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ABSTRACT 

 

Simulation of uniform flow past a square cylinder undergoing rotational oscillations at 

various frequencies is performed using the ANSYS Fluent CFD package. The frequency 

ratios FR chosen for the study are 0.4, 0.8 and 1.0. At each frequency ratio, a number of 

angular amplitudes are selected, and the simulations are performed using a dynamically 

deforming mesh. The results are obtained from the simulations in terms of the non-

dimensional drag and lift forces, vorticity contours, power spectral density plots of lift 

coefficients and Strouhal number. A general increase in lift and drag coefficients with 

increasing frequency ratios as well as with increasing amplitudes at a particular frequency 

ratio, except a few anomalies, is seen. The flow features in the wake and the vicinity of 

the cylinder are compared for the various parameters. The use of convective boundary 

condition for the problem is demonstrated. 

 

Keywords: Square cylinder; rotational oscillations; low Reynolds number; Strouhal 

number.  

  

INTRODUCTION 

 

Flow past a bluff body is an important phenomenon with interesting features and wide-

ranging applications in flow control and flow-induced vibrations. However, most of the 

work in the past has been done on the flow past circular cylinders. This is mainly because 

flow past circular cylinders represents a wider variety of physical problems compared to 

any other bluff body. So, it is important to delineate the characteristics of square cylinders 

that differentiate them from circular cylinders. The most important and obvious among 

them is the location of the flow separation point on the surface of the cylinders. In case 

of circular cylinders, the location of the separation point continuously varies with the 

Reynolds number, moving back when the boundary layer transitions to turbulence and 

moving a bit forward at transcritical Reynolds number (Re > 3.5 × 106). Whereas, in the 

case of square cylinders, though it may be against our intuition, up to a Reynolds number 

of about 100, the separation of flow takes place at the trailing edges of the square cylinder 

oriented with a face perpendicular to the flow direction. At a Reynolds number of 125, 

the flow mostly separates from the trailing edges but occasionally from the leading edges 

of the cylinder [1]; at a Reynolds number of 150, the flow separates mostly from the 

leading edge of the cylinder and occasionally from the trailing edge; beyond a Reynolds 

number of 175, the flow always separates from the leading edges of the cylinder. 

Another important difference is related to the case of flow past oscillating 

cylinders. In the case of flow past circular cylinders oscillating linearly transverse to the 
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flow, there is an increase in the non-dimensional drag acting on the cylinder; whereas for 

the same case considered concerning the square cylinder, there seems to be a reduction in 

the magnitude of non-dimensional drag. The observations get swapped when it comes to 

rotational oscillations – drag reduces in circular cylinders and increases in square 

cylinders.  

In comparison to circular cylinders, investigations of the flow past a square 

cylinder have been reported less frequently in the literature. Some of these investigations 

reveal flow features some of which are unique to square cylinder case and others directly 

in contrast to the circular cylinder case. Vickery [2] conducted experiments in a wind 

tunnel to simulate the wind loads acting on buildings. He used a square cylinder, 6in. × 

6in. in cross-section mounted transversely in a low-speed wind tunnel. The turbulence 

intensity in the wind tunnel was maintained to correspond with the atmospheric 

turbulence level. The experiments were conducted for Reynolds numbers ranging from 4 

× 104 to 1.6 × 105 on the square cylinder at different angles of attack (α). The average 

values of the pressure coefficients, drag coefficients, lift coefficients and Strouhal 

numbers were corrected for the blockage effect. It was found that the change in α had 

very little impact on Strouhal number (S). It was also reported in the investigation that 

the effect of free stream turbulence had very little impact on S but reduced the root mean 

square (RMS) value of the fluctuating lift coefficient (non-dimensional lift force) CL,rms 

to a great extent at the value of α less than 15°. The maximum reduction in CL,rms was 

about 50%. It was also observed that was a reduction in the RMS value of the base 

pressure coefficient Cpb and the author hypothesised that it was due to reattachment which 

was possible at low values of α. 

A similar investigation was carried out by Lee [3] where the author controlled the 

free stream turbulence level by changing the size of the mesh grid, constructed from 

aluminium bars, in the low-speed wind tunnel. The author showed that an increase in the 

free stream turbulence intensity leads to an increase in Cpb and thereby, a decrease in drag. 

Many investigations have been conducted on the effect of aspect ratio on the flow 

past bluff bodies. One such investigation was part of the experiments performed by 

Delany and Sorensen [4], who presented the drag coefficients and the shedding 

frequencies measured in a wind tunnel, for bodies with various cross-sectional shapes. 

