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INTRODUCTION 

 The fatigue failure of vehicle components has long been considered as one of the main factors to cause accidents. 

Failure is a cumulative event that materials gradually produce brittle cracks and eventually break due to fluctuating 

stresses [1, 2]. In fact, fatigue failure of mechanical parts will not cause any obvious deformation, so fatigue life prediction 

is a significant job in the maintenance and operation of automotive.  

In the past few years, many scholars have studied a series of problems in the prediction of vehicle fatigue life, mainly 

including simulation of random excitation, response analysis of vehicle components and fatigue life calculation methods. 

A moving car usually experiences non-Gaussian excitation in a real environment which is quite different from Gaussian 

that, so traditional Gaussian random signals could not represent these non-Gaussian processes. There are two different 

ways to simulate non-Gaussian excitation in literature [3, 4, 5, 6], one is on the foundation of first four moments and 

power spectral density, the other is based on probability density function and PSD. Response analysis is relatively simple; 

an overview is provided in [4, 7, 20]. 

 There are lots of useful ways to predict fatigue damage in time and frequency domain in recent years. Frequency 

domain approaches [8, 9] can be generally used to predict fatigue damage based on PSD statistics, and the key is to 

construct a stress amplitude probability function model that meets requirements. The time-domain analysis evaluates 

fatigue life by describing the statistical law of stress change with time [9, 10], such as rain flow counting. This theory 

aims to convert an irregular, random load-time history into a series of cyclic processes, and it is convenient for computer 

programming. Dietz et al. proposed a way, combining frequency and time domain theory, to estimate the fatigue life of 

vehicle bogie. At the same time, this way was applied to work together with the computer-aided design, the finite element 

method and the multibody system program [11]. On the basis of measured pavement data of proving ground, Men et al. 

simulated road excitation under ADAMS environment, as well as calculated fatigue life according to the dynamic loads 

working on a vehicle air suspension [12]. In Ferreira et al.’s work, authors gave a comparative result about several 

automotive components fatigue life problems by time and frequency domain methods, where these problems involved 

not only static and dynamic behaviour but also single input and multiple correlated inputs [13]. 

 From the literature [14], it has been concluded that damage accumulation is sensitive to non-Gaussian excitation. In 

view of this, we should hunt a new way to simulate non-Gaussian pavement excitation in line with the real environment. 

Subsequently, the accurate fatigue life of vehicle components could be obtained based on these simulated incentives. This 

paper aims to analyse the fatigue life of nonlinear vibratory systems under non-Gaussian loads. In the first place, non-

Gaussian inputs are generally represented by polynomial chaos expansion and Karhunen-Loeve expansion, then 

ABSTRACT – Fatigue life analysis is an important work in manufacturing of vehicle systems. The 
traditional method is to assume that stochastic loads are Gaussian type, then fatigue life is 
calculated by rain-flow counting, S-N curve and Miner linear damage rule. However, it is difficult to 
acquire accurate results by this means. In this paper, a numerical methodology is used to simulate 
non-Gaussian loads considering effects of skewness and kurtosis, as well as to estimate fatigue 
life under non-Gaussian stresses. Firstly, non-Gaussian inputs are represented by polynomial 
chaos expansion (PCE) and Karhunen-Loeve (KL) expansion when they are characterised using 
first four moments, i.e. mean, variance, skewness, kurtosis and a given correlation structure. 
During this process, we propose spectral decomposition to eliminate the influence of potential 
imaginary numbers, principal component analysis is also proposed to simplify calculating 
procedure in KL. Besides, original Monte Carlo sampling is replaced by quasi Monte-Carlo (QMC), 
which could greatly reduce the workload of numerical simulations. In order to get first four moments 
and correlation structure of outputs, differential equations of motion are numerically integrated by 
Runge-Kutta method. Meanwhile, response trajectories are represented based on PCE-KL-QMC 
approach. Eventually, the rain-flow counting is applied into these trajectories to obtain fatigue life 
variables, and a convenient formula about the saddlepoint approximations (SPA) represented by 
first four moments is proposed to provide fatigue life PDF. According to the above way, accurate 
and effective fatigue life estimation results can be presented. 
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parameters in these stochastic process expressions are acquired on the grounds of given first four moments and correlation 

structure. Numerical solutions of vehicle system differential equations are easily calculated on the foundation of fourth-

order Runge-Kutta approach. From this, we can deduce the first four moments of outputs and even simulate response 

trajectories based on PCE-KL-QMC. Subsequently, each trajectory is rainflow cycle counted for the purpose of obtaining 

fatigue life random variables. In the end, saddlepoint approximations provide the life PDF. 

