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NOMENCLATURE 
B central baffle spacing (mm) Greek symbols 
Bc baffle cut (%) ɛ viscous dissipation rate (m2/s3) 
C1ɛ, C2ɛ, C3ɛ, Cl, 
C2 

constants of transport equations k closure coefficient of transport equations 

Cb1, Cb2, Cw1, 
Cw2, Cw3, Cv1 

closure coefficients of transport 
equations 

λ viscosity coefficient 

𝑓𝑓𝑣𝑣1, 𝑓𝑓𝑤𝑤  viscous damping function μ dynamic viscosity (Pa s) 
Gb generation of turbulence due to buoyancy μt turbulent viscosity (Pa s) 
k kinetic energy υ kinematic viscosity (m2/s) 
K thermal conductivity (W/m-K) ρ density (kg/m3) 
Nb number of baffles 𝜎𝜎𝑘𝑘 turbulent Prandtl numbers for k 
Nt number of tubes 𝜎𝜎𝑣𝑣 constant of transport equations 
P pressure (Pa) 𝜎𝜎ɛ turbulent Prandtl numbers for ɛ 
V velocity Ф dissipation function 
S scalar measure of the deformation tensor Abbreviations 
Sɛ, Sv user-defined source terms of transport 

equations 
STE shell and tube heat exchanger 

u, v, w velocity components (m/s) HE heat exchanger 
x, y, z position coordinates   

INTRODUCTION 
For most productive industrial operations, STE’s are widely chosen for better possible heat transfer, and many pieces 

of literature have provided evidence that by analytical and computational methods [1,11,26,27]. As far as the flow 
technique is concerned, the counterflow configuration is the preeminent among them for effective analysis suggested by 
Mohanty et al.[6]. The advantages in terms of compactness and design make shell tube heat exchangers more desirable 
for industrial purposes such as power generation, chemical industry, and thermal power industries. The Tubular 
Exchanger Manufacturers Association (TEMA) is an association that upholds or sets the standard for heat exchanger 
construction [28]. The heat exchanger is designed by making some vital correlations and an analytical based approach. 
The correlations can be obtained by altering the design specifications iteratively. For a particular iteration, the 
performance of the heat exchanger can be evaluated; if it seems to be unsatisfactory, then some design parameters were 
modified in the right direction. However, performing such type of task is time-consuming. It is straightforward to amend 

ABSTRACT – In this investigation, a comprehensive approach is established in detail to analyse 
the effectiveness of the shell and tube heat exchanger (STE) with 50% baffle cuts (Bc) with varying 
number of baffles. CFD simulations were conducted on a single pass and single tube heat 
exchanger(HE) using water as working fluid. A counterflow technique is implemented for this 
simulation study. Based on different approaches made on design analysis for a heat exchanger, 
here, a mini shell and tube exchanger (STE) computational model is developed. Commercial CFD 
software package ANSYS-Fluent 14.0 was used for computational analysis and comparison with 
existing literature in the view of certain variables; in particular, baffle cut, baffle spacing, the 
outcome of shell and tube diameter on the pressure drop and heat transfer coefficient. However, 
the simulation results are more circumscribed with the applied turbulence models such as Spalart-
Allmaras, k-ɛ standard and k-ɛ realizable. For determining the best among the turbulence models, 
the computational results are validated with the existing literature. The proposed study portrays an 
in-depth outlook and visualization of heat transfer coefficient and pressure drop along the length of 
the heat exchanger(HE). The modified design of the heat exchanger yields a maximum of 44% 
pressure drop reduction and an increment of 60.66% in heat transfer. 
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the tube side parameters in the heat transfer operation. Still, it is very challenging to acquire the precise arrangement for 
the shell side during the heat transfer because, in the shell side, different leakage paths and bypass streams are present 
around the flow zone. Despite the fact of difficulty, CFD made it more straightforward in terms of flow field visualisation 
and temperature distribution by simplifying the assessment weakness.  