Another interesting experiment was performed on rectangular cylinders [5]. In this work, 

the authors discussed the entrainment process wherein the growing vortices and the shear 

layers draw in fluid from the base of the cylinder thereby maintaining the low-pressure 

condition there. 

  

Investigations on Oscillating Cylinders 

 

Vortex-induced vibrations were known for a long time, and vortex shedding and the 

subsequent fluctuations in the lift and the drag forces were known to be the causes for 

such vibrations. But the effects on flow features due to cylinders vibrating in the flow 

were not investigated until the 1970s. Taneda [6] conducted a series of experiments on 

the flow past rotational oscillations of circular cylinders at various Reynolds numbers and 

oscillation frequencies at an amplitude of 45°. The experiments were conducted in a range 

of Reynolds number 30 – 300 and flow visualisation techniques were used in the 

investigation. He discovered a critical frequency beyond which the wake region behind 

the cylinder disappears, and the flow pattern seems to appear like that of a potential flow 

although the flow itself cannot become one. Investigators in later years conducted similar 
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experiments on flow past rotationally oscillating circular cylinders at higher Reynolds 

numbers and using other techniques such as numerical modelling. 

Bearman and Obasaju [7] conducted experiments on the flow past transverse 

oscillations of square cylinders at various amplitudes in terms of cylinder width and 

various frequencies in terms of reduced velocity U∞/ND, where N is the frequency of 

oscillation, U∞ is the free stream velocity and D, the width of the square cross-section. 

The Reynolds number range considered for the study was 5.8 × 103 to 3.2 × 104. Important 

observations reported by the author were the reduction in correlation length with 

increasing Reynolds numbers and the reduction in base suction coefficient (-Cpb) and 

hence drag reduction. The reason for the reduction in drag coefficient was explained in 

terms of the amount of circulation that flows from the shear layers to the vortices, mainly 

deriving from the work of Roshko [8]. Impact of varying the amplitude and frequency of 

the oscillation and the Reynolds number of the incoming flow was examined in depth by 

Leontini et al. [9]. Recently Zhao et al. [10] experimentally investigated the in-line flow-

induced vibration (FIV) of an elastically mounted circular cylinder under forced axial 

rotation in a free stream. 

A cylinder can rotationally oscillate in two ways, either about its axis or in-line or 

transverse. Study of rotational oscillation of a cylinder about its axis has not received as 

much attention as in-line or transverse oscillations [11]. Further, to the best of this author's 

knowledge, no such study has been conducted on rotational oscillations of square 

cylinders. This study is an attempt to fill this gap to some extent. 

 

METHOD 

 

Governing Equations 

 

At the Reynolds number considered in the present case (Re = 100), the flow is two 

dimensional, and for the velocity considered, the flow remains incompressible. Hence the 

governing equations can be simplified based on these assumptions. The simplified 

continuity equation in two-dimensional Cartesian coordinates can be given as, 

 
∂u

∂x
+

∂v

∂y
=0 

(1) 

 

Where, u and v are the velocity components in x and y directions respectively. The other 

two equations that govern the present fluid flow problem are the momentum conservation 

equations which can be given as: 
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Computational Domain  

 

The size of the domain that is considered for the numerical simulation should be large 

enough as it will be simulating a flow which is not bounded by walls. There have been 

investigations in the past that studied the blockage effect of the bounding walls by varying 

a parameter called as blockage ratio (β) where β is the ratio of the characteristic dimension 

of the cylinder to the height of the domain, i.e., as the value of β increases, the influence 

of the walls on the flow variables increases. In the present work the dimensions of the 

domain, as shown in Figure 1, have been varied to study their effects on the integral 

quantities such as time histories of drag and lift coefficients. 

 

 
 

Figure 1. Computational domain dimensions. 

 

In Figure 1, the notations ‘h’, ‘Xu’ and ‘Xd’ stand for the height of the domain, 

upstream or approach dimension and the downstream dimension respectively. All these 

dimensions are usually reported in terms of a number of units of a characteristic 

dimension of the cylinder, i.e., all the dimensions above are made non-dimensional 

concerning the cylinder dimension which in this case is the side length of the cylinder 

cross-section.  

