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INTRODUCTION 
Squeal noise has become a big concern for automotive and railway vehicle engineers since forty years ago. This noise 

is generated by unstable vibration with friction contact. Three mechanical systems that are frequently found to emit this 
type of noise are automotive brake system, train-wheels when moving on a curved track [1-3], and wiper blades of 
automobiles [4, 5]. Some theories have been developed to explain the squeal mechanisms and to predict their generation. 
Numerous studies have tried with varied success in applying them. However, satisfying results in its prediction and 
suppression have not significantly been achieved because the mechanism is still not understood well [6, 7]. Many factors 
in both macro and microscopic levels contribute to affect squeal noise generation. Micro-level consists of a contact 
parameter such as coefficient of friction, normal or tangential contact stiffness, and surface roughness [8]. The macro-
level is considered structural analysis and large nonlinear displacement of elastic flexural contact [5]. These factors that 
contribute and correlate among them to generate squeal noise are still challenging research. 

In recent years, nonlinear vibration phenomena have been attracting more attention from researchers. Parametric and 
nonparametric techniques have been intensively studied. The friction has nonlinear contact parameters that increase the 
possibility of an unstable response generation. Some contact models and mechanisms show nonlinearity characteristics 
in its analysis such as flat and rough surface [8, 9], contact angle and spin creepage in wheel-curved rail contact [10], 
multiple contacts in discs and pad brake [11], and a positive friction characteristic [12]. In general, these nonlinear 
problems can be solved by some techniques like the method of harmonic balance, the perturbation methods, the Galerkin’s 
method, or numerical integration [1, 13]. 

Some mechanisms are known to excite squeal noise, such as the negative gradient velocity-friction coefficient 
gradient, sprag-slip, stick-slip, and couple mode [2,3,14]. These mechanisms may contribute to the squeal generation 
singly or by multiple combinations. The most popular approaches to analyse and to predict unstable vibration modes in 
the squeal incident are complex eigenvalue (CEA) or mode coupling analysis, asymmetric eigenvalue formulation, which 
is a linear stability analysis. By this analysis, the unstable frequencies prediction shows a good agreement with the 
experimental result [15-17]. However, the CEA is possibly under-predictive, and linearisation is not able to predict all 
instabilities so that the results of linear CEA are not sufficient in predicting brake squeal [18, 19]. Linear CEA can not 
predict well how the unstable response occurs in a specific range of relative velocity and normal force.  

Therefore, some researchers tried to model and predict the squealing noise using nonlinear parameters. Brunetti 
developed a method to predict unstable mode selection by modal absorption index from CEA [20]. Ding developed the 
assessment of the unstable vibration by mode coupling and nonlinear falling friction mechanism [21]. Oberst also 
modelled the brake pad contact by pressure-depended material properties of lining [22], and Tison had the integration of 

ABSTRACT – Squeal noise is generated by an unstable friction-induced vibration in a mechanical 
structure with friction load. Nonlinear mechanisms like sprag-slip, stick-slip, and negative frictions 
damping are believed in contributing to generate this kind of noise. However, the prediction of its 
occurrence still counts on the analysis of complex-linear eigenvalue, which may underpredict the 
number of unstable vibration modes. The structure also is found to seem to generate squeal noise 
randomly. In this paper, nonlinear analysis of a squeal noise was investigated. The study was 
conducted numerically by a simple two-degree of freedom model and an experimental observation 
using a circular and slider plate with a friction contact interface. The friction force is modelled as a 
function cubic nonlinear contact stiffness and nonlinear negative velocity function of friction 
coefficient. It is found that mode coupling instability will occur if the normal contact stiffness and 
friction coefficient exceed the bifurcation point to generate a couple-complex conjugate eigenvalue 
and eigenvector. However, when the system is stated linearly stable, instability still can appear 
because of increasing the nonlinear contact stiffness and coefficient of friction. The instability is 
affected significantly by relative velocity and pressing force. Both parameters dynamically change 
depending on the vibration response of the structure. Furthermore, it is also found the stick-slip 
phenomenon interacted with mode coupling instability to generate squeal noise. It contributes to 
supply energy to increase the response caused by instability of mode coupling.  



