝛥𝛥𝛥1 ] + 𝜔𝜔�−�𝑎𝑎𝑂𝑂2
2 𝜉𝜉2𝑎𝑎𝑂𝑂2

2 + 𝑎𝑎𝑂𝑂0
0 𝜉𝜉0𝑎𝑎𝑂𝑂0

0 �𝑡𝑡2𝑝𝑝𝑡𝑡2 − 𝑎𝑎𝑂𝑂0
0 𝜉𝜉0𝑎𝑎𝑂𝑂0

0 𝑡𝑡1𝑝𝑝𝑡𝑡1� + 
+�−�𝑎𝑎𝑂𝑂2

2 𝜉𝜉2𝑎𝑎𝑂𝑂2
2 + 𝑎𝑎𝑂𝑂0

0 𝜉𝜉0𝑎𝑎𝑂𝑂0
0 �𝛥𝛥𝑡𝑡2𝑝𝑝𝛥𝛥𝛥𝛥2 − 𝑎𝑎𝑂𝑂0

0 𝜉𝜉 𝑎𝑎0 𝑂𝑂0
0 𝛥𝛥𝑡𝑡1𝑝𝑝𝛥𝛥𝛥𝛥1 �. 

    (48) 
 

 
The vast majority of real multi-tool adjustments do not have such uniformity in the direction of cutting forces [23, 

24]. Therefore, for adjustments that are inhomogeneous in direction, there is no single scheme for calculating scattering 
fields. The scheme for calculating the scattering field is determined separately for each coordinate direction, since one 
adjustment in the direction of one-run size can be opposite, and in the direction of another run size it can be non-opposite. 
If the adjustment of the considered direction is opposite, model (43) and (46) applied, but only a part of it in the direction 
of the considered size. For the non-opposed model, (47) and (48) applied, also only its part in the direction of the size 
under consideration. 

 By using two special models where (43) and (46) for opposed adjustments and (47) and (48) for non-opposed 
adjustments and the principle of the systematics of heterogeneous adjustments in the directions of executed sizes, it is 
possible to determine the scattering fields for the entire class of double-carriage deployed adjustments. 

EXPERIMENTAL DETERMINATION OF ELEMENTS COMPLIANCE FOR A TECHNOLOGICAL SYSTEM. 
 The experiment involved measuring static compliance. Machine nodes were loaded with forces in axial directions, 

after which displacements in these and other directions of the technological system were determined (Figure 2). The 
obtained values made it possible to characterise the compliance of the technological system in the corresponding axial 
directions. To determine the angular compliance, the loading was performed by the moment of forces, and the angular 
displacements were determined by the linear displacement of two points in one plane (see Figure 2). As already 
mentioned, under the action of cutting forces, the nodes of the machine receive elastic displacements of two types, namely 
along the coordinate axes and angular, around the corresponding axes. 

Determination of Compliance along with Coordinate Axes and Angular Compliance of Subsystems  
 Measurements were carried out on a CNC lathe INDEX V 160. The equipment consists of force measurement sensors 

(Kraftmessung–Kraftmessquarz Kistler Typ 9102 vorgespannt), a loading amplifier (Ladungsverstaerker Kistler Typ 
5004), displacement measurement (Wegsensoren Solarton Typ AX/1/SH), an amplifier of measurement results 
(Messverstaerker HBM Typ MGCplus, Empfindlichkeit 100  𝜇𝜇𝜇𝜇

𝑉𝑉
 oder 10  𝜇𝜇𝜇𝜇

𝑉𝑉
), a signal receiver (Signalaufnahme 

National Instruments High Speed USD Carrier Typ Ni USD 9162 , National Instruments Messkarte Typ Ni 9215, Filter 
: KEMO Typ VBF 8; Lowpass 10 Hz DC), and a laptop computer (Laptop HP Compaq nx 8220, Software : Ni LabView). 



N.D. Yusubov & H.M. Abbasova │ International Journal of Automotive and Mechanical Engineering │ Vol. 17, Issue 3 (2020) 

8077   journal.ump.edu.my/ijame ◄ 

Measurement Scheme 
The measurement stand for compliance of subsystems 0 and 1 is shown in Figure 2. To determine the corresponding 

compliance in the directions, loading was carried out by sequential force, after which the displacements in these and other 
directions of the technological system were determined (Figure 2). Loading and unloading of the elements of the system 
occurred gradually. The presence of joints and friction in technological system elements cause mismatch of the load and 
unload curves. 

