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INTRODUCTION 

This research focuses on the sensor network model in the smart factory, which consists of computerised production 
machinery and non-computerised equipment. The problem raised in a company that utilises the Flexible Manufacturing 
Systems (FMS) and the conventional machine tools in the production system. The information of job status and the 
machinery components status have not been monitored so that production control cannot make any decisions for 
rescheduling due to the status of machinery components, in this case, the condition of the cutting tools. The design of the 
sensor network model is important when the company use the Internet of Things (IoT) technology as one of the advantages 
of Industrial 4.0. The outline of this paper begins with the background of this research. Section 2 presents related work 
and studies of the sensor networks in smart factories. The system description in section 3 describes the detailed scope of 
problems to be developed. The system consists of the FMS, the monitoring system for machine tool components and the 
shop floor control. Section 4 explains the model of the sensor network, the monitoring system and the application system 
that has been built. Section 5 presents the test results and analysis, while section 6 concludes the research. 

The advanced digital technology such as the IoT, sensor networks, artificial intelligence have been utilised in 
manufacturing environments that implement Industry 4.0. Integration plays an important role in the implementation. 
Wang et al. [1] explained that integration in manufacturing systems could be classified into three types, which are vertical 
integration, horizontal integration, and end-to-end engineering integration. Vertical integration facilitates the flow of 
information from sensors on the production floor to the monitor system. Horizontal integration provides to flow the 
information, materials, and finance between divisions in a company. End-to-end engineering integration provides the 
infrastructure to add value creation, for example, the customer requirements to production, service, and maintenance 
division. Kusiak in 2017 [2] explained that automatic factories that use the smart manufacturing concept could be 
evaluated based on six pillars, that are materials, data, predictive engineering, sustainability, resource sharing and 
networking as well as technology and manufacturing processes. Rossit et al. [3] explained that the implementation of 
industry 4.0 also includes smart scheduling and production planning, which is called Cyber-Physical Production Systems 
(CPPS).  

Kang et al. [4] reported smart manufacturing has been used in several industries. His research shows the development 
of smart manufacturing implementation in the past, present and the direction of research in three countries, namely 
Germany, United States of America, and Korea. To realise smart manufacturing in various fields, cyber-physical systems, 
cloud manufacturing, big data analytics, IoT, and smart sensors are being used. Wang et al. [5] developed a self-organised 
multi-agent system for coordination in industrial networks using smart shop floor control. Decision making can be done 
independently (autonomous) and distributed on each object consisting of machine tools, conveyors, and products. The 

ABSTRACT – This research was developed to plan, monitor, and control the production in a 
modern manufacturing system model with heterogeneous production facilities, consisting of 
several automatic machine tools and conventional machine tools. Therefore, it proposed, a smart 
factory concept that utilises computer technology, internet networks and sensors so that the 
production process can be monitored. The sensor network monitors the condition of the machine 
tools and the status of the job. The temperature sensors, the vibration sensors, the electrical energy 
sensors are used to check tool conditions in machine tools. Meanwhile, the radio frequency 
identification (RFiD) system is used to check the status of the workpiece whether it has been 
completed, work in progress, or is waiting in a buffer or a pallet stocker. The information relating to 
the performance of the machine tools is sent using the IoT application so that through the web. The 
machine performance data are collected, and their status can be monitored. Likewise, job status 
is visible on the shop-floor control system. The sensor network model at the prototype scale had 
been built and tested on a laboratory scale. The test results showed that the performance of 
machine tools and job status were monitored properly.   
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simulated model shows that the smart shop floor control coordination provides high efficiency. The multi-agent system 
is a heterogeneous set of objects with different abilities, tasks, and goals. Objects can coordinate with each other and 
exchange information to make the best decisions when conflicts arise as described by Tripathi et al. [6]. 