ANALYSIS APPROACH OVERVIEW 

Simulation of non-Gaussian Excitation  

 Vibration systems are often affected by non-Gaussian excitation. Generally speaking, a non-Gaussian process F(t) has 

the same PSD, mean µF and variance σF
2 with a Gaussian process. Still, its other parameters, namely skewness and 

kurtosis, are not equal to 0 and 3 that belong to values of a Gaussian distribution. So the definitions of skewness SF and 

kurtosis KF in literature [3] are needed to character non-Gaussian properties of F(t). Figure 1 shows the differences 

between non-Gaussian and Gaussian stochastic process. 
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Figure 1. Comparison between non-Gaussian and Gaussian process. 

Autocorrelation function ρFF is the inverse Fourier transform of the targeted PSD. Using a time discretization dt=Δt 

sec for the 0≤t≤T time of interest and N=T/Δt+1 is the number of sampling points. Afterwards, covariance matrix CFF(ti,tj), 

i, j=1,···,N is formed, where CFF(ti,tj)=ρFF(τ) and τ=|ti-tj|=Δt|i-j|. Then Σξξ=[Σξξ(ti,tj)], the covariance of a standard normal 

process ξ(t), is used to perform a spectral decomposition [15]: 

Σξξ=QΣQT (1) 

where Σ=diag(λ1,λ2,···,λN) and λ1,λ2,···,λN are singular values of Σξξ, Q=[Q1 ,Q2 ,···,QN] and Qi is singular vector, 

i=1,2,···,N. In this way, ξ(t) can be represented by Karhunen-Loeve expansion [4] based on independent standard normal 

variables ui : 

𝜉(𝑡) = ∑ √𝜆𝑖

𝑁

𝑖=1

⋅ 𝑄𝑖(𝑡) ⋅ 𝑢𝑖 (2) 

Principal component analysis plays an important role in determining the number of singular values, vectors and 

independent standard normal variables required in Eq.(2), then this problem is transformed to calculate the value of r in 

the following formula: 

(∑ 𝜆𝑖 ⋅ 𝑄𝑖
2(𝑡)

𝑟

𝑖=1

) (∑ 𝜆𝑖 ⋅ 𝑄𝑖
2(𝑡)

𝑁

𝑖=1

)⁄ ≥ 𝑝 (3) 

where 0<p≤1, a non-Gaussian variable F is usually expressed by the standard normal random variable ξ [16] : 

𝐹 = ∑ 𝑏𝑘 𝐻𝑘(𝜉) = 𝑏0 + 𝑏1𝜉 + 𝑏2(𝜉2 − 1) + 𝑏3(𝜉3 − 3𝜉) +⋅⋅⋅ (4) 

where bk(k=0,1,2,3···) are coefficients of polynomial chaos expansion. One-dimensional Hermite orthogonal polynomial 

Hk (ξ) is defined as [5]: 

𝐻𝑘(𝜉) = (−1)𝑘𝑒
𝜉2

2
𝑑𝑘

𝑑𝜉𝑘 𝑒−
𝜉2

2 (5)
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Equation (4) can be extended in time as: 

𝐹(𝑡) = ∑ 𝑏𝑘 (𝑡)𝐻𝑘(𝜉(𝑡)) = 𝑏0(𝑡) + 𝑏1(𝑡)𝜉(𝑡) + 𝑏2(𝑡)(𝜉(𝑡)2 − 1) + 𝑏3(𝑡)(𝜉(𝑡)3 − 3𝜉(𝑡)) +⋅⋅⋅ (6) 

these coefficients bk (k=0,1,2,3...) are constants for a stationary non-Gaussian process F(t). Using the orthogonal 

properties of Hermite polynomial, the covariance CFF(ti,tj) with respect to ti and tj is equal to: 