 The experiments result to determine the matrix of static compliance for plane-parallel movements of subsystems 1 
and 0 (in Figure 2) is presented in Figure 3 and 4. Figure 3 and 4 give the regression equation and reliability. Table 1 and 
3 show the results of experiments to determine complex compliance in respective directions. 

 

  
(а) along X axis of the subsystem 0 from Px (b) along Y axis of the subsystem 0 from Px 

  
(c) along Z axis of the subsystem 0 from Px ( d) along X axis of the subsystem 1 from Px 

  
(e) along Z axis of the subsystem 1 from Px (f) along Y axis of the subsystem 1 from Px 

Figure 2. A stand for conducting an experiment to determine the complex compliance of subsystems 0 and 1. 
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(а) movement along X-axis of subsystem 0 from 𝑃𝑃𝑥𝑥 

 
(b) movement along X-axis of subsystem 1 from 𝑃𝑃𝑥𝑥 

Figure 3. Fragments of experiment results to determine e coordinate matrix and the angular matrix 𝝃𝝃 of compliance 
of subsystem 0 and 1. 

 

 
(a) the average angle of rotation along the X-axis of subsystem 0 from 𝑃𝑃𝑥𝑥 
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(b) the average angle of rotation along X-axis of subsystem 1 from𝑃𝑃𝑥𝑥 

Figure 4. Fragments of experiments results to determine the angular matrix 𝝃𝝃 of compliance of subsystem 0 and 1. 

Table 1. Elements of the matrix of static e compliance for plane-parallel movements of subsystems. 

 Compliance Value (mkm/N) 
Subsystem 0: 𝑒𝑒𝑥𝑥𝑥𝑥0 - compliance in direction of X axis due to force Px; 0.0425 
 𝑒𝑒𝑥𝑥𝑥𝑥0 - compliance in direction of X axis due to force Py; -0.0063 
 𝑒𝑒𝑥𝑥𝑥𝑥0 - compliance in direction of X axis due to force Pz; -0.0047 
 𝑒𝑒𝑦𝑦𝑦𝑦0 - compliance in direction of Y axis due to force Px; 0.0009 
 𝑒𝑒𝑦𝑦𝑦𝑦0 - compliance in direction of Y axis due to force Py; 0.0311 
 𝑒𝑒𝑦𝑦𝑦𝑦0 - compliance in direction of Y axis due to force Pz; -0.002 
 𝑒𝑒𝑧𝑧𝑧𝑧0 - compliance in direction of Z axis due to force Px; -0.0105 
 𝑒𝑒𝑧𝑧𝑧𝑧0 - compliance in direction of Z axis due to force Py; 0.0054 
 𝑒𝑒𝑧𝑧𝑧𝑧0 - compliance in direction of Z axis due to force Pz; -0.011 
Subsystem 1: 𝑒𝑒𝑥𝑥𝑥𝑥1 - compliance in direction of X axis due to force Px; -0.0128 
 𝑒𝑒𝑥𝑥𝑥𝑥1 - compliance in direction of X axis due to force Py; -0.0033 
 𝑒𝑒𝑥𝑥𝑥𝑥1 - compliance in direction of X axis due to force Pz; 0.001 
 𝑒𝑒𝑦𝑦𝑦𝑦1 - compliance in direction of Y axis due to force Px; 0.0026 
 𝑒𝑒𝑦𝑦𝑦𝑦1 - compliance in direction of Y axis due to force Py; 0.0072 
 𝑒𝑒𝑦𝑦𝑦𝑦1 - compliance in direction of Y axis due to force Pz; 0.0032 
 𝑒𝑒𝑧𝑧𝑧𝑧1 - compliance in direction of Z axis due to force Px; -0.0046 
 𝑒𝑒𝑧𝑧𝑧𝑧1 - compliance in direction of Z axis due to force Py; 0.0029 
 𝑒𝑒𝑧𝑧𝑧𝑧1 - compliance in direction of Z axis due to force Pz; 0.007 