 Nowadays, for economical operation, numerical methods are extensively used to reduce the experimental cost and 
time, relatively. A small 3-D heat exchanger is designed in the present analysis, and due to the size, the leakages are 
negligible or don’t exist in comparison to the main flow stream, even though the shell side geometry is complicated 
because of the baffles. Baffles are present in the heat exchanger for adequate circulation of working fluid inside the shell 
from inlet to outlet recommended by Trp et al., Gajapathy et al. [2,5]. The most conventional baffles, such as single 
segmental circular baffles, are used here for the simulation. The baffles have a cut in the middle, and those baffle cuts are 
inevitably essential for allowing the fluid to cross through the shell. The baffle cuts positions are not the same throughout 
the shell. The orientation was reformed (cut face down, cut face up) and is designed in such a way that leads to creating 
a flow path across the tube bundles. The baffle spacing is maintained to visualise the flow structure. The shell and tube 
configuration is as shown in Figure 1, and the flow structure is very much proportional to the baffle cuts and spacing 
inside the shell. Here the influence of baffle cuts and spacing over the heat transfer and pressure drop are analysed.  

 
Figure 1. Shell and tube heat exchanger with six baffles. 

 Andrews and Master [1] performed a 3D CFD simulation of a helical tube heat exchanger with three different helix 
angles, i.e., 10°, 25°, and 40° concerning the radial axis. The study concentration is on the recirculation zones, back 
mixing in the inner and outer regions of the shell. Trp et al. [2] have studied a phenomenon for transient heat transfer of 
2-D STE within a control volume using commercial CFD software ANSYS. Developing codes in FORTRAN and 
imposing boundary conditions at the inlet and outlet of heat exchanger (HE), the model was validated with some 
experimental results. Investigation of tube side heat transfer has explored by Karno and Ajib [3] on an STE. The effect 
of longitudinal as well as transverse tube pitch in the inline and staggered tube arrangements was simulated for inspection 
of different thermodynamic properties such as heat transfer coefficients, Nusselt number, and thermal performance. 
Enhancement of heat transfer was reported in a helical double pipe heat exchanger using CFD fluent package 6.2 by 
Jayakumar et al. [4]. Heat transfer was analysed considering different properties, methodology and was validated in 
contrast with a fabricated experimental setup. Some commercially available CFD codes PHOENICS were used by 
Gajapathy et al. [5] for thermo-hydraulic research of a transitional heat exchanger in a pool-type liquid metal. Using those 
codes prediction of temperature distribution in the tube side and shell side has obtained with or without provision of flow 
devices.  

Under turbulent flow conditions, the thermo-fluid analysis was carried out by Mandal and Nigam [7] in a helical tube 
heat exchanger. Concurrent interaction between water and hot gas taken place inside the heat exchanger. For this fluid to 
fluid interaction, Reynolds number, Nusselt number and friction factor were considered in their literature for 
computational analysis. A correlation-based approach has made by Kharat et al. [8] for the discrepancies of gaps in the 
coils and tubes of a heat exchanger. Mathematical models were developed for CFD analysis, and simulated values were 
compared with the experimental results. This investigation shows around 3-4% error in the CFD calculation. An ideal 
approach of reducing the baffle cut up to 36% and 25% by Ozden and Tari [9] on a small lab-scale model for STE has 
been simulated for better visualisation of the flow structure interaction, backflow, pressure drop inside the shell. 
Following that few researchers like Chen et al. [10], Jadhav and Koli [11] also investigated the STE with numerical 
simulation.  