𝐶𝐹𝐹(𝑡𝑖 , 𝑡𝑗) = ∑ 𝑏𝑘

𝑘

(𝑡𝑖)𝑏𝑘(𝑡𝑗) ⋅ (𝑘!) ⋅ (𝐸[𝜉(𝑡𝑖)𝜉(𝑡𝑗)])𝑘
(7) 

where E[ξ(ti)ξ(tj)]=Σξξ(ti,tj), i,j=1,2,···,N. From this, Σξξ in Eq.(1) is obtained and unknown coefficients b1,b2,b3,b4 are 

calculated according to the following equations: 

𝜇𝐹 = 𝐸(𝐹) = 𝑏0 = 𝑔1(𝑏0, 𝑏1, 𝑏2, 𝑏3) (8-1) 

𝐸[(𝐹 − 𝜇𝐹)2] = 𝑏1
2 + 2𝑏2

2 + 6𝑏3
2 = 𝑔2(𝑏0, 𝑏1, 𝑏2, 𝑏3) (8-2) 

𝐸[(𝐹 − 𝜇𝐹)3] = 6𝑏1
2𝑏2 + 8𝑏2

3 + 36𝑏1𝑏2𝑏3 + 108𝑏2𝑏3
2 = 𝑔3(𝑏0, 𝑏1, 𝑏2, 𝑏3) (8-3) 

𝐸[(𝐹 − 𝜇𝐹)4] = 3𝑏1
4 + 60𝑏2

4 + 3348 𝑏3
4 + 60 𝑏1

2𝑏2
2 + 252 𝑏1

2𝑏3
2 + 576 𝑏1𝑏2

2𝑏3 + 1296 𝑏1𝑏3
3

+ 2232 𝑏2
2𝑏3

2 = 𝑔4(𝑏0, 𝑏1, 𝑏2, 𝑏3)

(8-4) 

Given the first four statistics parameters μF, σF
2, SF and KF, functions ggu (b0,b1,b2,b3), u = 1,2,3,4 are defined as: 

𝜇𝐹 = 𝐸(𝐹) = 𝑏0 = 𝑔1(𝑏0, 𝑏1, 𝑏2, 𝑏3) (9-1) 
𝑔𝑔2(𝑏0, 𝑏1, 𝑏2, 𝑏3) = 𝑔2(𝑏0, 𝑏1, 𝑏2, 𝑏3) − 𝜎𝐹

2
 (9-2) 

𝑔𝑔3(𝑏0, 𝑏1, 𝑏2, 𝑏3) = 𝑔3(𝑏0, 𝑏1, 𝑏2, 𝑏3) − 𝑆𝐹𝜎𝐹
3

 (9-3) 
𝑔𝑔4(𝑏0, 𝑏1, 𝑏2, 𝑏3) = 𝑔4(𝑏0, 𝑏1, 𝑏2, 𝑏3) − 𝐾𝐹𝜎𝐹

4
 (9-4) 

The optimisation model f is then constructed: 

𝑓 = 𝑚𝑖𝑛
𝑏0,𝑏1,𝑏2,𝑏3

∑ 𝑔𝑔𝑢
2

4

𝑢=1

(𝑏0, 𝑏1, 𝑏2, 𝑏3) (10) 

These coefficients b0,b1,b2,b3 are calculated by global optimisation methods, such as simulated annealing [17], which 

reduce the risk of getting a local optimal solution. 

Response Analysis of Vibratory Systems 

 Monte Carlo (MC) approach, based on the idea of using sampling, aims to deal with mathematical problems that 

cannot be solved by analytical processes [18]. More precisely, this idea is to create samples that are used to derive 

approximations about a quantity of interest and its probability distribution. MC uses random sampling, which usually 

causes local aggregation of samples. In view of this, the quasi Monte Carlo method using low-discrepancy sampling is 

selected to improve the efficiency in multivariate integration evaluations. The specific steps are shown in Figure 2. 

According to the QMC method [19], we should reasonably sample in the r-dimensional space [0, 1]r. For that, a Latin 

Hypercube design is adopted, which can achieve the purpose of stratified sampling in computer experiments. In other 

words, it creates r sets or sequences of vectors. Therefore stochastic process ξ(t) can be approximated by r standard normal 

variables. We construct a matrix A={Ai=(Ai,1,Ai,2,···Ai,r), i=1,2,···n} where elements in the row vector Ai obey uniform 

distribution from 0 to 1, as well as n is at least three to five times larger than r. Secondly, elements in Ai are substituted 

into the inverse standard normal cumulative distribution function Φ-1(·), then a new vector {u=(u1,u2,···,ur)} is formed. 