 
Thus, we have identified the elements of elasticity coordinate matrix, 𝑒𝑒, that characterise the elasticity of technological 

system for each subsystem, the elasticity of the subsystems on the coordinate axes and their interaction. It should be noted 
that the directions of the X, Y, Z axes of the technological system shown in Table 1 correspond to the directions on the 
X, Y, Z axes shown in the mathematical models in the form of 𝑋𝑋 ⇒ 𝑍𝑍, 𝑌𝑌 ⇒ 𝑋𝑋, 𝑍𝑍 ⇒ 𝑌𝑌. During the experiments, directions 
of the coordinate axes of the coordinate system of the applied machine were used. As can be seen from the table, the 
values of the elements of the coordinate matrix 𝑒𝑒𝑥𝑥𝑥𝑥0  (diametrical), 𝑒𝑒𝑦𝑦𝑦𝑦0  (circumference), 𝑒𝑒𝑧𝑧𝑧𝑧0  (length) of the elasticity of the 
subsystem 0 and the elements of the coordinate matrix 𝑒𝑒𝑥𝑥𝑥𝑥1  (diametrical), 𝑒𝑒𝑦𝑦𝑦𝑦1  (circumference), 𝑒𝑒𝑧𝑧𝑧𝑧1  (length) of the elasticity 
of the subsystem 1 are higher, i.e. their stiffness is lower. Value of element 𝑒𝑒𝑥𝑥𝑥𝑥0  is equal to 14,82% of 𝑒𝑒𝑥𝑥𝑥𝑥0 , value of 𝑒𝑒𝑥𝑥𝑥𝑥0  is 
equal to 11,06% of 𝑒𝑒𝑥𝑥𝑥𝑥0 . Similarly, the value of element 𝑒𝑒𝑦𝑦𝑦𝑦0  is equal to 2.89% of 𝑒𝑒𝑦𝑦𝑦𝑦0 , the value of element 𝑒𝑒𝑦𝑦𝑦𝑦0 is equal to 
6.43% of 𝑒𝑒𝑦𝑦𝑦𝑦0 , the value of element 𝑒𝑒𝑧𝑧𝑧𝑧0 is equal to 95.45% of 𝑒𝑒𝑧𝑧𝑧𝑧0 , and the value of element 𝑒𝑒𝑧𝑧𝑧𝑧0 is equal to 49,09% of 𝑒𝑒𝑧𝑧𝑧𝑧0 . 
On the other hand, 79.44% of the elasticity in the general direction is in the share of 𝑒𝑒𝑥𝑥𝑥𝑥0 , 11.78% is in the share of 𝑒𝑒𝑥𝑥𝑥𝑥0 and 
8.78% is in the share of 𝑒𝑒𝑥𝑥𝑥𝑥0 . Similarly, 91.47% of the elasticity in the general direction is in the share of 𝑒𝑒𝑦𝑦𝑦𝑦0 , 5.88% is in 
the share of 𝑒𝑒𝑦𝑦𝑦𝑦0  and 2.65% is in the share of 𝑒𝑒𝑦𝑦𝑦𝑦0 , as well as, 40.9% of the elasticity in the general direction is in the share 
of 𝑒𝑒𝑧𝑧𝑧𝑧0 , 39.03% is in the share of 𝑒𝑒𝑧𝑧𝑧𝑧0  and 20.07% is in the share of 𝑒𝑒𝑧𝑧𝑧𝑧0 . In the same way, the following considerations can 
be made for subsystem 1. Value of 𝑒𝑒𝑥𝑥𝑥𝑥1 is equal to 25,78% of 𝑒𝑒𝑥𝑥𝑥𝑥1 , value of 𝑒𝑒𝑥𝑥𝑥𝑥1 is equal to 7.81% of 𝑒𝑒𝑥𝑥𝑥𝑥1 . Similarly, value of 
𝑒𝑒𝑦𝑦𝑦𝑦1  is equal to 36.11% of 𝑒𝑒𝑦𝑦𝑦𝑦1 , value of 𝑒𝑒𝑦𝑦𝑦𝑦1  is equal to 44.44% of 𝑒𝑒𝑦𝑦𝑦𝑦1 , value of 𝑒𝑒𝑧𝑧𝑧𝑧1  is equal to 65.71% of 𝑒𝑒𝑧𝑧𝑧𝑧1  and value of 
𝑒𝑒𝑧𝑧𝑧𝑧1  is equal to 41.43% of 𝑒𝑒𝑧𝑧𝑧𝑧1 . On the other hand, 74.85% of the elasticity in the general direction is in the share of 𝑒𝑒𝑥𝑥𝑥𝑥1 , 
19.30% is in the share of 𝑒𝑒𝑥𝑥𝑥𝑥1 and 5.85% is in the share of 𝑒𝑒𝑥𝑥𝑥𝑥1 . Similarly, 55.38% of the elasticity in the general direction 
is in the share of 𝑒𝑒𝑦𝑦𝑦𝑦1 , 24.62% is in the share of 𝑒𝑒𝑦𝑦𝑦𝑦1  and 20% is in the share of 𝑒𝑒𝑦𝑦𝑦𝑦1 , as well as, 48.28% of the elasticity in 
the general direction is in the share of 𝑒𝑒𝑧𝑧𝑧𝑧1 , 31.72% is in the share of 𝑒𝑒𝑧𝑧𝑧𝑧1  and 20% is in the share of 𝑒𝑒𝑧𝑧𝑧𝑧1 . Here, the following 
summary can be drawn about the elasticity of the 0 subsystem as a result of measurements: 
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Insufficient static elasticity (stiffness) is observed in both directions of the impact force of loading (in the direction of 
the X and Y axes), but the elasticity in the Z-axis is sufficient:  