Savaglio et al. [7] conducted a survey explaining the state of the art and research challenges for agent-based, which 
utilised IoT technology, which is called Agent-based Computing (ABC). Technologies integrated with ABC including 
Edge Computing, Cloud Computing, Semantic Technology, Machine Learning, Blockchain Technology, and Wireless 
Sensor Network (WSN). WSN is used at a low level, which is placed on the components of the manufacturing system to 
get production data, such as job status and machine tool status. Meanwhile, Chen et al. [8] emphasised the importance of 
smart factories to upgrade the manufacturing industry. The main goal of this paper is proposing the design in the physical 
layer, data application layer and network layer. Chen designed the industrial wireless network (IWSNs) for the cyber-
physical production system (CPPS). Lee et al. [9] examined in more detail, which explain the design and implementation 
of a wireless sensor-based monitoring system for a smart factory of supporting utility machines for a real-time 
environment using a wireless sensor network architecture. The purpose of this research is to extend lifetime of the utility 
machines like motors, water-pumps, and compressor machines by checking the white noise, illegal vibration, and high 
temperature. Meanwhile, Iqbal et al. [10] examined reliable decision making using a wireless sensor network (WSN) for 
the Factory Condition Monitoring process. Performance analysis is presented to calculate the error rate. Ud Din et al. [11] 
designed a multi-agent system framework for small to medium-size enterprises which implement Industry 4.0 by utilising 
the Enterprise Resource Planning System (ERP). 

The concept and approach of energy management in production based on the IoT were developed by Shrouf et al. [12] 
at a smart factory in Industry 4.0. The control technique is to collect energy consumption data from the shop floor. Then 
this data is processed to reduce the wastes and enable energy-aware decision-making at the production management level. 
Meanwhile, Wang et al. [13] implemented a smart factory that utilises sensors and actuators with machine tools that use 
EtherCAT as a substitute for ethernet as network infrastructure. Gao et al. 2019 [14] emphasise the connectivity of highly 
dynamic wireless sensor networks in smart factory. For implementation in the manufacturing industry in Korea, there are 
several important factors that must be considered, namely organisational support, informatisation capabilities, IT 
personnel, qualifications, and scale; are seen in other technologies and innovation acceptances [15]. Pagnon et al. [16] 
conducted research that focuses more on how production equipment can be maintained by utilising interconnectivity 
between the data and the central office. The data collected is related to online ordering, order processing, raw material 
processing, product manufacturing, product shipment, and smart factory maintenance. Based on the analysis of his 
research, Sjödin et al. in 2018 [17] offer a model for smart factory implementation, which built by three principles to 
achieve the benefits in the management aspect. Those principles are the cultivating digital people, introducing agile 
processes, and configuring modular technologies. It integrates data flow horizontally between partners, suppliers, and 
customers. The data also integrates vertically within the organisations from the product development to the final product. 
The future smart factory will also integrate with the new technologies, such as artificial intelligence (AI), data science, 
and virtual reality. Therefore, implementing the smart factory is complex because of not only traditional fields such as 
the mechanical, electronic, and its automation, but also involves the emerging technologies which are data science, AI, 
and virtual reality [18]. 

Referring to the research of Wang et at. [1], the proposed research focuses on vertical integration and horizontal 
integration in a smart factory that utilised FMS integrated with conventional manufacturing systems. The FMS is a 
manufacturing system consisting of an automatic material handling system and several automatic machine tools 
controlled by a computer. The computer is a part of the controller on the production floor that can be connected to the 
company’s ERP system. Several modern manufacturing companies that have taken advantage of FMS, also still operate 
manufacturing systems that use conventional machines. For example, conventional lathes and milling machines are used 
for the preparation of raw materials that will be processed by the FMS. This conventional equipment is located in the 
warehouse and material preparation division. The information data, the material, and the value creation from this division 
need to be monitored and controlled. 

The problem in this research is how to integrate the planning and production control in a cyber-physical system model 
which consists of equipment controlled by computer, and some are not controlled by computer. The example of the 
controlled computer machines is the computerised numerical control (CNC) machines, while the non-controlled 
equipment is the conventional milling machine. Setiawan et al. [19] proposed three types of sensor, which are the 
temperature sensor, vibration sensor, and electrical current sensor to monitor the cutting tool condition in the machining 
process. For further research, Setiawan developed a sensor network in the shop floor to monitor the status of material and 
work in process. The FMS and the conventional machine require additional sensors, processors and application that can 
integrate with a smart manufacturing system to interact with other system elements. The application to integrate the 
system is the Shop Floor Control System (SFCS). The SFCS model in the smart manufacturing system is shown by Zheng 
et al. [20], which connects the cyber-physical system, local control system and cloud. In his research, Zheng explained 
that sensor and actuator deployment is needed to retrieve data which is then processed into decision making by big data-
driven.  

