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ABSTRACT 

 

Due to the high rate changes in the handling of cars, the use of an auxiliary identification 

process to design efficient controllers is of importance. Many identification algorithms 

have been proposed in the literature, which generally performs well under normal 

situations, but does not show acceptable performance in uncertain conditions. In this 

article, due to the nature of the neuro-fuzzy networks in identifying and predicting 

uncertain conditions, an adaptive neuro-fuzzy identification algorithm is proposed to steer 

vehicles at the uncertain slippery condition of roads. A set of data for three well-known 

manoeuvres of vehicle dynamics at conventional conditions was collected to train the 

algorithm using adaptive neuro-fuzzy inference system of MATLAB. Using back 

propagation of error as the learning algorithm, the parameters of the algorithm were 

modified regarding uncertain conditions. Making an analogy, the performance of the 

proposed identification scheme was compared to the untrained fuzzy one. In regular 

situations, the results were almost identical, but in uncertain ones such as slippery roads, 

the performance of the proposed neuro-fuzzy algorithm was much better. 

 

Keywords: Fuzzy logic system; neuro fuzzy identification; artificial neural networks; 

vehicle handling; front steering control. 

 

INTRODUCTION 

 

One of the most important factors in controlling the stability and handling of vehicles is 

its steering system. The stability and handling of a vehicle may be affected by several 

uncertain conditions such as vehicle speed, road coefficient of friction and total weight 

of vehicle [1]. One of the indicators of stability assessment in vehicles is the behaviour 

of their yaw rates in actual manoeuvres. Several methods have been proposed to control 

the yaw rate of a vehicle, including the use of direct yaw moment control, four-wheel 

steering system, active differential braking system, and active front steering system (AFS) 

[2]. The latter improves the vehicle’s manoeuvrability, stability and path tracking by 

compensating an additional angle to the one that the driver has already applied [3]. 

In recent decades, some nonlinear control techniques to control the complex 

steering system of vehicles have been proposed. Due to the high cost of practical tests, 

the first step is to model the behaviour of the steering system with numerical simulations. 

There are two main problems in these modelling and simulations; one is to decrease the 

error between the response of a real vehicle and its corresponding model and, the other is 

to overcome the uncertain conditions that a vehicle might face. Many of the proposed 
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models are able to meet the first demands, but generally, do not perform well under 

uncertain conditions (for example change of the coefficient of friction of the roads). 

Logically and theoretically, it is expected that an adaptive set including identification and 

control can satisfy these requirements simultaneously. We have two approaches to 

resolving this issue, using an accurate controller with all the details that are costly to 

implement, or using a cheap and adaptive identification algorithm that can provide the 

same performance alongside a simpler controller. 

Several studies have been conducted to simulate the steering system of vehicles 

using an identification method or a simple or complex mathematical model. Kazemi et al. 

[4] assumed a 7-degree of freedom model for the steering system neglecting the roll and 

pitch motions. Although, the simple model presented in the above article provides the 

purpose of the paper, but with the change in the condition of the problem, the performance 

of the model is not guaranteed. Messoussi et al. used a 10-degree of freedom model and 

a nonlinear controller (Takagi Sugeno fuzzy model) to improve both the stability and 

handling of a 4-wheel drive (4WD) steering system [5]. Jian Ma et al. [6] designed a fuzzy 

logic controller for an 8-degree of freedom car that uses an active front steering system 

(AFS) for manipulation. Of course, this model did not take into account the effect of 

uncertain road changes. 

Using neural networks that utilised backpropagation of error as a learning method, 

Wu et al. [7] arranged a process to identify a vehicle model from its dynamics. The model 

used a four-wheel steering system and a fuzzy controller optimised by a genetic 

algorithm. They designed the controller for a specific condition whereas the car is always 

under predictable conditions. Some works have been reported in the literature to model 

the yaw rate response of vehicles in different conditions. Canale et al. [8] modelled a 

vehicle and then proposed a robust controller to manipulate the yaw rate of a vehicle in 

some certain situations. No identification and adaptation were employed; thus, good 

performance was achieved in only definite ranges of uncertainties. Wang et al. [9] 

exploited a three-degree of freedom model to identify vehicle handling response using a 

neural network method under uncertain disturbances. It is to be noted that the 3-DOF 

model used in their work to train the identification algorithm was not an almost precise 

model.  