 

(𝑒𝑒𝑥𝑥𝑥𝑥0 = 0,0425
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁  (𝑗𝑗𝑥𝑥𝑥𝑥0 = 23,53

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚); 

 

𝑒𝑒𝑦𝑦𝑦𝑦0 = 0,0311
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁  (𝑗𝑗𝑦𝑦𝑦𝑦0 = 32.15

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚); 

 

𝑒𝑒𝑧𝑧𝑧𝑧0 = −0,011
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁   (𝑗𝑗𝑧𝑧𝑧𝑧0 = −90,91

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚)). 

 
The interaction of elasticity is felt (deformations, the effect of the force in the perpendicular directions): 
 

(𝑒𝑒𝑥𝑥𝑥𝑥0 = −0,0063
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁  (𝑗𝑗𝑥𝑥𝑥𝑥0 = −158,73

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚); 

 

𝑒𝑒𝑥𝑥𝑥𝑥0 = 0,0047
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁 (𝑗𝑗𝑥𝑥𝑥𝑥0 = 212.77

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚); 

 

𝑒𝑒𝑦𝑦𝑦𝑦0 = −0,002
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁  (𝑗𝑗𝑦𝑦𝑦𝑦0 = 500

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚); 

 

𝑒𝑒𝑧𝑧𝑧𝑧0 = 0,0054
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁  (𝑗𝑗𝑧𝑧𝑧𝑧0 = 185,19

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚); 

 

𝑒𝑒0𝑧𝑧𝑧𝑧 = −0,0105
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁  (𝑗𝑗𝑧𝑧𝑧𝑧0 = −95,24

𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁 )).

 
 

The interaction of elasticity is felt extremely weak in only one direction (deformations, the effect of force in the 
perpendicular directions): 

 

(𝑒𝑒𝑦𝑦𝑦𝑦0 = −0,0009
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁  (𝑗𝑗𝑦𝑦𝑦𝑦0 = 1111,11

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚 ≻ 500

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚)) 

 
Also, as a result of measurements, the following summary can be drawn regarding the elasticity of 1 subsystem: 

Sufficient static elasticity (stiffness) is observed in all three directions of the impact force of loading (in the direction 
of the X, Y and Z axes): 

 

(𝑒𝑒𝑥𝑥𝑥𝑥1 = −0,0128
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁  (𝑗𝑗𝑥𝑥𝑥𝑥1 = −78,13

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚); 

 

𝑒𝑒𝑦𝑦𝑦𝑦1 = 0,0072
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁  (𝑗𝑗𝑦𝑦𝑦𝑦1 = 138.89

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚); 

 

𝑒𝑒𝑧𝑧𝑧𝑧1 = 0,007
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁  (𝑗𝑗𝑧𝑧𝑧𝑧1 = 142,86

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚)). 