M. Rusli et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 17, Issue 3 (2020) 

8161   journal.ump.edu.my/ijame ◄ 

the contact interface, complex eigenvalue, probabilistic analysis, and a robustness criterion [22]. 
This paper presents the application of the nonlinear stability analysis for a simple two degree of freedom system with 

friction load. Some basic concepts of nonlinear contact and friction coefficient were applied to observe the vibration 
response of the model in generating unstable squeal noise. The contact stiffness is modelled as a cubic nonlinearity and 
friction coefficient as a nonlinear and negative function of velocity. This paper would observe how the relative speed 
friction and normal force affects the possibility of squeal generation. Then an experimental analysis of squeal noise in a 
circular plate is conducted. The friction force and the vibration response and their relation were analysed. The results 
from the stability analysis is presented.  

METHODOLOGY 
Numerical Model 

Interfacial characteristics of friction contact, including stiffness of contact surface and friction coefficient, are critical 
parameters in analysing the squeal noise generation and dynamic behaviour of a structure with friction contact. Well-
understanding of these parameters become essential to model and to understand squeal noise incident in many cases. The 
contact stiffness between two surfaces generally is modelled by Hertzian for flat surface [22]. On the other hand, when 
contact occurs between two rough surfaces, the contact establishes at some asperities with random shapes and dimensions. 
The deformation of the asperities can be elastic or elastic-plastic, and the normal contact stiffness can be modelled by 
polynomial equation [9,24]. When both surfaces slide each other, the asperities adhesion and other surface interaction 
mechanisms generate friction force. In this paper, a cubical nonlinearity of normal contact stiffness (knl) is added to the 
linear contact stiffness (kn) as a function of contact deformation in the numerical model, like shown in Eq. (1). 

 
𝑘𝑘 = 𝑘𝑘𝑛𝑛𝑦𝑦 + 𝑘𝑘𝑛𝑛𝑛𝑛𝑦𝑦3  (1) 

 
Moreover, in the dynamics system literature, the most prominent friction model is given by a velocity function that 

assumed to be decreasing with increasing relative velocity. Generally, a sliding friction coefficient is modelled as a 
functional relationship to the velocity and three independent friction parameters [25] as defined by: 

 
𝜇𝜇  = 𝜇𝜇0  + 𝜇𝜇1  𝑒𝑒𝑒𝑒𝑒𝑒(−𝛼𝛼|𝑉𝑉𝑟𝑟𝑟𝑟𝑛𝑛|) (2) 

 
The parameter µ0 controls the high relative velocity behaviour, µ1 governs the low-velocity behaviour, and α>0 

controls the rate of change of friction with changes in relative velocity. Equation (2) also accommodates the negative-
velocity function of the friction coefficient in the dynamics problem.  

In this section, a numerical simulation is carried out to investigate the instability of the vibration response of a particle 
mass model having two degrees of freedom, as shown in Figure 1. This model is developed as the simplest model of a 
brake pad system. Two linear springs support the particle mass M. The parameters of c and k denote damping coefficient 
and spring stiffness, respectively. The stroke line of the spring 𝑘𝑘2 leans toward 45°from the normal direction. The contact 
stiffness between the mass and a rigid moving plane is modelled using a nonlinear spring 𝑘𝑘𝑛𝑛 in the normal direction. 
Pressing force F is applied to this simple brake pad, 𝐹𝐹𝑛𝑛 and 𝐹𝐹𝑓𝑓 represent the normal reaction force and the friction force 
that are working at point O. 
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Figure 1. Two-degree of freedom model [6]. 