Zhang and Wang [10] proposed a controller-gain tuning approach integrating 

active front steering system and direct yaw moment to enhance vehicle handling under 

velocity change uncertainties while the road coefficient of friction was not considered as 

a source of uncertainty. Aalizadeh and Asnafi [11, 12] studied the stability and handling 

of a specific vehicle in uncertain road condition using a combination of artificial neural 

networks and bio-inspired optimisation algorithms. Aalizadeh [13] investigated the 

effects of uncertain road conditions on vehicle handling and proposed a neuro-fuzzy 

controller to enhance system performance. The latter work used the general logic rules 

behind the proposed identification algorithm in this study to design an efficient controller 

rather than to develop a precise identification algorithm.  

To meet both the requirements, i.e. using a more realistic model and to consider 

uncertain conditions, an adaptive neuro-fuzzy identification algorithm, as a conjecture, is 

proposed. It is to be noted that the neuro-fuzzy systems use the advantages of both 

decision making of fuzzy systems and adaptive nature of neural networks simultaneously. 

The suggested algorithm is able to adapt its parameters according to unpredictable road 

conditions within a short period, as it happens in real cases. 
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MATERIALS AND METHODS 

 

Vehicle Model Description 

 

In this research, an almost complete multi-body model of a vehicle in CARSIM which is 

a simulation toolbox of MATLAB SIMULINK is used. The main advantage of this model 

is accurate modelling of the vehicle using a largely enough number of degrees of freedom. 

The parameters of the vehicle used in this study are shown in Table 1. In this table, M, V, 

and I are the nominal mass, speed, and yaw mass moment of inertia. 𝑅𝑤 is the nominal 

radius of whthe eel, 𝐼𝑤 is the mass moment of inertia of wheel, H is the height of the 

center of gravity of sprung mass, lf  and lr are the distances between fronthe t/rear wheel 

and the center of mass point, and 𝑙𝑤 is the width between right and left wheels. 

 

Table. 1. The parameters of the vehicle used in this study. 

 

0.31 (m) Rw 1.14(m) lf 1530 (kg) M 

0.9 (kg.m2) Iw 1.64 (m) lr 4607.5 (kg.m2) I 
0.52 (m) H 1.55 (m) lw 72 (km/h) V 

 

Identification of Model 

 

To overcome the second problem i.e. reaching satisfactory performance at uncertain 

conditions, an identification process which is able to modify and adapt the algorithm 

parameters during manoeuvres is required. Here, a fuzzy logic system which takes 

advantage of the neural network to adapt its parameter according to unpredictable changes 

is employed (see following sections for more details). In this study, the backpropagation 

of error [11, 12], as a training algorithm, is selected. More specifically, the input and 

output data of the system under study are collected for three well-known manoeuvres i.e. 

lane change, j-turn, and fish-hook in a dry road condition. These data are then transferred 

to ANFIS (adaptive neuro-fuzzy inference system) toolbox of MATLAB software as a 

set of training data. Since this fuzzy system can only predict the behaviors properly for 

cases that has been trained for, it cannot be used alone; thus, a neural network is combined 

with this fuzzy system to enrich the identification logic so that the adaptation of 

parameters for other uncertain conditions can also be achieved. Briefly, it is a fuzzy 

system of Sugeno type which modifies output parameters of its rules using 

backpropagation of error as the learning algorithm. A schematic of the identification 

algorithm is shown in Figure 1. In this figure, signal variables st, a, and v are steering 

angle, lateral acceleration, and lateral velocity of the vehicle respectively. Steering angle 

(st) is an input for both the identification system and the vehicle. Signals y (vehicle yaw 

rate), a, and v are the vehicle output signal while a, and v enter to identification system 

as input signals also. The error is now the difference between the actual yaw rate of the 

vehicle (y) and the one computed by the identification algorithm (y̅). 
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Figure 1. A schematic diagram of the proposed identification system. 

 

The Structure of Fuzzy Logic System 

 

Fuzzy logic was first proposed by Zadeh in the 1960’s, as an inspiration from the brain's 

thinking and decision-making process [14]. This logic has been widely used in many 

applied sciences. As an example, see references [15-18] that used this logic in the control 

and identification fields. There are many fuzzy interface methods in the literature; among 

them, The Mamdani’s [15] and Sugeno [16] interface methods are most well-known. In 

this study, a fuzzy logic system interface of Sugeno type that was first proposed by Takagi 

and Sugeno is used [16]. The structure of the fuzzy identification algorithm of Sugeno 

type (also known as TSK) is shown schematically in Figure 2. (see also [17] for more 

details). 