 
The interaction of elasticity is felt (deformations, the effect of force in the perpendicular directions): 

 

(𝑒𝑒𝑥𝑥𝑥𝑥1 = −0,0033
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁  (𝑗𝑗𝑥𝑥𝑥𝑥1 = −303,03

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚); 

 

𝑒𝑒𝑦𝑦𝑦𝑦1 = 0,0026
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁  (𝑗𝑗𝑦𝑦𝑦𝑦1 = 384.62

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚); 

 

𝑒𝑒𝑦𝑦𝑦𝑦1 = 0,0032
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁

 (𝑗𝑗𝑦𝑦𝑦𝑦1 = 312,5
𝑁𝑁

𝑚𝑚𝑚𝑚𝑚𝑚
); 

 

𝑒𝑒1𝑧𝑧𝑧𝑧 = −0,0046
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁  (𝑗𝑗𝑧𝑧𝑧𝑧1 = −217,39

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚); 

 

𝑒𝑒𝑧𝑧𝑧𝑧1 = 0,0029
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁  (𝑗𝑗𝑧𝑧𝑧𝑧1 = 344,83

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚)). 

 
The interaction of elasticity is felt extremely weak in only one direction (deformations, the effect of force in the 

perpendicular directions): 
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(𝑒𝑒𝑥𝑥𝑥𝑥1 = 0,001
𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁  (𝑗𝑗𝑦𝑦𝑦𝑦1 = 1000

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚 ≻ 500

𝑁𝑁
𝑚𝑚𝑚𝑚𝑚𝑚). 

Determination of Angular Compliance of Subsystems 
 In the passports for lathes, the angular compliance of subsystems 0 and 1 is not indicated. Therefore, along with the 

experimental method for determining plane-parallel displacements, the corresponding angular compliance method was 
developed in the work, and specific data were obtained for the INDEX V 160 CNC machine. Table 2 shows the values 
of the turning moment and rotation angles and the sequence of determining the angular compliance for subsystem 0 and 
1. The angle of rotation 𝜃𝜃of the subsystems is determined by the formula 
 

𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑑𝑑2 − 𝑑𝑑1)/𝐿𝐿)    (49) 

 
where d1 is the elastic displacement of point 1, microns. d2- elastic displacement of point 2, microns. L - the distance 

between points 1 and 2, mm. 

Table 2. Angular compliance of subsystem 0. 

Moment, 
M (N·m) 

Displacement, (mkm) Distance between 
point 1 and 2 (mm) 

Angle, in radian  
(10-3 rad) 

Angular compliances  
(10-6 rad/N·m) Point 1 Point 2 

0 0 0 46.5 0 0 
17.7 0.0131145 0.0084182 46.5 -0.100995699 -5,70597E-06 
35.4 0.0258645 0.0166082 46.5 -0.199060212 -5,62317E-06 
53.1 0.0386145 0.0247982 6.5 -0.297124722 -5,59557E-06 

Table 3. Elements of the matrix of static 𝝃𝝃 angular compliance of subsystem 0 and 1 of INDEX V 160 lathe with CNC. 
Compliance                                                                                            Value (rad/n*m) 
Subsystem 0:  
𝜉𝜉𝑥𝑥𝑥𝑥0 - compliance in direction of X axis due to force Px                            −5.6 × 10−6 
𝜉𝜉𝑥𝑥𝑥𝑥0 - compliance in direction of X axis due to force Py                             1.1 × 10−6 
𝜉𝜉𝑥𝑥𝑥𝑥0 - compliance in direction of X axis due to force Pz                             2.7 × 10−6 
𝜉𝜉𝑦𝑦𝑦𝑦0 - compliance in direction of Y axis due to force Px                            −0.5 × 10−6 
𝜉𝜉𝑦𝑦𝑦𝑦0 - compliance in direction of Y axis due to force Py                            −3.6 × 10−6 
𝜉𝜉𝑦𝑦𝑦𝑦0 - compliance in direction of Y axis due to force Pz                              0.5 × 10−6 
𝜉𝜉𝑧𝑧𝑧𝑧0 - compliance in direction of Z axis due to force Px                               2.6 × 10−6 
𝜉𝜉𝑧𝑧𝑧𝑧0 - compliance in direction of Z axis due to force Py                              −3.3 × 10−6 
𝜉𝜉𝑧𝑧𝑧𝑧0 -  compliance in direction of Z axis due to force Pz;                             5.3 × 10−6 
Subsystem 1:   
𝜉𝜉𝑥𝑥𝑥𝑥1 - compliance in direction of X axis due to force Px; 0,5 × 10−6 
𝜉𝜉𝑥𝑥𝑥𝑥1 - compliance in direction of X axis due to force Py; 0,1 × 10−6 
𝜉𝜉𝑥𝑥𝑥𝑥1 - compliance in direction of X axis due to force Pz; 0,5 × 10−6 
𝜉𝜉𝑦𝑦𝑦𝑦1 - compliance in direction of Y axis due to force Px; 0,03 × 10−6 
𝜉𝜉𝑦𝑦𝑦𝑦1 - compliance in direction of Y axis due to force Py; −0,06 × 10−6 
𝜉𝜉𝑦𝑦𝑦𝑦1 - compliance in direction of Y axis due to force Pz; −0,4 × 10−6 
𝜉𝜉𝑧𝑧𝑧𝑧1 - compliance in direction of Z axis due to force Px; 0,06 × 10−6 
𝜉𝜉𝑧𝑧𝑧𝑧1 - compliance in direction of Z axis due to force Py; 0,4 × 10−6 
𝜉𝜉𝑧𝑧𝑧𝑧1 - compliance in direction of Z axis due to force Pz; −0,06 × 10−6 