The simulations for these preliminary analyses were done considering the cylinder 

stationary and the flow uniform around the cylinder at a Reynolds number of 100. The 

discretisation and the solution schemes utilised for these simulations were the ones used 

for the actual problem simulations and will be explained in the sections that follow. The 

comparisons of CD and CL time histories for the various cases are shown in Figure 2. The 

mean numbers obtained from these plots were compared with the results of the numerical 

investigations carried out by Sohankar et al. [12], and the comparisons are listed in Table 

1. 
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(a) 

 

 
(b) 

 

Figure 2. Effect of the computational domain dimensions on the time histories of  

(a) drag coefficient and; (b) lift coefficient. 

 

Table 1. Mean values of the integral quantities from preliminary analyses. 

 

Sr. no. 
Domain size 

(Xu, Xd, h) 

No. of cells 

(quad elements) 
CD,mean CL,rms S 

1 [11] Xd = 10, 26 - 1.464 0.138 0.146 

2 10, 40, 40 40500 1.4884 0.1964 0.1457 

3 20, 40, 40 43500 1.4525 0.1887 0.1449 

4 20, 40, 60 59100 1.4483 0.1878 0.1443 

5 30, 40, 60 61200 1.4393 0.1867 0.1432 

 

From the drag coefficient plot, the mean value of the drag coefficient was obtained 

after the flow had attained a periodic state. In the case of the lift coefficient, as can be 

seen in Figure 2 (b), the mean value of the lift coefficient is zero. Hence as per convention, 
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the root means square (RMS) of the lift coefficient was estimated from the lift coefficient 

plot after the flow had reached the periodic state. It was found that the RMS value of the 

lift coefficient was persistently higher than that reported in the literature. It was initially 

thought that the choice of BCs at the domain walls affected this result. To clarify this, 

simulations were done with circular domain since they obviate the need for the domain 

walls. The value of the RMS lift coefficient obtained from those simulations matched 

with those reported in the table and hence were also higher than the values observed in 

the literature. From the plots and the table, the domains that gave closer results seemed 

to be those with the configurations 20, 40, 40 and 20, 40, 60. Since the actual simulation 

was to be performed on an oscillating cylinder, the domain with the greater height – 60 

times the cylinder width was chosen for all the simulations to be explained about in the 

following sections. 

 

Boundary Conditions 

 

In the preliminary analyses along with the dimensions of the domain, a number of 

different types of boundary conditions were experimented with to study their effects on 

the integral parameters. Since the present investigation is on uniform flow, ‘velocity inlet’ 

boundary condition was used at the inlet with the y-component of the velocity assigned 

zero and the x-component assigned a constant value; the static pressure at the inlet was 

assumed atmospheric. For convenience, the constant value of x-component was assumed 

as 1 ms-1 just as the cylinder width was assumed as 1 unit. Based on these assumptions, 

the viscosity of the fluid was varied to match the required Reynolds number, in this case, 

a value of Re 100. The boundary conditions at inlet represent the free stream condition of 

the fluid flow and were utilised in the estimation of integral quantities. The lateral walls 

of the domain should be specified as slip walls as the walls should not interfere with the 

flow by inducing shear. The ‘symmetry’ BC available in ANSYS Fluent can be utilised 

to invoke free-slip BC at the walls. The application of symmetry BC implies that the 

normal gradients of all variables and the normal component of velocity become zero at 

the walls, i.e., for this simulation, 

 

v=0,  
∂u

∂y
=0. 

(4) 

 

The free-slip BC can also be applied in ANSYS Fluent by first invoking the ‘wall’ 

boundary condition at the walls and then specifying the shear stress value as zero. 

Specifying the free stream conditions at the lateral walls is not uncommon either; this is 

especially the case when C-type grid is used instead of a rectangular domain, where in a 

semicircle forms the front portion of the computational domain. C-grid is usually used 

for the 2D simulation of flow over airfoils. In the present investigation ‘symmetry’ BC is 

used at the walls for all the simulations. The surface of the cylinder was specified with 

the no-slip boundary condition. As mentioned earlier, for the preliminary analyses the 

cylinder was assumed to remain stationary, but for the simulations of the actual problem, 

a sinusoidal rotational oscillation was given to the cylinder surface in ANSYS Fluent 

using a user-defined function (UDF) written in C language and compiled using the 

‘Microsoft Visual Studio Express 2012’. The computational domain with the boundary 

conditions discussed above is shown in Figure 3. 
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Figure 3. Computational domain with boundary conditions. 