Generally, consider x1, x2, and x3 are the input signals of fuzzy systems. In our 

model, they are the steering angle, lateral acceleration and lateral velocity of the vehicle 

respectively. In the first layer, using Gaussian membership functions, the fuzzification 

process is done so that the output signals of the first layer become: 

 

Oi
(1)

=Ai(x1),i=1,…,3 

 

(1) 

Oj
(1)

=Bj(x2),j=1,…,3 

 

(2) 

Ok
(1)

=Ck(x3), k = 1,…,3 (3) 

 

 

where Ai(x1), Bj(x2), and Ck(x3) are the membership functions of the input functions 

respectively, and O(1)’s represent the output signals of the first layer. At the second layer, 

using all multiplicative combinations of the first layer output signals, a set of weight 

signals for the TSK fuzzy rules is prepared so that the output signals of the second layer 

become: 
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O1
(2)

=w1=A1( x1 ) × B1 ( x2 ) × C1 ( x3) 

O2
(2)

=w2=A1( x1 ) × B1 ( x2 ) × C2 ( x3) 

. 

. 

. 

O27
(2)

=w27=A3( x1 ) × B3 ( x2 ) × C3 ( x3) 

(4) 

 

 

 
 

Figure 2. The structure of the fuzzy system interface of Sugeno type. 

 

In the third layer, the weight signals of each rule are normalised as follow: 

 

(3) w
    1, , 27

w

i
ii

i

O w i= = = 


 (5) 

 

Making a simple analogy, for a three-input fuzzy system, the rules of TSK 

(Sugeno type) fuzzy model are (see also [14]): 

 

zi=p
i
x1+q

i
x2+rix3+sii=1,...,27 (6) 

 

where x1 - x3 are the input signals of the fuzzy system and parameters p
i
, q

i
, ri, and 𝑠𝑖 

are 

the corresponding constant values for the ith rule. The output signals of each rule are 

determined in the fourth layer as: 

 

Oi
(4)

=wizi=wi(pi
x1+q

i
x2+rix3+si),i=1,…,27 (7) 

 

Finally, the entire output of the fuzzy system is determined in the fifth layer as: 
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27
(5)
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i i
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
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

 (8) 

 

Training Algorithm for the Neuro-Fuzzy System 

 

The goal of this study is to design a fuzzy identification algorithm that can modify its 

parameters using a learning algorithm. As previously indicated, among the numerous 

algorithms, artificial neural networks are the best choice in this regard [18]. Neural 

networks appeared in the 1940’s when first mathematical models of neurons were 

presented by McCulloch and Pitts [19] and then by Hebb’s organisation [20]. These 

networks are designed to learn and do trained tasks similar to what a biological brain 

does. In an artificial neural network, the layers of neurons and some connections (synapse 

and post-synapse) between them are defined. Firstly, a set of known input/output data is 

used to train the network. After that, the network is expected to find the appropriate 

response for a new input relative to its information background; exactly as it does in the 

process of experiential learning. The efficiency and accuracy of neural networks has been 

discussed in several studies in the literature (see for example [11, 12]). 

Usually, the mechanism for finding the best answer is performed by minimising 

a cost function that correlates the identified model response and the actual system. Here, 

the cost function is defined as: 

 

E=
1

2
∑

L

n=1

e2(n) (9) 

 

where (see also Fig. 1): 

 

e(n)=y-ȳ(n) (10) 

 

In this research, the backpropagation of error [21] is used to minimise the cost 

function (Eq. 9). This algorithm has been widely employed to train artificial neural 

networks in the literature (see for example [21]). The algorithm was first introduced by 

Werbos [22] and then used as a training algorithm in artificial neural networks [23]. 

Using delta learning rule [24, 25] for minimising the error E, the gradient of the TSK 

rules (Eq. 6) must be in the opposite direction of the gradient of the error E i.e. 

 

Δzi∝-
∂E

∂zi

=
Chain rule

-
∂E

∂e(n)

∂e(n)

∂ȳ(n)

∂ȳ

∂u

∂u

∂zi

 (11) 

 

Finally, the following relation for the weight modification procedure can be obtained: 

 

Δzi=ηe(n)
∂u

∂zi

; (12) 

 

where  is known as the coefficient of training. In the training simulation, both the speed 

of the process and the convergence factors must be satisfied; so, the value of 0.9 is chosen 

for parameter . The practical update rule becomes: 
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zi(n+1)=zi(n)+ηe(n)
∂u

∂zi

 (13) 

 

The identification process was performed as follows: Firstly, a set of training data 

was obtained from the response of a reference vehicle in CARSIM under three well-

known manoeuvres, i.e. the lane change, the fish-hook, and the J-turn on a dry road with 

a coefficient of friction equal to one. Secondly, the given fuzzy logic system was trained 

using the adaptive neuro-fuzzy inference system (ANFIS) toolbox of MATLAB. Finally, 

the parameters of the TSK rule in Eq. (8) were considered to be updated similar to that 

was presented in Eq. (13) as: 

 

p
i
(n+1)=p

i
(n)+ηe(n)

∂u

∂p
i

 

q
i
(n+1)=q

i
(n)+ηe(n)

∂u

∂q
i

 

ri(n+1)=ri(n)+ηe(n)
∂u

∂ri

 

si(n+1)=si(n)+ηe(n)
∂u

∂si

 

(14) 

 

RESULTS AND DISCUSSION 

 

In this section, the response of the pointed vehicle under the action of the designed neuro-

fuzzy identification algorithm on dry and slippery roads is investigated. Three standard 

classical manoeuvres, i.e. the J-turn, the fishhook, and the lane change are selected. 