 
 Thus, we have identified the elements of the angular matrix of elasticity 𝜉𝜉 of the subsystems of the technological 

system. As can be seen from the table, the elements 𝜉𝜉𝑥𝑥𝑥𝑥0  (diametrical), 𝜉𝜉𝑦𝑦𝑦𝑦0  (circular), 𝜉𝜉𝑧𝑧𝑧𝑧0  (length) of the angle matrix of 
elasticity of subsystem 0 and elements 𝜉𝜉𝑥𝑥𝑥𝑥1 , 𝜉𝜉𝑥𝑥𝑥𝑥1 , 𝜉𝜉𝑥𝑥𝑥𝑥1 , 𝜉𝜉𝑦𝑦𝑦𝑦1 , of coordinate matrix of elasticity of subsystem 1 are higher, i.e. 
their stiffness is lower. Value of element 𝜉𝜉𝑥𝑥𝑥𝑥0  is equal to 19,64% of 𝜉𝜉𝑥𝑥𝑥𝑥0 , value of 𝜉𝜉𝑥𝑥𝑥𝑥0  is equal to 48.21% of 𝜉𝜉𝑥𝑥𝑥𝑥0 . Similarly, 
the value of element 𝜉𝜉𝑦𝑦𝑦𝑦0  is equal to 13.89% of 𝜉𝜉𝑦𝑦𝑦𝑦0 , the value of element 𝜉𝜉𝑦𝑦𝑦𝑦0 is equal to 13.89% of 𝜉𝜉𝑦𝑦𝑦𝑦0 , the value of element 
𝜉𝜉𝑧𝑧𝑧𝑧0 is equal to 49.06% of 𝜉𝜉𝑧𝑧𝑧𝑧0 , and the value of element 𝜉𝜉𝑧𝑧𝑧𝑧0 is equal to 62.26% of 𝜉𝜉𝑧𝑧𝑧𝑧0 . On the other hand, 59.57% of the 
elasticity in the general direction is in the share of 𝜉𝜉𝑥𝑥𝑥𝑥0 , 11.70% is in the share of 𝜉𝜉𝑥𝑥𝑥𝑥0 and 28.72% is in the share of 𝜉𝜉𝑥𝑥𝑥𝑥0 . 
Similarly, 78.26% of the elasticity in the general direction is in the share of 𝜉𝜉𝑦𝑦𝑦𝑦0 , 10.87% is in the share of 𝜉𝜉𝑦𝑦𝑦𝑦0  and 10.87% 
is in the share of 𝜉𝜉𝑦𝑦𝑦𝑦0 , as well as 47.3% of the elasticity in the general direction is in the share of 𝜉𝜉𝑧𝑧𝑧𝑧0 , 23.21% is in the share 
of 𝜉𝜉𝑧𝑧𝑧𝑧0  and 29.46% is in the share of 𝜉𝜉𝑧𝑧𝑧𝑧0 . In the same way, the following considerations can be made for subsystem 1. 
Value of 𝜉𝜉𝑥𝑥𝑥𝑥1 is equal to 20% of 𝜉𝜉𝑥𝑥𝑥𝑥1 , value of 𝜉𝜉𝑥𝑥𝑥𝑥1 is equal to 100% of 𝜉𝜉𝑥𝑥𝑥𝑥1 . Similarly, value of 𝜉𝜉𝑦𝑦𝑦𝑦1  is equal to 50% of 𝜉𝜉𝑦𝑦𝑦𝑦1 , 
value of 𝜉𝜉𝑦𝑦𝑦𝑦1  is equal to 66.67% of 𝜉𝜉𝑦𝑦𝑦𝑦1 , value of 𝜉𝜉𝑧𝑧𝑧𝑧1  is equal to 100% of 𝜉𝜉𝑧𝑧𝑧𝑧1  and value of 𝜉𝜉𝑧𝑧𝑧𝑧1  is equal to 66.67% of 𝜉𝜉𝑧𝑧𝑧𝑧1 . On 
the other hand, 45.45% of the elasticity in the general direction is in the share of 𝜉𝜉𝑥𝑥𝑥𝑥1 , 9.1% is in the share of 𝜉𝜉𝑥𝑥𝑥𝑥1 and 45.45% 
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is in the share of 𝜉𝜉𝑥𝑥𝑥𝑥1 . Similarly, 12.24% of the elasticity in the general direction is in the share of 𝜉𝜉𝑦𝑦𝑦𝑦1 , 81.63% is in the 
share of 𝜉𝜉𝑦𝑦𝑦𝑦1  and 6.13% is in the share of 𝜉𝜉𝑦𝑦𝑦𝑦1 , as well as, 37.50% of the elasticity in the general direction is in the share of 
𝜉𝜉𝑧𝑧𝑧𝑧1 , 37.50% is in the share of 𝜉𝜉𝑧𝑧𝑧𝑧1  and 25% is in the share of 𝜉𝜉𝑧𝑧𝑧𝑧1 . 