DESCRIPTION OF SYSTEM 

The manufacturing system in this study consists of two sub-manufacturing systems, which are the FMS sub-system 
and the conventional machinery sub-system. Those sub-systems are integrated by a shop floor control system. 
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The Flexible Manufacturing System (FMS) 
The FMS used in this study corresponds to the FMS in Setiawan et al. [21]. The FMS consists of four CNC-horizontal 

milling machines, a stacker crane, a pallet stocker and two loading-unloading stations. The CNC-horizontal milling 
machine is equipped with an automatic tool changer (ATC) which has the capacity to store 90 tools. CNC machines are 
also equipped with an automatic pallet changer (APC), a tool used to take workpiece from the CNC machine buffer to 
the machining room. Pallet stocker is storage of workpiece on a pallet with a capacity for 60 pallets. The workpiece is 
mounted on a pallet according to the fixture to be used. To setting up material in the fixture, it is done at the 
loading/unloading station. FMS construction is reported in Figure 1. 

 

 
Figure 1. The FMS construction. 

In the previous research, the FMS was not equipped with a system to monitor the status of the workpiece. If there is 
an interference or breakdown in the FMS component, rescheduling was done. Therefore, FMS requires a system that 
collects information on the workpiece status, whether it is completed, is being machined on or waiting. The other 
important information is the location of the workpiece, whether it is in the CNC-machine buffer, in the CNC-machined 
machining room, at the loading/unloading station, on the stacker crane or in the pallet stocker, as described in this problem 
[22]. For this reason, a Radio Frequency Identification (RFiD) sensor network is needed to detect the work status and 
location of a workpiece. In the research of Setiawan et al. [21], [22], the production rescheduling should not wait too long 
for maintenance. The objective function was developed to minimise the makespan, in this case, completion time (C) as 
explained in the following equations: 
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Equation (1) explains the objective function, to maximise the makespan (Cmax) in minutes. The makespan is the time, 

when the latest job (j) in a machine (m) in a batch, as shown in Figure 2. The makespan is the maximum of the total 
processing time (dj,m) of the jobs in a machine (m), where the indices: 

j, j’ : index for job, where 1 ≤ j ≤ J. 
m : index for machine, where 1 ≤ m ≤ M. 

 

 
Figure 2. The makespan Cmax in the production scheduling gantt-chart. 

Constraints: 
 

,
1

1  ,  ,
M

j m
m

X j m
=

= ∀ ∀∑
 

(2) 



A. Setiawan et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 17, Issue 4 (2020) 

8258  journal.ump.edu.my/ijame ◄ 

Equation (2), explains that only a job (j) is processed in a machine (m) at the same time, for all job and all machine. 

, , ,   ,  ,j m j m j mS C X L j m+ ≤ ⋅ ∀ ∀
 (3) 

The constraint in Eq. (3) explains that the starting time (S) of a job (j) at a machine (m) and the completion time C of 
the job (j) at the same machine (m), must be smaller or equal to the big number L, for all job and all machine. 

, , , ,(1 )  ,  ,j m j m j m j mC S d X j m≥ + − − ∀ ∀ (4) 

Equation (4) explains that the completion time (C) of the job (j) at the machine (m), must be more or equal to the 
starting time (S) of the job (j) at the same machine (m) plus the processing time (d) of the job (j) at the machine (m), for 
all job and all machine. 

( ), ', , ',   ,  ,j m j m j j mS C Y L j m≥ − ⋅ ∀ ∀  (5) 

( )', , , ',1   ,  ,j m j m j j mS C Y L j m≥ − − ⋅ ∀ ∀ (6) 

The constraint in (5) express that the starting time (S) of the job (j) at the machine (m) must be started after the 
completion time (C) of previous job (j’) at the same machine, for all job and all machine. While the constraint in (6) 
explains that the job (j) and the previous job (j’) on the same machine (m) are processed in sequence and cannot be done 
at the same time, where C is completion time (minute), and S is starting time (minute) 

max   ,  jC C j≥ ∀ (7) 

Equation (7) explains that the maximum completion time (C) of the jobs (j) does not exceed or equal to the makespan 
(Cmax). 