A comprehensive simulation approach was made by Jayakumar et al. [12] on the helically coiled heat exchanger. 
Subsequently, Pandey and Nema [13] and Mandal et al. [14] considering two-phase fluid flow approach because single-
phase became trivial then for simulation. However, numerical simulation implies a much better insight into the real world 
heat transfer analysis. Convective heat transfer at different particle sizes was examined by various researchers [14-16] in 
the developing regions of the tube by introducing the CFD method. A passive technique of using a twisted tube was 
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addressed [17-19] to compare with plane tubes. At present, the twisted tube has limited application in comparison with 
straight passages for heat transfer analysis. To study the pressure field, temperature field and path lines, Yang and Liu 
[20] have numerically investigated the shell and tube heat exchanger utilising rod baffles. 

Moreover, the aim is to generalise between the plate baffle heat exchanger and rod baffle heat exchanger using Fluent 
6.3 and Gambit 2.3. Pal et al. [21] have found the huge advantages of STE, which made it the most convenient type of 
heat exchanger for industrial purpose. An attempt was made to investigate the thermodynamics of small shell and tube 
heat exchanger using with and without baffles in the open FOAM with the help of CFD codes. For small heat exchanges 
nozzle region has some substantial role for the heat transfer and k-ɛ turbulence model emerges to be the best among the 
other profound models because the boundary conditions seem to be realistic. Baffle selection and thermo-hydraulic 
performance were addressed by El Maakoul et al. [22] for an STHX using ANSYS Fluent. Different parameters such as 
flow distribution of shell side, heat transfer coefficient, and pressure drop were disclosed in that paper with low flow rates 
using a single segmental baffle.  

Major factors for a shell and tube heat exchanger were evaluated by Bichkar et al. [23] using different baffles 
orientation such as single segmental, double segmental and helical baffles. Single segmental baffles form a dead zone 
inside, where no heat transfer was taking place while double segmental framing out to be better. Double segmental baffles 
smartly minimise the vibrational effect. A CFD analysis made by Nada et al. [24] on heat transfer characteristics for a 
helically coiled heat exchanger introduced. Correlations based approach was made for analysing Nusselt number and 
Reynolds number. To reduce the capital and to operate cost for the STE Shinde and Chavan [25] have introduced new 
baffle materials, e.g., FRP in recent years with different helix angles. Among different helix angles, larger helix angles 
show lower pressure drop and heat transfer, but the smaller lower angles bring higher heat transfer and pressure drops. 

In real practice, both the effectiveness and pressure drop are directly proportional to the fluid flow path, baffle spacing 
inside the shell. Hence more the complexity of baffles inside the shell the transfer of heat will be more; however, the 
pressure drop increases in addition to the consumption of higher pumping power are required. So the effort made to 
minimise the pressure drop inside the shell side of the heat exchanger implementing different numbers of continuous 
baffles and baffle cuts (alternate positions) is introduced on a small scale. The implementation of a 25% baffle cut is 
widespread in STE, but a 50% baffle cut for STE was not effectively analysed. For this present analysis, the baffle cuts 
have increased to 50% without changing the angle of inclination. For the design simplification, the edge of those single 
segmental baffles is kept as 90º. ANSYS Fluent version 14.0 is used for mesh generation because simulation results are 
sensitive to the meshing. After choosing adequate mesh, discretisation method, and viscous model, the simulation is 
performed with three different fluid flow rates altering the number of baffles, baffle spacing and baffle cuts. Different 
thermal properties are calculated for the shell side and later compared these results with existing computational literature 
[9] for the numerical simulation.  

MODELLING DETAILS 
The CFD simulation study was performed on a small lab-scale model of STE for accurate visualisation of transfer of 

heat and pressure drop for shell side analysis of the heat exchanger. Numerous geometric parameters and design 
parameters were included for modelling of the heat exchanger. The information regarding modelling parameters is stated 
in Table 1. The geometric model prepared in the ANSYS shown in Figure 1 for six baffles with a 50% baffle cut. A 50% 
baffle cut is introduced, which is halfway in line with tubes of the central row. Water is used as the working fluid, and 
aluminium is chosen for the material of construction. 

Governing Equation 
To characterise the laws of conservation of mass, momentum, and energy for an incompressible fluid and the heat 

transfer inside the heat exchanger are described below.  
 