The variables uj=Φ-1(Ai,j), j=1,2,···r are used in Eq.(2) to obtain a process of ξ(t) which in turn is used in Eq. (6) to get a 

non-Gaussian excitation. Following the above steps, row vectors of A are used for acquiring all non-Gaussian inputs Fi(t), 

i=1,2,···n. Subsequently, establishing motion differential equations, and output trajectories Xi(t) are obtained due to the 

fourth-order Runge-Kutta algorithm where time interval [0, T] is divided by a step Δt so that tj=(j-1)Δt，j=1,2,…,N.  
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Figure 2. Concepts of quasi Monte-Carlo method. 

Analysis of mean, variance, skewness, and kurtosis of response processes are shown as follows [20]: 

𝜇𝑋 =
1

𝑛 ⋅ 𝑁
∑ ∑ 𝑋𝑖(𝑡𝑗)

𝑛

𝑖=1

𝑁

𝑗=1 

(11-1)  

𝜎𝑋
2 =

1

𝑛 ⋅ 𝑁
∑ ∑[𝑋𝑖(𝑡𝑗) − 𝜇𝑋]2

𝑛

𝑖=1

𝑁

𝑗=1  

(11-2)  

𝑆𝑋 =
1

𝑛 ⋅ 𝑁
∑ ∑[(𝑋𝑖(𝑡𝑗) − 𝜇𝑋) 𝜎𝑋⁄ ]

𝑛

𝑖=1

𝑁

𝑗=1

3

(11-3)  

𝐾𝑋 =
1

𝑛 ⋅ 𝑁
∑ ∑[(𝑋𝑖(𝑡𝑗) − 𝜇𝑋) 𝜎𝑋⁄ ]

𝑛

𝑖=1

𝑁

𝑗=1

4

(11-4)  

where Xi(tj) is the value of output process Xi(t) at time instant tj. Because outputs are stationary, their autocorrelation at a 

relative time τ1 is determined by: 

𝜌𝑋𝑋(𝜏1) =
1

𝑛 ⋅ 𝑁1
∑ ∑ 𝑋𝑖(𝑡𝑗

𝑛

𝑖=1

𝑁1≤𝑁

𝑗=1

)𝑋𝑖(𝑡𝑗 + 𝜏1) (12) 

where 𝑁1 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑗

[𝑗|𝑡𝑗 + 𝜏1 = (𝑗 − 1) ⋅ 𝛥𝑡 + 𝜏1 ≤ 𝑇, 𝑗 = 1,⋅⋅⋅ 𝑁].

This paper uses numerical calculations to analyse outputs of a vehicle system under non-Gaussian inputs. The first 

four moments and autocorrelation of responses are estimated by Eq.(11) and (12), then output processes can be simulated 

based on PCE-KL expansion. 

Analysis of PDF of Fatigue Life 

 When fluctuating stress is imposed on a vehicle component for a long time, there could appear fatigue damage or even 

failure. The relationship between the stress level S and the number of cycles N for the specimen to fail at the same stress 

level is expressed according to the S-N curve: 

N·Sa=b (13) 

where a and b, related to material properties, are constants. The Miner damage model is the simplest and most effective 

statistical way to describe cumulative damage. In the first place, the number of cycles nk at a cyclic load Sk is estimated. 

When specimen appears fatigue failure under the stress level Sk, S-N curve is used to calculate the number of cycles Nk. 

Next, the incremental damage Dk is equal to nk/Nk. Therefore, cumulative damage D can be presented by summing up Dk 

at various stress level:  
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𝐷 = ∑ 𝐷𝑘

𝑘

= ∑
𝑛𝑘

𝑁𝑘
𝑘

(14) 

where D is constant, and fatigue failure occurs if D is greater than 1 (D>1). In order to account for the mean stress effect, 

S in Eq.(13) is replaced by Se, which can be represented by the following Goodman model: 

𝑆𝑒 = 𝑆𝑎 (1 − 𝑆𝑚 𝑆𝑢⁄ )⁄ (15) 

where Sa is the stress amplitude, Sm is the mean stress, and Su is the ultimate strength of the material. 