{ }, 0,1   ,  ,j mX j m∈ ∀ ∀  (8) 

{ }, ', 0,1   ,  , ',j j mY j j m∈ ∀ ∀ ∀ (9) 

where X and Y  variables are the binary number. X = 1 means that job-j, is allocated on machine-m, Y = 1 means that 
job-j, is precedes job-j’ on machine-m. 

The Cutting Tool Condition Monitoring System 
Another sub-manufacturing system is a conventional machine tool to prepare the raw material for FMS. The 

conventional machine, which is the manual lathe was in different building and the information of material status should 
be reported. Not only the material status needs to be reported, but the cutting tool condition status must be reported. 
Therefore Setiawan et al. [19] proposed a model to monitor cutting tool which consist of a temperature sensor, a vibration 
sensor, and an electric power measuring sensor. The relationship between the data from the sensors and the cutting tool 
condition is shown in the following equation: 

( )( ) ( ), ( ), ( )R t f T t V t P t= (10) 

where R(t) is the cutting tools reliability function at time t. Equation (10) explains the reliability of a cutting tool at 
time (t) has the function of the temperature (T), vibration (V) and power consumption (P) at time (t). While the reliability 
function is related to the Weibull distribution, which is related to the shape parameter (β) and scale parameter (θ); as 
explained in Eq. (11). If we have the shape parameter (β) and scale parameter (θ), then we could find the mean time to 
failure (MTTF). The MTTF has relation with gamma function (Г ). 

( )
t

R t e θ

β − 
 =

(11) 

11MTTF θ
β

 
= ⋅Γ + 

   
(12) 

While the reliability on cutting tool is related with flank, Wf, and crater wear, Wc, 
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( ) ( , )f cR t f W W=
 (13) 

 
Taylor formulated the cutting tools lifetime, U, as the maximum use of the cutting tool, although it depends on the 

cutting speed, vc. 
 

n
cv MTTF U⋅ =  (14) 

 
where MTTF is mean time to failure of cutting tools which is cutting tool lifetime, and n is a constant. 

The Shop Floor Control 
The SFCS collects data from the sensors and processed into feedback for production. The collected information is the 

status of the workpiece and status of the machinery components. Then the SFCS provide the decision for the production 
scheduling in the real-time. If problems raised, for the example, the cutting tools wear already to the limit or even break, 
then the SFCS propose a rescheduling. Therefore, the sensor network is necessary for the SFCS. The cutting tool monitor 
described in the next section of this paper. 

MODEL DEVELOPMENT 

The manufacturing systems consist of computerised controlled machinery, which is the FMS, and the non-
computerised controlled machine, which are the conventional lathes. The data from the shop floor is sent to the SFCS and 
reported via desktop and handphone. Therefore, the managers and board directors could also monitor the comprehensive 
status.  

To assist quick and accurate decisions making, the operation on the system needs to be processed with an Object-
Oriented Modeling (OOM) approach. All elements in a manufacturing system can be considered as objects. Objects that 
have the same properties are categorised as a class. In this system, there are five main classes, which are the product-
class, the machines-class, the cutting tools-class, the loading/unloading stations-class, and the pallet-stockers-class. The 
product-class has seven attributes, which are the job, stage, operation, the allocated machine, the machine status, the 
allocated cutting tools in the machines. Whereas, the machine-class, the loading/unloading-class, and the pallet-stocker-
class have only one attribute, which is the identity or their respective location. The cutting-tool-class has the attribute 
estimated cutting tool condition. The classes and attributes of the objects are shown in Figure 3. 

To implement a shop floor control system with an object-oriented modelling approach, it requires the software and 
hardware design. The software or the application should register and save all scheduled products (workpiece) into the 
database. The information includes the operations of the products, the completing and status of jobs, the RFiD identity 
numbers, the allocated machines, the queues in scheduled machines. Each operation of the product requires a type of 
cutting tool and the machining duration time. In the model, we put some RFiDs and microprocessors, which transmit the 
data by Wi-Fi to the cloud. The data processing is done on the server and partly done on the cloud (cloud computing) by 
exploiting artificial intelligence methods and machine learning. The locations for the RFiD and microprocessor in the 
shop floor are described in Figure 4.  