 Thus, we experimentally determined the complex characteristics of the technological system. The proposed 
experimental method can be applied to other machines. 

Theoretical Analysis of Machining Accuracy at Various Adjustments 
 The proposed accuracy models take into account all the main factors of machining error: 

i. Machining allowance (t cutting depth); 
ii. Rigidity of the technological system 𝑗𝑗𝑥𝑥𝑥𝑥, 𝑗𝑗𝑥𝑥𝑥𝑥, 𝑗𝑗𝑥𝑥𝑥𝑥, 𝑗𝑗𝑦𝑦𝑦𝑦, 𝑗𝑗𝑦𝑦𝑦𝑦, 𝑗𝑗𝑦𝑦𝑦𝑦,𝑗𝑗𝑧𝑧𝑧𝑧,𝑗𝑗𝑧𝑧𝑧𝑧,𝑗𝑗𝑧𝑧𝑧𝑧; 
iii. Strength properties of the machined material (with the help of 𝐶𝐶𝑥𝑥, 𝐶𝐶𝑦𝑦, 𝐶𝐶𝑧𝑧) 
iv. Cutting conditions - feed S, cutting speed, group of the machined material and type of machining (with the 

help of 𝐶𝐶𝑥𝑥, 𝐶𝐶𝑦𝑦, 𝐶𝐶𝑧𝑧,𝑥𝑥𝑥𝑥, 𝑥𝑥𝑦𝑦, 𝑥𝑥𝑧𝑧); 
v. Connecting vectors of points of application of forces 𝑃𝑃1and 𝑃𝑃2 (with the help of matrices 𝑎𝑎00

0 , 𝑎𝑎01
1 and 𝑎𝑎02

2  
- constituting the linking vectors of the 𝑃𝑃1and 𝑃𝑃2 forces at the attached points relative to the base points of 
𝑂𝑂0, 𝑂𝑂1and 𝑂𝑂2). 

 Such an abundance of factors taken into account turns the proposed models into a powerful tool for predicting and 
studying the accuracy of machining. To test the efficiency of the models, variants with different initial data were 
calculated that determine the sensitivity of the formula, that is, theoretical studies of the machining accuracy for various 
variants were performed. Let us show one of them as an example. 