Conservation of mass: 

∇.(ρV)=0 (1) 
 
Momentum equation: 

 
In x-direction;      ∇.(ρuV)= −𝜕𝜕ρ

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

𝜕𝜕𝜕𝜕
 (2) 

 
In y-direction;      ∇.(ρυV)= − 𝜕𝜕ρ

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

𝜕𝜕𝜕𝜕
+ 𝜌𝜌𝜌𝜌 (3) 

 
In z-direction;      ∇.(ρwV)= −𝜕𝜕ρ

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

𝜕𝜕𝜕𝜕
 (4) 

 
Energy equation: 
 

∇.(ρeV)= −𝑝𝑝∇.𝑉𝑉 + ∇. (𝑘𝑘∇𝑇𝑇) + 𝑞𝑞 + 𝜑𝜑 (5) 
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𝜑𝜑 is the heat dissipation calculated from; 
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(6) 

Geometrical consideration 

For this small-scale model of STE, the crucial boundary condition has to be temperature and fluid flow rate at the 
inlet. For obtaining higher heat transfer at the expense of low-pressure drop at the outlet of shell and tube, the desired 
boundary condition is implemented in terms of fluid flow rate and temperature. The details of geometrical parameters are 
listed below in Table 1. No-slip condition is assigned at the surface, and gravity is assigned to the Y-axis. The tubes and 
shells are made solid with inlet temperatures at 450 K and 300 K, respectively.  

Table 1. Geometrical parameters. 

Shell diameter, Ds 90 mm 
Diameter of tube, Dt 20 mm 
Tubes, Nt 7 
Length of HE, L 600 mm 
Inlet temperature for shell side, Ts 300 K 
Tube inlet temperature, Tt 450 K 
Baffle cut, Bc 50% 
Number of baffles, Nb 6 
Baffle spacing, B 85.7 mm 

Mesh generation 

Meshing is performed in the ANSYS meshing software, and two different types of mesh sizes are selected, i.e., coarse 
and fine with 870,988 elements and 1,536,345 elements, respectively, as in Table 2. For this present investigation, the 
simulation runs on a progressively finer grid by changing the local refinements to check the variation of computational 
parameters. It is evident from Figure 2 that applying fine and coarse mesh size, the results are found to be in good 
agreement with the actual results. However, medium mesh size results are also good, but for the comparison purpose, 
both coarse and fine mesh are taken into consideration. So considering the solution accuracy and computation time, the 
grids are chosen. The tetrahedral mesh is selected for surface meshing, which is shown in Figure 3..  

Table 2. Number of cells in a different type of mesh. 

Size of mesh Elements Nodes 
Coarse 870,988 174071 
Medium 1,156,564 231144 
Fine 1,536,345 307043 

 

 
Figure 2. Grid independence test. 
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Figure 3. Grid structure of the computational domain. 

Turbulence modelling 

As the flow is not laminar inside the heat exchanger, the transient simulation is chosen for the simulation, and there 
are few standard norms based on which turbulence models should be selected. That’s why different turbulence models 
must be selected for separate studies. In this study, three different types of turbulent models are addressed, such as Spalart-
Allmaras, k-ɛ standard and k-ɛ realisable. The Spalart-Allmaras model is based on kinematic eddy viscosity and mixing 
length. This mixing length defines the transport of the turbulent viscosity. This is a robust model, fast to implement when 
modelling a specialised flow and solves only one transport equation, i.e., turbulent viscosity. In flows where convection 
and diffusion cause significant differences between production and destruction of turbulence, then the k-𝜀𝜀 model comes 
into consideration. So, considering the dynamics of the turbulence k-𝜀𝜀 model introduced, which focuses on the mechanism 
that affects the turbulent kinetic energy. On the other hand, two k-ɛ models, i.e., standard and realisable, are seems to be 
the most crucial for shell and tube analysis.  