When the relative displacement of the mass M to the point O is neglected, the motion equation of the mass without 
damping can be defined as follows: 

 
�𝑚𝑚 0

0 𝑚𝑚� �
�̈�𝑒
�̈�𝑦� + �𝑘𝑘1 + 0.5 𝑘𝑘2 + 𝑘𝑘𝑡𝑡 −0.5 𝑘𝑘2

−0.5 𝑘𝑘2 0.5 𝑘𝑘2 + 𝑘𝑘𝑛𝑛
� �
𝑒𝑒
𝑦𝑦� = �−𝐹𝐹𝑓𝑓

𝐹𝐹
� (3) 



M. Rusli et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 17, Issue 3 (2020) 

8162   journal.ump.edu.my/ijame ◄ 

When the normal contact stiffness is modelled as cubic nonlinearity in Eq. (1), then the friction force can be 
represented by Eq. (4). 

 
𝐹𝐹𝑓𝑓 = 𝜇𝜇�𝑘𝑘𝑛𝑛𝑦𝑦 + 𝑘𝑘𝑛𝑛𝑛𝑛𝑦𝑦3 � (4) 

 
where the friction coefficient is modelled in Eq. (2). Hence, the friction force can be modelled as: 
 

𝐹𝐹𝑓𝑓 = (𝜇𝜇0  + 𝜇𝜇1  𝑒𝑒𝑒𝑒𝑒𝑒(−𝛼𝛼|𝑉𝑉0 − �̇�𝑒1|))(𝑘𝑘𝑛𝑛𝑦𝑦1 + 𝑘𝑘𝑛𝑛𝑛𝑛𝑦𝑦13) (5) 
 
or 
 

𝐹𝐹𝑓𝑓 =   𝜇𝜇0𝑘𝑘𝑛𝑛𝑦𝑦1 + 𝜇𝜇0𝑘𝑘𝑛𝑛𝑛𝑛𝑦𝑦13 + 𝜇𝜇1  𝑒𝑒𝑒𝑒𝑒𝑒(−𝛼𝛼|𝑉𝑉0 − �̇�𝑒1|)𝑘𝑘𝑛𝑛𝑦𝑦1 + 𝜇𝜇1  𝑒𝑒𝑒𝑒𝑒𝑒(−𝛼𝛼|𝑉𝑉0 − �̇�𝑒1|)𝑘𝑘𝑛𝑛𝑛𝑛𝑦𝑦13 (6) 
 
Friction force then can be distinguished into the linear and nonlinear faction. 
 

𝐹𝐹𝑓𝑓 =  𝐹𝐹𝑓𝑓 𝑛𝑛𝑙𝑙𝑛𝑛𝑟𝑟𝑙𝑙𝑟𝑟 + 𝐹𝐹𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙𝑛𝑛𝑟𝑟𝑙𝑙𝑟𝑟 (8) 

Experimental Model 
For the experimental study, a circular plate made of steel is connected to a stiff round bar and fixed supported to the 

clamp. The dimensions of the disc are 150 mm diameter and 1 mm thickness, as shown in Figure 2. The lowest part of 
the disc is contacted to a slider plate that can move forward and backwards controlled by the mechanism. The slider plate 
dimensions are 200 mm length, 120 mm in width, and 10 mm thickness. The slider bar moves back and forward following 
the sinusoidal like motion. Therefore, the motion speed is changed in a function of time. This experimental rig is a simple 
model of the train wheel that moving in curve track where the friction force acts out-plane of the disc. 
 

 
Figure 2. A circular plate model for experimental study.  

The friction force is measured using a load cell connecting the slider plate and driver mechanism. Then, the vibration 
response by an accelerometer allocated on the disc plate at the contact point. The friction force and vibration response 
were observed to know the mechanism of squealing noise generation. 

RESULT AND DISCUSSION 
Numerical Analysis 

By setting 𝑀𝑀 = 1 kg, 𝑘𝑘1 = 𝑘𝑘2 =  1 N/m, numerical simulations are conducted using the model to investigate the effect 
of the cubic normal contact stiffness and the friction coefficient to the instability of the system. First, the complex 
eigenvalue analysis (CAE) is carried out to predict the instability caused by the coupling mode. Then the stability response 
because of nonlinearity will be investigated using cubic normal contact stiffness and friction coefficient as a slip velocity 
function.  