 

The choice of boundary condition at the outlet of the domain is of great 

importance. A variety of boundary conditions are available to be chosen from, such as 

‘pressure outlet’, ‘outflow BC or the Neumann BC’, ‘convective BC or the non-reflecting 

boundary condition’. A suitable boundary condition at the outlet boundary should allow 

the flow structures generated within the domain to freely pass through the outlet without 

undergoing significant distortion [13]; such a boundary condition is termed as an ‘open’ 

boundary condition. One such boundary condition namely the convective boundary 

condition (CBC) was given by Orlanski [13] and can be stated as given by Eq. (5). 

 
∂u

∂t
+Uc

∂u

∂x
=0 

(5) 

 

Uc represents the convective velocity of the vortices leaving the outlet of the domain. It 

was suggested in [12] that the free stream velocity U∞ be taken as the convective velocity 

Uc. The discretised form of the above equation as given in [12] is: 

 

Ui
*=Ui

n-
∆t

(∆x)i

Uc(Ui
n-Ui-1

n ) 

 

(6) 

Ui
n+1=Ucor+Ui

* (7) 

 

Ucor is the correction velocity that can compensate for the difference between the mass 

flow at the inlet and the outlet, calculated at the end of each iteration.  

 

Solution Procedure 

 

With the computational grid available, it is then necessary to obtain the algebraic 

equations of the flow variables at all the grid points. The algebraic equations can be 

obtained by discretising the governing partial differential equations given by Eq. (1), (2) 

and (3). ANSYS Fluent uses the Finite Volume Method (FVM) to discretise the governing 

equations; in FVM, the differential equations are integrated over each cell or rather, the 

integral forms of the governing equations are applied to each cell or finite volume.  

In the discretisation of the momentum equation terms, there will be a necessity to 

calculate the derivatives of the velocity components. This necessitates the estimation of 

gradients and ANSYS Fluent provides three techniques – Least squares cell-based, 

Green-Gauss cell-based and Green-Gauss node-based. Among these, the Least squares 
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cell-based and the Green-Gauss node-based are more accurate but expensive [14]. In this 

study, the Least squares cell-based technique was utilised. ANSYS Fluent uses a co-

located scheme in which both the velocity scalars and pressure are stored at the cell 

centres [14]. However, the discretised momentum equations contain multiples of pressure 

and face area at all the faces of a cell. Hence, we need the pressure values at the face 

centres which can be obtained from interpolation of the cell centre values. 

In this study, the second order interpolation scheme is used for the pressure 

interpolation. In this scheme, a central differencing method is used for approximating the 

pressure value at the face centres. For discretising the convective terms, we need the 

velocity values at the face centres. As already mentioned, ANSYS Fluent stores the 

pressure and velocity values at the cell centres. Hence the face centre values must be 

approximated from the cell centre values. ANSYS Fluent uses the ‘upwinding’ technique 

to estimate the values of the convective terms. In upwind schemes, the value at a face is 

calculated from values at a cell present upstream of the face. The upwind schemes 

available in ANSYS Fluent are first-order upwind, second-order upwind, power law and 

QUICK (Quadratic Upstream Interpolation Convective Kinetics) [15]. In this study, the 

second-order upwind scheme is chosen. Further, the unsteady terms are discretised using 

the second order implicit formulation.  

As mentioned earlier, the pressure-based solver is used for this investigation. 

Pressure-based solution methods are further divided into segregated and coupled 

algorithms. In the segregated algorithms, the momentum equation is first solved followed 

by the solution to the pressure-correction equation. Whereas, in the coupled algorithms, 

both the equations are solved simultaneously. Some of the segregated algorithm 

techniques are SIMPLE, SIMPLEC and PISO. In this investigation, the SIMPLE 

algorithm was used. SIMPLE algorithm is based on the pressure correction method where 

a guessed pressure field is used in the momentum equation which yields values for the 

face fluxes. The obtained values are added with the correction face fluxes which are used 

to solve the continuity equation. In SIMPLE algorithm, the correction face flux is 

expressed as a multiple of the difference in correction pressure between the cells on the 

two sides of the face, and a function of the momentum equation coefficients.  