The Spalart-Allmaras turbulence equation stated below with closure functions and coefficient. The equations for the 
simulation analysis are mentioned below; 

 
𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖

(𝜌𝜌𝜌𝜌𝑢𝑢𝑖𝑖) =  𝜌𝜌𝜌𝜌𝐶𝐶𝑏𝑏1𝑆𝑆 − 𝐶𝐶𝑤𝑤1𝑓𝑓𝑤𝑤𝜌𝜌 �
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(7) 

 
𝜇𝜇𝑡𝑡 = 𝜌𝜌𝑓𝑓𝑣𝑣1𝑣𝑣 (8) 

 
∁𝑏𝑏1= 0.1355,∁𝑏𝑏2= 0.622,∁𝑣𝑣1= 7.1,  𝜎𝜎𝑣𝑣 = 0.667,∁𝑤𝑤2= 0.3, ∁𝑤𝑤3= 2, 𝑘𝑘 = 0.85  

 
 

The standard k-ɛ model only valid for turbulent and non-separated flow, and it solves both turbulent kinetic energy 
and rate of dissipation of kinetic energy. It also offers good convergence; that’s why it framed as a general-purpose model, 
whereas k-ɛ realisable improves the performance of complex geometries, and it resolves boundary layers by two-equation 
models.  

∁𝑏𝑏1= 0.09, ∁𝑏𝑏2= 1.44, ∁𝑣𝑣1= 1.92,  𝜎𝜎𝑣𝑣 = 1, ∁𝑤𝑤2= 1.3, ∁𝑤𝑤3= 0.85, 𝑘𝑘 = 0.85  
 
The k-ɛ realisable model equation is as follows; 
 

𝜕𝜕
𝜕𝜕𝜕𝜕𝑗𝑗

�𝜌𝜌𝜌𝜌𝑢𝑢𝑗𝑗� =
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�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑗𝑗

� + 𝜌𝜌∁1𝑆𝑆𝑆𝑆 + ∁1𝜀𝜀
𝜀𝜀
𝑘𝑘 ∁3𝜀𝜀𝐺𝐺𝑏𝑏 − ∁2𝜌𝜌

𝜀𝜀2

𝑘𝑘 + √𝜀𝜀𝜀𝜀
+ 𝑆𝑆𝑣𝑣 

 
(9) 

 
 

∁2𝜀𝜀= 1.9,𝜎𝜎𝑘𝑘 = 1,𝜎𝜎𝜀𝜀 = 1.2  
 

 

After the turbulence models, the discretisation plays an important role. Here the SIMPLE algorithm is chosen for 
calculating the pressure and velocities. The momentum equations calculation needs to be done sequentially. In the 
SIMPLE algorithm, an initial guess is made for pressure and velocity component to discretise the momentum equation. 
In the second step, it solves the pressure correction equation. After correcting the pressure and velocities, the algorithm 
jumps to resolve all other discretised transport equations. If the simulation reaches the convergence, then it will stop 
otherwise, one more iteration will be follow up.  

For the heat exchanger analysis, both first and second-order discretisation scheme is implemented, alternatively. Both 
first and second-order discretisation is carefully chosen for kinetic energy, momentum, and dissipation rate. Choosing 1st 
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order discretisation provides an advantage of better convergence as compared to the 2nd order, whereas second-order 
discretisation reduces the discretisation error. 

DISCUSSION OF RESULTS 
For comparison and validation of this present CFD model, the existing CFD simulation study [9] has chosen with 

different baffles. Different output parameters such as pressure drop, heat transfer coefficient, and total heat transfer are 
analysed by altering the design parameters such as the number of baffles, baffle cuts (bc) and baffle spacing — the 
portrayal of computational simulation consequences as described in Table 3. 