Figure 3 shows the vibration response of mass M in the horizontal direction with various values of a coefficient of 
friction. In this case, the normal contact stiffness is set constant of 1 N/m, and friction coefficient (µ) is set linear with 
different values. It is observed that when the friction coefficient is less than 0.6, the system is stable. A higher friction 
coefficient increased the vibration response, as in Figure 3(a). On the other hand, when the friction coefficient is 0.7 or 
more as in Figure 3(b), the response becomes unstable. It is obvious in complex eigenvalue analysis that the possibility 
of unstable vibration increased by raising the friction coefficient [9]. The bifurcation point for the friction coefficient is 
about 0.65. If the friction coefficient more than 0.65, the system was unstable. 
 



M. Rusli et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. 17, Issue 3 (2020) 

8163   journal.ump.edu.my/ijame ◄ 

 
(a) 

 
(b) 

Figure 3. Vibration response in the x-direction with various friction coefficient; (a) stable vibration response and,  
(b) unstable vibration response. 

Moreover, the vibration response in the horizontal direction of mass M with various values of the normal contact 
stiffness is depicted in Figure 4. In this case, the coefficient of friction is set constant of 0.4, and contact stiffness is set 
linear with various values. It is observed that when the stiffness is less than 1.25 N/m, the system is stable. A higher 
friction coefficient increased the vibration response, shown in Figure 4(a). On the other hand, when the stiffness is 1.5 or 
more, the response becomes unstable, as shown in Figure 4 (b). It is also obvious in complex eigenvalue analysis that the 
possibility of unstable vibration will increase by raising the contact stiffness. The bifurcation point for contact stiffness 
by this condition is estimated at 1.3 N/m, and unstable vibration was generated when contact stiffness is 1.3 N/m or more. 
 

 
(a) 

 
(b) 

Figure 4. Vibration response in x-direction with various normal contact stiffness; (a) stable vibration response and,  
(b) unstable vibration response. 

Next, the effect of the relative velocity of the motion and pressing force on the mass M was observed. Figure 5(a) 
shows the vibration response in various relative velocity. The normal contact stiffness is modelled by Eq. (1), where kn 
and knl are equal to 1 N/m, the friction coefficient is modelled by Eq. (5), where µo, µ1, and α are set at 0.4, 0.2, and 1, 
respectively. By these parameters, as explained previously, the system is stable. Figure 5(a) shows that the velocity affects 
the vibration response. Lower speed tends to have a higher vibration response. Decreasing velocity raised the friction 
coefficient that increases the system instability. 

Similarly, the effect of pressing force to the vibration response is illustrated in Figure 5(b). The normal contact 
stiffness is modelled by Eq. (1), where kn and knl are equal to 1 N/m, the friction coefficient is modelled by Eq. (5). Where 
µo, µ1, α and relative velocity (V) are set 0.4, 0.2, 1, and 1 m/s, respectively. By these parameters, as explained previously, 
the system is stable. Figure 5(b) shows that the pressing force will affect the vibration response. Higher velocity tends to 
have a higher vibration response. Decreasing speed raised the friction coefficient that increases the system instability. 

Therefore, if the effect of increasing pressing force and reducing the relative velocity raised the possibility of unstable 
vibration that generates squeal noise. The general fact shows that the squealing noise is generated randomly in a specific 
condition and then disappear in other ones. By previous simple analysis, it can be explained that squeal noise is generated 
when the normal contact stiffness and friction coefficient beyond its bifurcation points. These parameters are affected 
significantly by velocity and pressing force. 

This nonlinear analysis has explained better how the squeal noise generation affected not only by contact stiffness and 
friction coefficient but also by other parameters like normal force and relative velocity of friction. Linear complex-
conjugate eigenvalue analysis explained well in which natural frequencies are prone to emit the squeal [15-17]. However, 
it could not show why a mechanical structure emits the squeal in a limited range of velocity and normal force and 
disappears within other range. 
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(a)                  (b) 

Figure 5. Vibration response in the x-direction with various (a) relative velocity and, (b) pressing force. 