 

Solution initialization and monitors  

 

Apart from the residuals of continuity, x and y momentum equations, the time histories 

of drag and lift coefficients were monitored for the onset of periodicity in the flow 

calculations and these time history plots will also be used for explaining the results of the 

simulation in the next chapter. The time step used for the simulation could be obtained 

from the Courant-Lewy-Friedrich (CFL) condition if the solution techniques were of the 

explicit type. But in the present case, the time step size was chosen as 0.01 s based on the 

values found in the literature. The maximum number of iterations per time step was 

limited to 30 iterations to reduce round-off errors. The solution was initialised based on 

the values provided at the inlet for the uniform velocity boundary condition. The results 

of the simulations are presented in the next section.  
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RESULTS AND DISCUSSION 

 

Drag and Lift Coefficients 

 

The simulations were performed at three frequency ratios FR = 0.4, 0.8 and 1 and for each 

frequency, the maximum amplitudes θ0 were taken as 10°, 20° and 45° respectively. For 

proper deformation of the dynamic mesh, the computational grid was kept coarser than 

that used for the study of the domain dimensions. The total number of elements used were 

12108. A simulation with the coarser grid and the dynamic mode switched off was 

performed to derive the non-dimensional quantities. Their comparison with the finer grid 

and with the results of Sohankar et al. [12] is presented in Table 2. 

 

Table 2. Comparison of the fine grid with coarser dynamic grid 

 

Sr. no. 
Domain size 

(Xu, Xd, h) 

No. of cells 

(quad elements) 
CD,mean CL,rms S 

1 [12] Xd = 10, 26 - 1.464 0.138 0.146 

2 20, 40, 60 59100 1.4483 0.1878 0.1443 

3 20, 40, 60 12108 1.4815 0.2001 0.1386 

 

From Table 2 the Strouhal number with grid available for simulation is 0.1386. 

But the value reported in the literature is 0.146. The frequency ratios FR used in this 

simulation were based on the value of S = 0.146, or rather the natural shedding frequency 

0.146. Hence the oscillation frequencies used in this study will be a little more than FR 

times 0.1386. For example, for the frequency ratio of 0.4, the oscillation frequency should 

be 0.4 times 0.1386 which is equal to 0.0554 Hz. But the oscillation frequency used in 

the simulation was 0.4 times 0.146, which is equal to 0.0584 Hz. This was done to check 

the power spectral density of the natural frequency of 0.1386 concerning that of the peak 

frequency at lock-in. Before describing the variation in the flow features with different 

frequency ratios and amplitudes, it will be useful to take a look at the variation of the non-

dimensional variables namely mean drag coefficient CD,mean and CL,rms, with an increasing 

amplitude at different frequency ratios. These are shown below in Figure 4(a) and Figure 

4(b). 
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(b) 

 

Figure 4. Variation of (a) mean drag coefficient and; (b) RMS lift coefficient with 

angular amplitude at various frequency ratios. 

 

In Figure 4(a), the curve corresponding to FR = 1.0 is part shown with a dashed 

line. This is because for this frequency ratio at angular amplitude θ0 = 45°, the mean drag 

itself varies with time a huge range of almost 1. Hence it would not be appropriate to 

interpret the reduction in mean drag compared to that at FR = 0.8, as an overall reduction 

in drag on the body. However, in the case of RMS lift coefficient, the trend shown in 

Figure 4(b), directly corresponds to a decrease in RMS lift coefficient. This is because, 

for FR = 1.0, at θ0 = 45°, not only does the lift coefficient periodically oscillate with time, 

but the amplitude of fluctuation of lift coefficient itself becomes periodic. The lift 

coefficient and drag coefficient plots for FR 0.8 and 1.0 at θ0 = 45° are compared in Figure 

5, (a) and (b) respectively. 
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(b) 

 

Figure 5. Comparisons of lift and drag coefficient plots for FR = 0.8 and 1 at θ0 = 45 °; 

(a) lift coefficient, (b) drag coefficient. 

 

Whether any further increase in angular amplitude at FR = 1 led to further 

reduction in drag coefficient was not investigated. A comparison is also required to study 

the variation of the effect of angular amplitude on the drag coefficient history as the 

frequency ratio is increased. The comparison is shown in Figure 6. 
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(b) FR = 0.8 

 

 
(c) FR = 1.0 

 

Figure 6. Effect of angular amplitude on the drag coefficient at various frequency ratios. 