Table 3 displays all the obtained output parameters after the CFD simulation. The outlet temperature, pressure drop, 
and heat transfer rate are directly found after the computational simulation. However, the heat transfer coefficients are 
calculated using the LMTD method from the change in temperature and heat transfer area. From the above Table 3, it 
illustrates that cases A, B, C, D results are not convenient because there is an increase in temperature outlet by increasing 
the fluid flow rate for the same heat exchanger area. It violates the principle, as the flow becomes faster, the heat exchanger 
liquids don’t get enough time to interact with each other. However, for the rest of the cases, the simulated results are 
satisfactory, as the temperature increases only by decreasing the fluid flow rate. Hence considering the difference, the 
heat transfer results are reasonable. Among those cases, k-ɛ standard and k-ɛ realisable 1st order discretisation are 
providing the best results, but the case-I results seem to be unsatisfactory. Because in case-I, there is an unpredictable 
heat transfer rise taking place which practically not possible to achieve.  

Table 3. Computational investigation using different viscous models and discretisation methods. 

Case Turbulence 
model 

Grids Mass flow 
rate (kg/s) 

Result of CFD Analysis 
Shell side outlet 
temperature (K) 

Heat transfer 
coefficient 
(W/m2 K) 

Pressure drop 
at Shell side 

(Pa) 

Total heat 
transfer 

(W) 
A k-ɛ standard Coarse 

(870,988) 
0.5 325.86 1847.22 2138.53 115818.69 

   1 328.77 2777.75 8664.20 179106.58 
   2 330.23 5422.60 35859.37 231598.42 
B k-ɛ standard 

2nd order 
Coarse 

(870,988) 
0.5 327.39 2577.58 2602.60 166280.64 

   1 329.02 4560.94 8139.22 208642.3 
   2 331.47 9244.75 41464.54 201263.31 
C k-ɛ 

realizable 
Coarse 

(870,988) 
0.5 325.67 1518.68 2261.13 196407.8 

   1 322.98 3133.57 9079.50 173538.14 
   2 321.34 6051.13 36394.83 155568.83 
D Spalart–

Allmaras 
Fine 

(1,536,345) 
0.5 317.69 2412.99 2097.57 81630.64 

   1 320.13 3613.29 9035.14 92956.22 
   2 321.46 3484.67 2412.99 97382.38 
E Spalart–

Allmaras 2nd 
order 

Fine 
(1,536,345) 

0.5 317.79 2412.99 2642.97 82068.35 

   1 309.56 3962.02 10671.7 872633.94 
   2 305.01 6241.22 39254.78 315441.31 
F k-ɛ standard Fine 

(1,536,345) 
0.5 344.98 2996.73 2103.10 70578.21 

   1 340.96 5168.67 5420.29 149842.63 
   2 335.54 9638.84 23182.95 251988.43 
G k-ɛ standard 

2nd order 
Fine 

(1,536,345) 
0.5 348.36 2646.3 2171.31 71909.02 

   1 342.20 3984.58 5667.41 1838292 
   2 338.57 9645.41 23950.62 32580.06 
H k-ɛ 

realizable 
Fine 

(1,536,345) 
0.5 341.34 2798.65 2104.20 180519.39 

   1 337.81 4125.67 8643.02 165755.09 
   2 324.33 7951.34 34625.79 109380.69 
I k-ɛ 

realizable 2nd 
order 

Fine 
(1,536,345) 

0.5 371.01 2651.88 2159.20 304634.72 

   1 363.60 6124.59 10218.90 386551.03 
   2 349.23 10569.67 31549.65 564327.89 
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 Apart from that, the pressure drop is calculated for the heat exchanger, which shows there is a rise in pressure at the 
outlet by increasing the fluid flow rate. However, the drop is quite usual due to the baffles spacing and baffle cuts, which 
impede the motion of the fluid. After finding the adequate turbulence model, the heat exchanger with 8, 10, and 12 
numbers of baffles are simulated. Simulation results are mentioned in Table 4, which explains that increasing the number 
the baffles increases the pressure drop and outlet temperature irrespective of baffle spacing. Hence the unexplored relation 
between the baffle spacing and heat exchanger geometry has shown in this study. Table 4 shows the optimum values for 
baffle spacing and shell diameter ratio. 

