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ABSTRACT 

 

The aim of this paper presents an unsteady numerical investigation of a novel biologically 

inspired vertical axis wind turbine for offshore regions of Malaysia. The proposed blade 

shape is a result of hybrid design inspired by maple seed and epilobium hirsutum. The 

simulation was conducted in 2D using the sliding mesh technique with non-conformal 

mesh spatial discretisation via FLUENT 16.2. A grid sensitivity study on mesh density 

and turbulent transport model indicated that fine mesh and medium converged well with 

trivial difference. SST and k-ω model presented stable behaviour and indicated good 

agreement. The proposed wind turbine was simulated at five different moderate tip speed 

ratios under the influence of freestream velocity U∞=8 m/s. The highest moment 

coefficient is generated at tip speed ratio λ=1.3, which is Cm=0.1886 with a stable positive 

moment coefficient after 480°. The proposed turbine responded well at λ=1.3 and λ=1.7 

with power coefficient result of Cp=0.245 and Cp=0.262 respectively. The effect of wake 

and vorticity on the turbine at subjected tip speed ratios is studied. Wake regions induced 

by the leading edge of the aerofoil impacted the performance of the following blade. Due 

to the less wake effect trailed by the leading edge at λ=1.3, it generates higher moment 

than λ=1.7.  

 

Keywords: Vertical axis wind turbine; CFD; biomimicry; wind energy; sliding mesh.  

 

INTRODUCTION 

 

In the world of a rapidly growing economy, energy consumption by industry and domestic 

are drastically rising, which is leading to an energy crisis. Today many countries are 

investing their resources on the development of renewable energy; with notable 

development in wind power generation. It is the oldest form of harnessing energy by 

extracting kinetic energy of moving air and converting it to mechanical energy. 

Installation of wind turbine type and size of a wind turbine are dependent on wind speed 

potential and geographical area. Wind energy harvesting can be classified into two 

categories, which is offshore and onshore. Research shows that offshore wind energy 

harvesting is regarded as a clean energy source due to its minimal environment effect and 

has the lowest green-house gas (GHG) emission in comparison to other renewable energy 

counterparts [1]. Relevant studies on GHG lifecycle and environmental impact pertaining 

to wind power technologies can be found in [2–6]. 

In recent years the ministry of energy, green technology and water (KeTTHA), 

have adapted the five-fuel diversification strategy energy mix which comprises of nature 

gas, coal, oil, hydropower and renewable energy [7]. In Malaysia, the research and 
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development in wind power harvesting started in the early 1990s, where research and 

studies being conducted unable to convince and show the potential of wind energy. The 

reason was due to lack of political support and poor methodologies and instrumentation, 

resulting in inaccurate and unreliable wind potential data [8]. Sustainable Energy 

Development Authority (SEDA) was formed in 2011 to manage funds allocated for 

renewable energy development implemented in Feed-in tariff (Fit) under the Renewable 

Energy Act 2011. Although there are no feed-in tariffs for wind energy, with Malaysia 

geographical area provides a great platform for ocean-based energy harvesting, especially 

with strong winds from northeast and southwest from the Indian ocean [9]. Case in point, 

Tenaga National Berhad (TNB) was the first to adapt wind energy harvesting with 200kW 

power capacity and able to supply enough electricity approximately for 200 households 

in the regions of Perhentian island [10]. 

Studies show that Malaysia coastline extends to 4675km, which is the 29th longest 

coastline [11]. Research done in Malaysia was mainly focused on onshore and costal 

wind. However, no study was done on Voluntary Observation Ship (VOS) offshore data 

due to insufficient data reports. Therefore, it is difficult to estimate the wind speed 

potential accurately [8]. Wind speed in Malaysia is dominated by seasons; northeast 

monsoon season; southwest monsoon season. Northeast monsoon occurs from November 

to March; southeast monsoon season starts from June to September. Northeast monsoon 

mainly experiences rainy season due to cold air from Siberia. Studies show that during 

monsoon season, mean wind speed potential reaches up to 15m/s for East Coast regions 

[12]. The wind speed can reach up to 10m/s in the offshore points of Sabah and Sarawak 

due to the impact of typhoon occurring in the neighbouring countries such as the 

Philippines [13].  