Rain-flow counting is a way to describe the statistical law of stress with time-varying. A series of stress trajectories 

τi(t), i=1,2,…,n are first simulated for the purpose of analysing fatigue life PDF. Each of them is rainflow counted, and 

Eq.(13), (14), (15) provide realizations of the incremental damage Dik, k=1,2,…,m in ith stress trajectory. Then the PDF 

of fatigue life Yi =1/Di in seconds can be supplied by the saddlepoint approximation [21]. The followings are specific steps 

about SPA.   

 Saddlepoint approximations is an effective statistical method for obtaining probability density and distribution 

function approximation formulas. The PDF of stochastic variables Y=[Y1, Y2,···, Yn] is fY(y) and the moment generating 

function (MGF) of Y could be defined as: 

𝜓𝑌(𝑡) = 𝐸[𝑒𝑡𝑦] = ∫ 𝑒𝑡𝑦
∞

−∞

𝑓𝑌(𝑦)𝑑𝑦 =
1

𝑛
∑ 𝑒

𝑛

𝑖=1

𝑡⋅𝑌𝑖

(16) 

where t is in the neighbourhood of 0, as well as n is the number of sample points. The cumulant generating function 

(CGF) of Y is given by the natural logarithm of MGF, that is to say: 

𝐾𝑌(𝑡) = 𝑙𝑜𝑔[ 𝜓𝑌(𝑡)] (17) 

Performing inverse Fourier transform on ψY (it) , we can get the PDF of Y: 

𝑓𝑌(𝑦) =
1

2𝜋
∫ 𝑒−𝑖𝑡𝑦

∞

−∞

𝜓𝑌(𝑖𝑡)𝑑𝑡 =
1

2𝜋
∫ 𝑒[𝐾𝑌(𝑡)−𝑡𝑦]

𝑖∞

−𝑖∞

𝑑𝑡 (18) 

The integral in the above formula is estimated by the exponential power series expansion, then Eq.(18) is exchanged by: 

𝑓𝑌(𝑦) = [1 2𝜋𝐾𝑌
′′(𝑡𝑠)⁄ ]

 1 2⁄
𝑒[𝐾𝑌(𝑡𝑠)−𝑡𝑠𝑦] (19) 

KY
’’(·) denotes the second derivative of CGF and ts is the saddlepoint which is solved by the following equation: 

𝐾𝑌′(𝑡) = 𝑦 (20) 

where KY
’(·) is the first-order derivative of CGF of Y. Then the cumulant generating function of Y in Eq.(17) is replaced 

by the following formula: 

𝐾𝑌(𝑡) = ∑ 𝑣𝑗

∞

𝑗=1

𝑡𝑗

𝑗!
(21) 

where vj are jth cumulant of Y, the values of the first four cumulants are calculated as follows: 

v1=μY (22-1) 

v2=σY
2

 (22-2) 

v3=SYσY
3 

 (22-3) 

v4=(KY-3)×σY
4 (22-4) 

The mean µY, variance σY
2, skewness SY and kurtosis KY could be calculated. Based on this information, Eq.(20) is written 

as: 

𝐾𝑌 ′(𝑡) = 𝑣1 + ∑ 𝑣𝑗

4

𝑗=2

𝑡𝑗−1

(𝑗 − 1)!
= 𝑦 (23) 

SPA provides accurate probability estimation, especially in the left and right tail area of distribution. Besides, the analysis 

process is very simple, and the core of SPA is to find one saddle point without any integration. 
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SIMULATION AND RESULTS 

 In this paper, a quarter vehicle model (the tire damping is negligible) is simplified into a nonlinear vibration system 

under non-Gaussian loads, as shown in Figure 3. 

m2

c

m1

k3

k1

F(t)

x2(t)

x1(t) k2

Figure 3. Model of the quarter vehicle suspension. 