The Shop Floor Control (SFC) Model has been developed in a laboratory-scale by utilising the RFiD-readers, which 
is connected to the microprocessors that could send the data through the internet to the data base. The type of RFiD-reader 
that has been used is the RC-522, connected with the NodeMCU-ESP8266 microprocessor. The SFC-Model requires 
many RFiD-readers, which are located on the loading/unloading station, the CNC machines, the conventional machines, 
and the stacker crane. Another important device is the RFiD-tag to store data, which are the product name and identity, 
the number in batch, the requirement of cutting tools and the machining duration time, and the allocated machine. The 
RFiD-tag is mounted on the pallet. Therefore, wherever the pallet goes and detected by the RFiD-reader, the system is 
known by the SFC-Model. The SFC-Model was built using the Laravel software as the interface and SQL as the database. 
The design of the interface of the proposed application of the Online Monitoring System is described in the following 
figures. After logging into the application, the main menu displays several sub-menus, which are: 

• the sub-menu to create product data by the RFiD-tag Code, 
• the job listings and information, 
• the product production schedule on cutting machines and tools, 
• the product location information on the FMS, 
• the finished product information, and 
• the interruption information and rescheduling process. 
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Figure 3. The classes in object-oriented modelling in the shop floor control. 

 
Figure 4. The sensor network in the manufacturing systems. 
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In addition the product location data, the cutting tool conditions are also provided in the user monitoring system, (in 
Figure 5 and Figure 6), the graph database, the sensor data table (in Figure 7) and the gauge that shows the condition of 
the turning tool. The initial production schedule is calculated, referring to Eq. (1) to Eq. (10), as proposed by Setiawan et 
al. [21], [22]. The next menu is the machine data table that displays the MySQL database such as temperature, vibration 
sensor in X-axis, Y-axis and Z-axis, energy consumption, log time, and IP address. 

 

 
Figure 5. Display of four main menu buttons. 

 
Figure 6. Display of the database graph menu. 

 

Figure 7. Display of sensor data table. 



A. Setiawan et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 17, Issue 4 (2020) 

8262   journal.ump.edu.my/ijame ◄ 

RESULTS AND DISCUSSION 

A series of experiments have been carried out, with the first experiment was carried out using wood as a workpiece 
and high-speed steel (HSS) as a cutting tool material in the turning process. The cutting condition uses deep depth of cut, 
high cutting speed and medium feed rate. Therefore, the cutting tool gets high vibration, high temperature and require 
high electrical power consumption. The graphical data is described in Figure 8(a) for cutting tool vibration data. Figure 
8(b) describes the cutting tool temperature, and Figure 8(c) describes the energy consumption data. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Graphical data of (a) vibration sensor, in X-axis, Y-axis and Z-axis, (b) temperature and (c) energy 
consumption. 

The test was carried out for six minutes, and the wear that occurs is approximately 0.1 mm. By using Eq. (10) and 
(14), the increase in the temperature, vibration, and consumption of electrical energy, is correlated to the increase in 
cutting tool wear, as explained in Setiawan et al. [19]. 
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CONCLUSION AND FURTHER RESEARCH 

Based on the analysis of the experiments, it can be concluded that the shop floor control system model could operate 
properly and has been tested to monitor the location of the workpiece in real time for integrated manufacturing systems. 
To integrate the planning and production control in a Cyber-Physical System model, it requires sensor network. 

i. In this research, the sensor consists of temperature sensor, vibration sensor, energy sensor, and RFiD network 
sensor. 

ii. Those sensors are connected to the microprocessor that provides IoT. 

iii. The data is saved in the database and processed by multi-agent approach. 

Further research direction in term data processing is provided. The data of vibration, temperature and energy 
consumption need to process to estimate the cutting tool or the machine components conditions. In addition, the product 
data and workpiece status data need to be processed into production rescheduling if there is a disturbance in production 
equipment. This will be proposed for the approach of artificial intelligence and machine learning. 
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