Research shows that offshore wind technology facilities are developing at a rapid 

rate in comparison to onshore wind turbine installation and other renewable energy 

resources [14–17]. Offshore wind facilities hold advantage over onshore facilities due to; 

offshore wind facilities produce fewer greenhouse gases than onshore wind turbines by 

48% per kWh [18]; offshore load centres are more practical then onshore where the public 

grid is not effective for interstate power transmission; offshore winds are more steady, 

strong, stable, higher energy with minimal shear and less turbulent than onshore wind; 

vast construction site for offshore wind facilities than limited land area for onshore. 

Potential on offshore wind power harvesting can be found in [19–21]. 

The present work aims to investigate the power extraction performance of the 

proposed biologically inspired wind turbine for harvesting wind energy in offshore 

regions of Malaysia. Due to the inconsistent seasonal wind speed potential in the regions 

of Malaysia. Thus, new technologies and blade configuration have to be implemented to 

adapt to wind behaviour in the regions of Malaysia. Hence this paper presents the 

computational numerical investigation of the proposed design at moderate tip speed ratio 

to understand the behaviour and flow properties relative to offshore wind speed potential 

of Malaysia. Offshore wind energy harvesting constitutes greater potential than onshore 

wind turbines due to its moderate wind speed during the non-monsoon season and high 

wind speed in monsoon seasons.  

 

Biologically Inspired Designs in Wind Turbine Applications 

 

Fish et al.[22] researched the tubercles of humpback whale’s flippers. The author stated 

that the motion of the flippers was improved by passive flow control mechanism 

contributed by tubercles. The authors carried out an analysis of the wing model integrated 
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with tubercles. The result shows tubercles had increased the lift value and consequently 

decreased the drag value. Cognet et al. [23] reported a novel elastic wind turbine blade 

inspired by insect flight and plant reconfiguration. The elastic blade works on the 

principal of blade deformation due to air loading and centrifugal effects. The authors 

stated that the bio-inspired design contributed to the improvement of efficiency of the 

turbine up to 35% in comparison to conventional rigid blade design. Lentink [24] 

researched the aerodynamic performance of auto-rotating plants seeds. The author carried 

out research on modelled three-dimension maple and hornbeam seeds to study its 

morphology and kinematics. Study shows that maple seeds morphological properties 

made it be dispersed in high wind conditions. At low wind velocity, auto-rotating seeds 

can generate high lift force regardless of its small size. The mechanism that contributes 

to high lift force generation as it descends is the leading-edge vortex (LEV). LEV 

mechanism is not only found in auto-rotating plants, birds and insects also analyse this 

mechanism to glide and hover. Minami et al. [25] conducted a study on the aerodynamic 

and flight dynamics of pappose and winged seeds. The author stated that there are four 

flying modes in seeds, which are parachuting, gliding, rocking and spinning. The flight 

motion of winged seeds depends on their centre of gravity. Winged seeds analyse a 

gliding angle for motion, lift and moment generation. More information on biologically 

inspired wind turbine research can be found in [26–30]. 

 

Past CFD Numerical Analysis 

 

Elkhoury et al. [31] carried out wind tunnel experiment and numerical simulation on a 

Qrthopther-type vertical axis wind turbine. In the unsteady computational setup, Delayed 

Detached Eddy (DDES) using the Spalart-Allmaras (SA) turbulent model was used to 

simulate the 3D model in ANSYS 16.2. The result showed that the power coefficient 

increases with increasing velocity. Furthermore, at the lowest aspect ratio of 1.0 and 

highest solidity of 0.75, the power coefficient was found to be at its maximum. Marten et 

al. [32] investigated on non-linear lifting line free vortex wake algorithm implemented in 

Q-blade wind turbine simulation code. The result showed that, under tower blockage, the 

implemented code provides a time accurate simulation in turbulent wind fields. The result 

came in good agreement when validated against several other codes and experimental 

result. 