The differential equations of motion are recorded as:  

𝑚1�̈�1 + 𝑐(�̇�1 − �̇�2) + (𝑘1 + 𝑘2)𝑥1 − 𝑘2𝑥2 + 𝑘3(𝑥1 − 𝑥2)3 = 𝑘1𝐹
𝑚2�̈�2 − 𝑐(�̇�1 − �̇�2) − 𝑘2(𝑥1 − 𝑥2) − 𝑘3(𝑥1 − 𝑥2)3 = 0

(24) 

where F(t) is a non-Gaussian road excitation. The masses m1 and m2 are respectively 80 and 350kg, the damping 

coefficient is c=12000kg/s, the spring rates are k1=400kN/m, k2=45kN/m. We consider a nonlinear hardening for the 

suspension spring, k3=80kN/m. Shear stress working on the suspension is composed of two parts. One is static stress 

because of the weight of the vehicle, and another is alternating stress resulted from road excitation. The deflection of the 

spring (x1−x2) is calculated by the dynamic response of the vehicle system. Dynamic and static shear stress then are 

calculated as: 

𝜏 = 𝐾𝑤

8𝐷𝑘2(𝑥1 − 𝑥2)

𝜋𝑑3

(25) 

𝜏𝑚 = 𝐾𝑤
8𝐷𝑚2𝑔

𝜋𝑑3 where 𝐾𝑤 =
4𝐶−1

4𝐶−4
+

0.615

𝐶 
(26) 

The coil and wire diameters D and d are 17.3 and 2.2cm, the spring index C is equal to 7.878, as well as gravitational 

acceleration is 9.8m/s2 and the ultimate strength of the material Su is 850MPa. In this model, total shear stress τu should 

be calculated by adding up static stress τm and dynamic stress τ. In Eq.(25) and (26), the Wahl factor Kw is used to account 

for the stress increase on the spring wire due to the spring curvature. Whether the road roughness is Gaussian or non-

Gaussian process, its PSD [22] is:   

𝑆𝐹(𝑤) = 4𝜋2𝑛0
2𝑆𝐹(𝑛0)𝑣 (𝑤2⁄ + 𝑤0

2) (27) 

where SF (n0) is road roughness coefficient, n0=0.1m-1 is standard spatial frequency, w is the circular road frequency, and 

w0=2πvn0, as well as v represents the vehicle speed which is equal to 60km/h. Table 1 presents different values of SF (n0) 

according to the road classification from A to H, and type of road D is selected in this paper. 

Table 1. Road classification rules. 

Road classification A B C D E F G H 

SF(n0)/(×10-6 m3) 16 64 256 1024 4096 16384 65536 262144 

Figure 4 shows PSD of non-Gaussian excitation F(t). Autocorrelation function ρFF(τ) was the inverse Fourier 

transform of SFF(w) and it’s curve is shown in Figure 5. We toke vibratory time interval as [0, 50] sec which was 

discretized by Δt =0.01, so covariance matrix of the road profile CFF=[CFF(ti,tj)], i, j=1,···5001 was formed, apart from 

this, CFF(ti,tj) was equal to ρFF(τ) and τ=|ti-tj|=Δt|i-j|. The first four moments of non-Gaussian excitation were supposed as 

µF =0, σF
2=0.00032, SF=1.3, KF=7.6. Then calculating coefficients b0,b1,b2,b3 by Eq.(9) and (10), besides, Σξξ=[Σξξ(ti,tj)], 

i, j=1,2,···,5001 of the Gaussian process ξ(t) in PCE was constructed based on the definition of covariance matrix CFF and 

Eq.(7).  
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Figure 4. PSD of F(t). 
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Figure 5. Autocorrelation values of F(t). 

Performing spectral decomposition to obtain eigenvalues based on Eq.(1) and these eigenvalues which were sorted 

from large to small were in turn recorded as λi, i=1,2,···,5001. Figure 6 presents the partial eigenvalues of Σξξ. Then, the 

principal component analysis was executed, and p was 0.95. According to Eq. (3), r was 1903. In order to acquire random 

process ξ(t), these values, i.e. singular values λi, vectors Qi and standard normal random variables ξi , i=1,2,···,r generated 

by QMC, were substituted into Eq.(2). Subsequently, substituting ξ(t) into Eq.(6) to generate a non-Gaussian process F(t). 

Figure 7 shows the trajectory of a non-Gaussian road profile.  
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Figure 6. Eigenvalues of Σξξ . 
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Figure 7. A trajectory of F(t). 

Table 2. Analysis of characteristic statistical parameters of the non-Gaussian process. 