Experimental Analysis 
Experimental modal analysis has become a powerful method in building a real condition and model of a mechanical 

structure [26, 27], including for predicting squeal noise generation [15-17]. In this analysis, first, the natural frequencies 
of the circular plate are observed experimentally by impact testing (Figure 6). The lowest tree natural frequencies are  
330 Hz, 936 Hz, and 1697 Hz respectively. While the slider plate is moving back and forth by a maximum speed of 5 m/s 
sinusoidally, and friction occurs between the circular and slider plates. Figure 7 shows the friction force and acceleration 
of the circular plate near the friction contact. The squealing noise occurs within 0.55 to 0.8 seconds of measurement time 
indicated by the high vibration response of the system. This squeal happens at a position when the slider plate just after 
passes the turning point where the speed is lower, although the friction force is around at zero values. 
 

 
Figure 6. Frequency response function (FRF) of a circular plate. 

 
Figure 7. Measured acceleration and friction force. 
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The frequency spectrum of friction force and acceleration, while squealing is depicted in Figure 8. It has shown that 
the friction force and the vibration response have a different number of peaks. In general, friction generates force spectrum 
only at two frequency peaks, i.e., at 1661 Hz and its harmonics at 3332 Hz while the vibration response has more 
frequency peaks at 936 Hz, 1661 Hz, 2600 Hz, and their harmonics at higher frequency spectrum. 
 

 
Figure 8. The measured frequency spectrum of acceleration and friction force. 

Clearer indication also can be observed by spectrogram of vibration response and friction force like depicted in  
Figure 9. The vibration response has more frequency, especially at higher harmonics. The main frequencies response at 
936 Hz, 1661 Hz, 2600 Hz are the second, the third, and the fourth natural frequency. It means the instability or squealing 
occurs at three natural frequencies at the same time. On the other hand, the friction force has fewer number of peaks, 
especially only at 1660 Hz and its harmonics at 3332 Hz. It also shows the possibility of stick-slip or sprag-slip mechanism 
occurs during the friction. During sticking, the circular plate follows the slider plate, and while slipping, it vibrates freely 
at other natural frequencies. 
 

  
Figure 9. Spectrograms of (a) acceleration and (b) friction force. 

These experimental phenomena confirm the numerical analysis result. In general, the circular and slider plate with 
friction contact is a stable system. The squealing noise from unstable vibration only occurs within a limited region. The 
reciprocating motion of the slider plate makes the relative velocity changes to follow the sinusoidal function. Therefore, 
at relatively low speed around the turning point, the friction coefficient increases. Moreover, the normal contact force 
also changed by increasing acceleration to make higher nonlinear contact stiffness. The increasing friction coefficient and 
normal contact force at the same time may pass the bifurcation point to have instability in vibration response.  

Besides, a stick-slip mechanism also occurs in this contact during relative motion. It is shown by the different 
frequency responses of friction force and vibration response in higher frequency. This analysis confirmed that mode 
coupling and stick-slip mechanism are interacted with others to make instability to the system to generate squeal noise. 

CONCLUSION 
Numerical and experimental analyses have been conducted to observe the mechanism of how the squealing noise 

generated. A simple two-degree of freedom model and circular plate with friction contact is used in this analysis. The 
friction force is modelled as a function cubic nonlinear contact stiffness and nonlinear negative velocity function of 
friction coefficient. It is previously discussed that in linear analysis, the frequency of squeal can be predicted well, but 
how the squeal seems to emit in the random incident.  
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It is found that mode coupling instability occurs if the normal contact stiffness and friction coefficient exceed the 
bifurcation point to make a complex-conjugate eigenvalue and eigenvector. However, when the system is stated linearly 
stable, instability still can appear because of increasing the nonlinear contact stiffness and coefficient of friction. 
Therefore, the instability is affected significantly by relative velocity and pressing force. Lower speed and higher pressing 
force increased the incidence of squeal noise. Both parameters dynamically change depending on the vibration response 
of the structure. Furthermore, it is also found the stick-slip phenomenon interacted with mode coupling instability to 
generate squeal noise. Stick-slip contributes to supply energy to increase the response caused by instability of mode 
coupling. 
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