Table 4. Relation between baffle spacing and design parameters. 

Number of baffles, 
Nb 

6 8 10 12 

Central baffle 
spacing, B (mm) 

85.7 66.67 54.54 46.15 

Ratio of B/DS 0.95 0.74 0.6 0.51 

Table 5. Computational results for varying numbers of baffles, Nb. 

Nb Mass Flow 
rate (kg/s) 

 Computational 
results 

  

  Shell side outlet 
Temperature (K) 

Heat transfer 
coeff. (W/m2 K) 

Pressure drop at 
shell side (Pa) 

Total heat 
transfer (W) 

6 0.5 344.98 2996.73 1503.10 70578.21 
 1 340.96 5168.67 5420.29 149842.63 
 2 335.54 9638.84 23182.95 251988.43 
      
8 0.5 345.14 2778.89 2178 196411.47 
 1 342.68 5865 8514.23 234650.87 
 2 338.97 9854.23 30987.02 426755.1 
      
10 0.5 348.60 2971.16 2107.96 169062.98 
 1 345.89 4698.31 9854.26 274988 
 2 341.84 9125.65 38648.77 421896.54 
      
12 0.5 357.92 3502 1882.94 249856.45 
 1 352.13 5649.94 10975.61 356211.79 
 2 347.64 10624.83 45698.52 512697.02 

 
In Table 6, the 50% baffle cut CFD simulation results are compared with 36% baffle cut simulations. It shows the 

percentage difference between these calculations.  

Table 6. Percentage difference between Bc=36% and Bc=50%. 

Nb 
Mass flow rate 

(kg/s) 
Heat transfer coefficient 

(W/m2 K) in % 
Pressure drop at shell 

side (Pa) in % 
Total heat transfer (W) 

in % 
6 0.5 16.1 -1.25 20.22 
 1 9.87 -13.79 12.05 
 2 29.78 -7.67 4.55 
8 0.5 2.87 -1.28 54.32 
 1 27.2 -1.4 37.98 
 2 20.73 -10.92 36.97 
10 0.5 3.43 -44.31 44.3 
 1 5.24 -21.20 41.95 
 2 3.74 -22.10 29.2 
12 0.5 13.9 -38.05 60.66 
 1 9.46 -40.62 52.08 
 2 9.44 -33.33 36.91 

 
The comparison illustrated in Table 5 shows there is an increase in heat transfer by increasing the number of baffles 

favourably with a lower mass flow rate. On the other hand, there is a decrease in pressure at a lower flow rate and a 50% 
baffle cut in contrast with the 36% baffle cut. However, the pressure drop is directly related to the ratio of baffle spacing 
to shell diameter. The simulation result predicts the optimum B/Ds ratio for the heat exchanger analysis should have lies 
in between 0.3 to 0.6. The velocity flow paths for varying numbers of baffles are shown below.  
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Effect of Baffle Cut (Bc) on Heat Transfer and Pressure Drop 
Changing the number of baffles and baffle spacing the effect of pressure drop and total heat transfer on STE is 

investigated. The 50% baffle cut provides better results in contrast with the 36% baffle cut. After increasing the number 
of baffles, the baffle spacing will decrease for a fixed heat exchanger length. For every CFD investigation, the simulation 
has to follow the same cycle. The new geometry after increasing the number of baffles is re-meshed in ANSYS and then 
follows the same track for simulation. By decreasing the baffle spacing, the heat transfer increases simultaneously as well 
as the pressure drop. The pressure drop values increase due to an increase in fluid flow, but it is lower in comparison with 
the 36% baffle cut. That’s why the 50% baffle cut results improve the performance of the heat exchanger, and it has 
shown already in terms of percentage difference. For 6, 8 and 10 baffles, the percentage difference is less for lower mass 
flow rate. 