Sample points Mean Variance Skewness Kurtosis 

103(QMC) 0 0.00032 1.2537 7.0280 

5×103 0 0.00032 1.2754 7.2776 

104 0 0.00032 1.2903 7.4147 

106(MC) 0 0.00032 1.2985 7.5621 

Real values 0 0.00032 1.3 7.6 

In order to illustrate the effectiveness of the quasi Monte Carlo method, this paper simulated non-Gaussian inputs 

using a different number of sampling points. Then calculating values of the first four moments and comparing them with 

actual values, as well as the analysis results are shown in Table 2. It can be seen that the application of quasi-Monte Carlo 

greatly reduces the number of samples. Based on the fourth-order Runge-Kutta method and F(t), Eq. (24) was integrated 

numerically to obtain outputs X1(t) and X2(t). Table 3 gives values of the first four moments about outputs, and the 

autocorrelation curve of response processes X1(t) and X2(t) is presented in Figure 8. Figure 9 shows a pair of representative 

responses X1(t) and X2(t), which create a dynamic shear stress τ because of differences between them.  

Table 3. The first four moments of output processes X1(t) and X2(t) 

The moments of outputs Mean Variance Skewness Kurtosis 

X1(t) 0 0.00042 1.1540 6.5276 

X2(t) 0 0.00039 1.1237 6.2931 
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Figure 8. Autocorrelation functions of outputs. 
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Figure 10. A representative trajectory of shear stress. 

According to Eq. (25) and Eq. (26), the total stress was represented as τu(t)=τm+τ(t) where static component τm was 

168 MPa. A representative trajectory of total shear stress is presented in Figure 10. The non-Gaussian dynamic shear 

stress simulation process was repeated for 104 times, and the first four moments of total shear stress τu(t) are shown as 

Table 4 based on these stress trajectories. Figure 11 is the PDF of non-Gaussian shear stresses. 

Table 4. First four moments of shear stress process. 

The first four moments Mean Variance Skewness Kurtosis 

values 168 456 -0.4315 5.3720 
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Figure 11. PDF of non-Gaussian shear stresses.

Every simulated non-Gaussian shear stress trajectory was rainflow cycle counted to calculate the corresponding 

cumulative damage per second on the basis of Eq. (13) to Eq. (15).  

Table 5. Stochastic parameters in the S-N curve. 

Variable Mean Variance Distribution 

a 6.1 2.5% mean Normal 

b 1.02×1017 2.5% mean Normal 

The fatigue strength exponent a and fatigue coefficient b in S-N curve were considered as Gaussian variables to 

account for the inherent variability in material properties and test conditions. These random parameters are presented in 

Table 5. Finally, the SPA method was used to estimate the PDF using 104 fatigue life samples. The replacement frequency 

of automobile suspension spring in this article is generally between three and five years, which is basically consistent 

with the main concentrated area of fatigue life in Figure 12. 
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Figure 12. PDF of fatigue life.

CONCLUSION 

 Fatigue life estimation plays an important role in the manufacturing and operating of a vibratory system. In a real 

environment, a system usually experiences non-Gaussian excitation, which is obviously different from Gaussian type. So 

these fatigue life estimation approaches based on the Gaussian stress assumption theory cannot provide accurate fatigue 

life. This paper presented a numerical methodology to simulate non-Gaussian excitation accurately as well as calculate 

the fatigue life of a vehicle system efficiently.  

  A non-Gaussian incentive was simulated by polynomial chaos expansion, Karhunen-Loeve expansion and quasi 

Monte Carlo approach on the foundation of the given first four moments and PSD. Because the original Monte Carlo 

analysis has heavy tasks of calculations, quasi Monte Carlo, which can reduce the workload of numerical simulation is 

adopted to improve computational efficiency in this paper. In high-dimensional random variables space, the simulation 

results quickly converge to the true value by reasonably sampling and controlling the distribution of random variables. 
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The non-Gaussian processes, statistical information and autocorrelation structure of responses should be analysed by 

simulating stochastic inputs. Then, every output stress was rainflow cycle counted to calculate the corresponding 

cumulative damage random variables based on the Miner damage model and S-N curve. Ultimately, the SPA provided 

PDF of fatigue life, which gave not only the expected life but also some important statistics, such as low and high 

percentiles.  

 The proposed way accurately predicts the fatigue life of vibratory systems under non-Gaussian loads, as well as an 

example was given to verify the feasibility of the above theory according to the suspension of a quarter vehicle under 

non-Gaussian loads. 
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