 

As can be seen in Figure 6, at a frequency ratio of 0.4, the minima on the drag 

coefficient plots are nearly same for different angular amplitudes although the mean CD 

values are different as already seen in Figure 4(a). As the frequency ratio is increased, not 

only does the mean values of CD move away from each other, but also the plots 

themselves are separated further. From this, it can be inferred that the increase in angular 

amplitude has a greater effect on the drag coefficient at higher frequency ratios or rather, 

higher oscillation frequencies. Another feature which distinguishes the plots in Figure 6, 

is that at FR = 0.4, the CD has more local fluctuations, especially at θ0 = 45°, as compared 

to the smooth periodic curves at frequency ratios 0.8 and 1.0. At FR = 1.0, though the 

amplitudes of fluctuations are themselves time-periodic, there are no local fluctuations. 

This is true of the lift coefficient curves too. This can be explained in terms of the spectral 

density of power or power spectral density (PSD) as it is commonly known. This will be 

discussed in the next section to explain the more important lock-in phenomenon. 
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Lock-in Phenomenon and the Strouhal Number 

 

When the cylinder oscillates at a frequency beyond a threshold value, the vortex shedding 

process of the cylinder moves from its natural frequency defined by Strouhal number S, 

to the frequency of oscillation. This phenomenon is termed as lock-in and does not occur 

at a unique value but happens in a range of frequencies. In the current investigation, lock-

in did not happen at FR = 0.4 but as will be seen the frequency of natural shedding was 

suppressed at the higher frequency ratios. However, at FR = 0.4, as will be seen in Figure 

7(a), both the natural frequency and the oscillation frequency were present although the 

oscillation frequency was the peak frequency. 

Figure 7(a) shows the power spectral density of the lift coefficient. Since the 

frequency of vortex shedding is same as the frequency of lift force fluctuations, the Fast 

Fourier Transform (FFT) analysis, which is performed to obtain the PSD plot, is 

performed on the time history of lift coefficient. As can be seen in Figure 7(a), the 

oscillation frequency which is 0.4 times 0.146 Hz (natural frequency from literature) 

dominates but does not suppress the natural frequency which is manifested as a slightly 

low value of 0.1332 Hz. A similar pattern is seen in the PSD plots of FR = 0.4 at angular 

amplitudes of 10° and 45°. 

At the higher frequency ratio of 0.8, there is suppression of the natural vortex 

shedding frequency. This is shown in Figure 7(b). The natural vortex shedding frequency 

is suppressed, and the shedding of vortices takes place at 0.8 times 0.146, which is 0.1168. 

PSD plots obtained for the other angular amplitudes 20° and 45° were also similar 

although the density value increased with increasing amplitude – 787 and 866 for angular 

amplitudes 20° and 45° as opposed to 321 for 10°. The PSD plots of the lift coefficient, 

at FR = 1.0 and angular amplitudes 20° and 45° are shown in Figure 7(c) and Figure 7(d) 

respectively. 

 

  
(a)      (b) 
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(c)      (d) 

 

Figure 7. Power spectral density of lift coefficient at (a) FR = 0.4, θ0 = 20° (b) FR = 0.8, 

θ0 = 10°, (c) FR = 1.0, θ0 = 20° and; (d) FR = 1.0, θ0 = 45°. 

 

From Figure 7(c) and Figure 7(d) it is evident that lock-in happens at FR = 1.0 at 

all amplitudes (PSD at θ0 = 10° is similar to that at 20°) although, at 45°, PSD seems to 

spread over a wider range of frequencies with local peaks. The presence of these local 

peaks is supposed to cause the periodic variations of the mean of drag coefficient and the 

fluctuation of lift coefficient with time at θ0 = 45° as shown in Figure 5. 

 

Flow Features in the Wake 

 

The width of a wake plays an important role in determining the pressure drag on the body, 

as it is related to the extent of the low-pressure region behind the body. The effect of 

angular amplitude on the width of the wake at FR = 1.0 is shown in Figure 8. In Figure 8, 

the wake width is denoted by ‘Ww’. As can be observed in Figure 8, at FR = 1.0, wake 

width is altered by an increase in angular amplitude. Though it is evident from Figure 8 

(c) that wake width increases, the change in wake width between angular amplitudes 10° 

and 20° is not prominent and it is within doubt whether there was an increase in wake 

width at θ0 = 20°. This trend was seen at other frequency ratios as well. So, it is supposed 

that there could be a critical angular amplitude, beyond which a realisable increase in 

wake width occurs. All these inferences have been made base on visual observation. 