In Figure 4, the velocity streamlines are shown for varying numbers of baffles at 0.5 kg/s mass flow rate. From Figure 
5, it can be observed that the liquid water after hitting the baffle plates changes its direction so that the crossflow inside 
the heat exchanger is not effectively possible. However, for 10 and 12 numbers of baffles, there is a recirculation zone 
visualised briefly in Figure 5(c) and 5(d) which implies the flow is well developed, and recirculation is possible. These 
simulations express 10, and 12 number of baffles hold better acceptable design for this heat exchanger. Moreover, in 
comparison with the 36% baffle cut the 50% baffle cut gives better performance in terms of higher heat transfer and lower 
pressure drop. 

 

 
 
 

(a) 
 

(b) 
 

 
(c) 

 
(d) 

Figure 4. Velocity profile for (a) Nb=6, (b) Nb=8, (c) Nb=10, (d) Nb=12. 
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(a) 

 
(b) 

 
(c) 

Figure 5. Velocity streamlines for (a) Nb=6, (b) Nb=8, (c) Nb=10, (d) Nb=12 at 0.5 kg/s. 

Validation of Results 
The foremost aim of this analysis is to validate the findings by comparing the different baffle cuts of STE. The 

validation could be accomplished by equating the existing literature. In Table 6, a comparison was made by establishing 
the percentage difference, and the validation is portrayed in the graphs of Figure 6 to Figure 8. Validation of results is 
carried out on pressure drop, total heat transfer and heat transfer coefficient considering 6, 8, 10 and 12 number of baffles. 
The graphs illustrated are a comparison of 36% and 50% baffle cut.  

 

 

 
(a)  

(b) 
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(c) 

 
(d) 

Figure 6. Pressure drop validation for (a) 6 baffles, (b) 8 baffles, (c) 10 baffles and (d) 12 baffles. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Heat transfer coefficient validation for (a) 6 baffles, (b) 8 baffles, (c) 10 baffles and (d) 12 baffles. 

 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 8. Total heat transfer rate validation for (a) 6 baffles, (b) 8 baffles, (c) 10 baffles and (d) 12 baffles. 

CONCLUSION 
From the above study, a computational model is used to compute and compare the performance of the shell side of an 

STE. Shell side performance is resolved by altering the thermal and transport properties as well as the design parameters. 
The shell side computations are case sensitive to the low-pressure details, so the study is observed using adequate mess 
density, discretisation, and turbulence modelling. Among three turbulent models k-ɛ realisable of 1st order discretisation 
method emerges to be the best one. 

 Design parameters like baffle spacing from 6 to 12, baffle cut was altered for three different fluid flow rates. The 
baffle cut has a significant impact on the fluid to fluid heat transfer. The 50% baffle cut gives a better result in contrast 
with the 36% baffle cut. For this analysis, k-ɛ std. and k-ɛ realisable coarse mesh under predicts the outcomes in 
comparison with the 36% baffle cut. Decreasing the baffle cuts leads to form recirculation zones behind the baffles so 
that the crossflow windows can not well utilised, which have already been illustrated in Figure 4 to Figure 5 for 12 number 
of baffles. Hence after increasing the baffle cut and several baffles, such weakness inside the shell is fixed.  

 For this single segmental baffle design heat exchanger, it was found that the total heat transfer increases for 50% 
baffle cut with increasing baffle spacing inside the shell. The heat transfer increment is up to 60.66% for 0.5 kg/s mass 
flow rate, which is higher in comparison with the 36% baffle cut. The pressure drop will increase after flow rate increment; 
however, in contrast, with a 36% baffle cut, the pressure drop in this study decreases up to a maximum of 44% and a 
minimum of 1.25%. In future problems like the formation of dead zones, vibrational damage can be overcome by 
introducing double segmental baffles. Based on this CFD based prediction, a correlation-based approach can be used for 
better validation of this work. 
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