In lane change manoeuvre, the car simply changes its lane while in J-turn one, it 

makes a simple turn with a constant radius of rotation. In fish-hook manoeuvre, which is 

a combination of both, after changing the lane to one direction, the turn is done in the 

other direction, for example, changing the lane to the right one and then turning to the left 

with a constant radius of rotation. Figure 3 shows the evolution of the steering angle of 

the front wheel in these manoeuvres. 

 

Vehicle Response in the Prescribed Manoeuvres 

 

The coefficient of friction as a measure for uncertain conditions was selected. In our 

simulations, this value for dry and slippery roads was considered to be 1 and 0.4, 

respectively. In what follows, the desired evolution of the yaw rate of the vehicle during 

these manoeuvres is drawn and compared to those are obtained under the action of fuzzy 

and neuro-fuzzy identification algorithm. In Figure 4, the desired (real) response of the 

vehicle and the ones under the action of fuzzy and neuro-fuzzy identification for the lane 

change manoeuvre at different road conditions are drawn. Figures 5 and 6 also present 

the same results for J-turn and fish-hook manoeuvres respectively. 
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Figure 3. The evolution of the steering angle of the front wheel in J-turn, lane change 

and fish-hook steering manoeuvres. 

 

 
(a)      (b) 

 

Figure 4. The yaw rate of the real (desired), fuzzy and neuro-fuzzy of the vehicle for the 

lane change manoeuvre on (a) dry and; (b) slippery road. 
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(a)      (b) 

 

Figure 5. The yaw rate of the real (desired), fuzzy and neuro-fuzzy of the vehicle for the 

J-turn manoeuvre on (a) dry and (b) slippery road. 

 

 
(a)      (b) 

 

Figure 6. The yaw rate of the real (desired), fuzzy and neuro-fuzzy of the vehicle for the 

fish-hook manoeuvre on (a) dry and (b) slippery road. 
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uncertain conditions. Here and in this article, we have used artificial neural networks for 

adaptation, but there is no restriction to use them. 

 

Table 2. A Comparison between the performance of neuro-fuzzy and Fuzzy 

identification algorithms. 

 

Fuzzy Neurofuzzy Manoeuver/ model 

Coefficient of friction = 1 

Integral of least squared error during the manoeuvre  

2.35e(-5) 3.28e(-7) Change lane 

1.44 e(-4) 7.19(-6) J-turn 

2.36e(-4) 1.70e(-5) fishhook 

Coefficient of friction = 0.4 

Fuzzy Neurofuzzy Manoeuver/ model 

Maximum of error (%) 

w.s.t. desired condition 

Integral of least squared error during 

the manoeuvre 

 

650 48.95 1.05  e(-7) Change lane 

433 583.5 4.58 e(-6) J-turn 

383 371 8.01 e(-6) Fishhook 

 

CONCLUSION 

 

In this paper, a neuro-fuzzy identification algorithm was proposed to identify the handling 

of vehicles in uncertain road conditions. A model of car in CARSIM software was used 

as an almost real un-simplified model of a car. A set of steering data in regular condition 

together with some proper fuzzy rules and an artificial neural network were used to 

identify and train the identification algorithm to act as an efficient system at uncertain 

conditions. To show the effectiveness of the proposed algorithm, a comparison between 

the response of the system in the presence and absence of augmented neural network was 

made. The results showed the correctness and accuracy of the proposed neuro-fuzzy 

identification algorithm in three classical manoeuvres, i.e. lane change, J-turn, and fish-

hook at both certain and uncertain condition of roads within an acceptable error. In the 

case of using a fuzzy algorithm alone, desired performances were achieved for normal 

conditions only. At uncertain conditions, the fuzzy algorithm failed especially at higher 

yaw rate of the vehicle or when there was a fast yaw rate change. When the fuzzy 

algorithm is employed alone, the precision depends on how far we discretised our input 

and output, and foremost the precision of the model that consider each condition but in 

the case of using neurofuzzy one, the precision is almost guaranteed. Finally, the results 

pointed to the need for using an adaptation algorithm and process alongside fuzzy-based 

identification algorithms, especially for uncertain conditions. 
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