The other important feature that is shown in Figure 8 is an estimate of how closely 

to the cylinder surface is a vortex shed. In Figure 8, this distance has been denoted by ‘SL’ 

(for shedding length) and it is clear without doubt that the value of SL decreases with 

increase in angular amplitude although, at θ0 = 45°, the reduction is drastic which takes 

us back to the previous hypothesis about the existence of a critical angular amplitude. 

Other common features such as the reduction in the vorticity magnitude of the shed 

vortices as they travel downstream are very much evident from Figure 8. 
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Figure 8. Vorticity contours and their features at FR = 1.0 at various angular amplitudes, 

WW – wake width, SL – shedding length of (a) θ0 = 10°, (b) θ0 = 20°,  

(c) θ0 = 45°. 

 

Fluid Motion in the Vicinity of the Cylinder 

 

It is clear that the oscillating motion of the cylinder affects the flow, at least near its 

surface, but how exactly this manifest in the fluid motion was not clear and hence this 

was investigated as part of the present study. The case of θ0 = 45° at FR = 1.0 was chosen 

for this study. Two-time steps of the simulation were chosen such that at these two 

instants, the positions of the oscillating cylinder were nearly the same but the angular 

velocities of the cylinders at these positions were opposite in a sense. The instantaneous 

velocity vectors for the two instants, 568 s and 600 s, are shown in Figure 9. 

 

(a) 

(b) 

(c) 
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(a)      (b) 

 

Figure 9. Velocity vectors near the cylinder surface at flow time (a) t = 568 s and;  

(b) t= 600 s; FR = 1.0, θ0 = 45° 

 

In Figure 9, it can be seen that due to the instantaneous motion of the cylinder in 

the counter-clockwise direction, there are layers of fluid above the cylinder that moves in 

the counter-clockwise direction. But a little far away above the cylinder, it can be seen 

that there is a deceleration in the flow of fluid. Below the cylinder, there is a slight 

acceleration of the fluid. This acceleration-deceleration effect was seen in the case of a 

stationary cylinder as well, and it could be explained in terms of the curvature effect. 

However, the effect of oscillation becomes clearer when we consider the vector plot at 

the other instantaneous flow time of 600 s. 

At the instant of flow time 600 s, the angular velocity of the cylinder is in the 

clockwise direction. What is also obvious from the figure is that the acceleration which 

was observed in the region under the cylinder seems to have increased in this case. The 

reason for this was not apparent, but it is suggested that this could be due to the fluid 

being pushed down due to which there is an increase in velocity, an effect similar to what 

is found at the edge of a boundary in the flow over a flat plate, which is caused by the 

displacement thickness. There could also be a counter effect – a reduction in acceleration 

due to the motion of the fluid and the cylinder in the opposite directions under the cylinder 

at t = 600 s but its extent was not investigated. Results from simulations done at FR = 1.0 

and θ0 = 20° were also derived similarly and they are presented in Figure 10. 
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(a)      (b) 

 

Figure 10. Velocity vectors at FR = 1.0, θ0 = 20° and instantaneous flow times of  

(a) 568 s and; (b) 600 s. 

 

In Figure 10, at 568 s, it can be observed that below the cylinder, there is an 

acceleration followed by a slight deceleration of the fluid. This allows us to explain this 

phenomenon in the other way – the motion of the cylinder in the counter-clockwise 

direction reduces the acceleration of the fluid in the region below the cylinder.  

 

CONCLUSION 

 

The problem investigated and presented here is concerned with the simulation of uniform 

flow, past a square cylinder rotationally oscillating, at a Reynolds number of 100; the 

Reynolds number is based on the width of the square cross-section.  

Two important observations from the investigation regarding the effect of 

oscillations on non-dimensional variables are as follows. First is the observation of a 

drastic reduction in the RMS value of the lift coefficient CL,rms observed at the Frequency 

ratio of 1.0 when the angular amplitude is increased from 20° to 45°. The other is the 

inference that the increase in angular amplitude has a greater impact on the drag 

coefficient at higher frequency ratios, which is evident from the drag coefficient plots. 

Flow in the cylinder vicinity is no less important as the oscillations have been 

observed to cause an increase or a decrease in the fluid acceleration depending on the 

direction of the relative motion of the cylinder– when both move in the same direction, 

the acceleration of fluid decreases and when both move in opposite directions the 

acceleration increases. These observations were made in the region beneath the cylinder 

when it was tilted in the clockwise direction. Regarding the effect of amplitude on wake 

width, the possibility of the presence of a critical amplitude to coincide with the sudden 

rise in wake width is suggested. 
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