Figure 5 shows the technological and design factors influence on the distortion of the performed diametric size in 
dual-carriage adjustment. Here, in various versions, distorted values of the diametrical size were investigated, the basic 
version (Base version: two-carriage machining – longitudinal and cross carriages; workpiece – steel 45 (in GOST standard 
steel 45 is an analogy of AISI 1045 steel); cutting insert - CNMG 120408 P04 4225 CoroKey; dimensions of the 
workpiece: D=L=74.9 mm, workpiece accuracy – ITP112, ITP212; cutting speed – V1=V2=200 m/min.; feed S1=S2=0,24 
mm/rev; the coordinates of the linking vectors of the points of application of the 𝑃𝑃1and 𝑃𝑃2 forces relative to the base 
points of 𝑂𝑂0 and 𝑂𝑂1: X0=74.9 mm, Y0=37.45 mm, X1=136 mm, Y1=130 mm. Changes for other options shown in the 
figure.) and base points were selected, and the operability of the developed models was accordingly checked. Figure 5(a) 
shows the degree of reflection effect on total displacements, depending on the technological and structural parameters of 
the subsystems in the formation of distortions for other allowance (t1=2 mm and t2=2, 3, 4 mm), taking in the basic version 
(0%) the longitudinal and cross carriage at allowance values of t1=2 mm and t2=1 mm. It should be noted that here the + 
sign indicates an increase, and the - sign indicates a decrease. Depending on various technological and design parameters, 
an increase in the distortion of the performed diametrical dimension in a two-carriage adjustment is between +18% and 
+98%, and other changeable options relative to the base case, is 20% to +428%. 
 

  

(a) base variant (b) S2=0.12 mm/rev 
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(c) S2=0.12 mm/rev, V1=160 m/min, V2=200 m/min (d) X0=149.8 mm, Y0=74.9 mm, X1=272 mm, Y1=260 
mm 

  
(d) X0=112.35 mm, Y0=56.175 mm, X1=204 mm, 

Y1=195 mm 
(e) X0=149,8 mm 

 

  
(f) X0=224.7 mm (g) X0=374.5 mm 

Figure 5. The influence of technological and design factors on the value of distortion of the performed diametric size 
in two-carriage adjustment. 

 
Thus, the models of dimensional accuracy developed for two-carriage adjustments reflect the influence of the main 

technological and design factors. For this reason, taking into account the required accuracy, they can be used during the 
design of operations. 
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CONCLUSION 
 The technological capabilities of CNC multi-purpose machines, possible options for the implementation of parallel 

multi-tool machining on them and the use of this type of equipment and tool adjustment at factories at present were 
analysed. It was revealed that many factories that have CNC multi-purpose machines use them at best for 50% of their 
technological capabilities. This situation has arisen due to the fact that there are no recommendations on the design and 
application of such adjustments. Therefore, the main prerequisite for solving this problem is to improve the theory of 
designing multi-tool machining, taking into account the capabilities of modern CNC machines. For this purpose, lattice-
matrix models of precision multi-tool machining have been developed in order to fulfil the requirements of algorithmic 
uniformity of models and their structural transparency. An attempt was also made to obtain a generalised lattice-matrix 
model of machining accuracy for multi-carriage multi-tool adjustment. The use of lattice matrices greatly simplifies the 
error model of multi-tool machining and makes it extremely visual. On the need to take into account the angular 
displacements of the workpiece, in the case of machining parts with overall dimensions that significantly differ in different 
directions under the action of cutting forces, full-factor distortion models and scattering fields of the multi-tool machining 
dimensions performed on modern multi-purpose CNC lathe machines taking into account the compliance of the 
technological system according to all 6 degrees of freedom and thus allowing to take into account both plane-parallel and 
angular displacements in the technological system. Based on the developed models, it is possible to identify the degree 
of influence of complex of technological factors on the machining accuracy, including the structure of multi-tool setup, 
the deformation properties of the subsystems of the technological system, and cutting conditions. A methodology has 
been developed to determine the complex characteristics of technological system compliance;  

i. the matrix of coordinate compliance,  
ii. characterising the compliance of the subsystem along with the coordinate axes (their mutual influence and the 

matrix of angular compliance),  
iii. characterising the resistance to rotation around the coordinate axes and their interaction, and  
iv. the complex characteristic of the technological system compliance (experimentally determined) for each of the 

subsystems and the complex of two matrices (angular and plane parallel compliance of the technological system 
subsystems).  

Considering both types of compliance, when setting up the machine, it is possible to take into account both plane-
parallel and angular movements of the tool relative to the workpiece. The proposed experimental technique is applicable 
to other lathes too. The accuracy models in spatial adjustments make it possible to develop recommendations for designing 
adjustments of modern multi-purpose machines with CNC turning group, that is, to create CAD multi-tool machining. 
Thus, it is possible to achieve a number of ways to control multi-tool machining based on the developed accuracy models, 
including improving the structure of the multi-tool setup and calculating the limiting cutting conditions. 
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