Li et al. [33] studied the application of blade pitch control on VAWT. Five 

governing equations were used to analyse the relationship between blade pitch control 

and the generated output. The unsteady CFD analysis was performed in 2D, and the result 

was validated with wind tunnel experiment. The results showed that the optimised blade 

pitch in two vertical axis wind turbines (VAWTs) with different chord length increases 

with an average power coefficient of 0.177 and 0.317, respectively. Subramanian et al. 

[34] studied the effects of the performance of VAWT caused by solidity and air profile. 

Ansys FLUENT was used to study 1.1kW Darrieus VAWT. In the study, four different 

aerofoils were considered-NACA 0012, NACA 0015, NACA 0030, and AIR 001. The 

result showed that with an incoming velocity of 10 m/s, tip speed ratio varied from 1 to 

2.5. Furthermore, the result showed that at low tip speed ratio NACA 0030 has better 

performance. For tip speed ratio greater than 1.8, NACA 0012 resulted in better 

performance. Moreover, shear stress transport (SST) is more suitable to analyse a small-

scale wind turbine. Lee et al. [35] studied the performance of Darrieus type VAWT using 

NACA 0015. The authors stated that the parameters such as chord length, helical length, 

pitch angle and rotor diameter influence the performance of VAWT. In the CFD 
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numerical analysis, unsteady Reynolds averaged Navier Stokes equation (URANS) with 

sliding mesh technique was used to analyse the rotational effect of the blades.  

Tahani et al. [36] proposed Savonius wind turbine design integrated with direct 

discharge flow capabilities for building ventilation. The 3D model of the wind turbine is 

simulated using SST k-ω. The author evaluated four turbulent models to find a suitable 

turbulent for the analysis, which is k-ω, k-ε, SST and renormalised group (RNG) k-ε. It 

is found that SST k-ω provides a better result than other turbulent transport models. M. 

S. Hameed [37] studied on small-scale vertical axis wind turbine aiming 1kW power 

output for domestic use. Static 3D model at a selected pitch angle was simulated in Ansys 

13.0. The software generated result was evaluated with the analytical result at a similar 

location. The percentage of error was 9.46 % when drag value of CFD and the analytical 

result was compared. The numerical error can be further reduced by improving the grid 

resolution. Based on the literature review, ANSYS commercial software is widely used 

by researchers in conducting a numerical investigation on wind turbines due to its robust 

CFD packages. Furthermore, the numerical model such as URANS and two equation 

turbulent transport model are accustomed to wind turbine research due to its economic 

computational load. Hence, URANS model and two equation turbulent transport model 

is analysed for the investigation of the proposed wind turbine.  

 

COMPUTATIONAL METHODOLOGY 

 

Model Geometry Configuration 

 

Airborne or wind-dispersed seed plants has a unique aerodynamic property for gliding 

mechanism by rotating on its axis induced by wind flow. The plants disperse or propagate 

seeds by dispersal vector mechanism; which is dispersing seeds to another location from 

local point to spread the population. Dispersal vector is classified into two types; active 

and passive dispersal vector. Wind propagation is a passive disperse vector, which 

analyses wind kinetic energy for movement. In this research, maple and epilobium 

hirsutum seed morphology is adapted to model the proposed design. The proposed design 

was prepared in CATIA V5 using surface morphing technique. The proposed design, as 

displayed in Figure 1(a), is a lift driven wind turbine consisting of four blades constructed 

using (national renewable energy laboratory) NREL S819 aerofoil. Case in point NREL 

is responsible for analysing and classifying aerofoil according to configuration type and 

aerofoil family. The constructed blade has an angle of twist of 4° facing upwind. The 

constructed design was prepared using vertical axis configuration design parameters, as 

illustrated in Eq. (1)-(4). The design parameters such as swept area (SA), aspect ratio 

(A.R), height (H), and rotor diameter (Dr), are reported in Table 1 and Figure 1(c). Since 

the simulation conducted in 2D, the height (Hsimulation), is set to 1m due to ANSYS 

FLUENT default setting for 2D numerical study. As illustrated in Figure 1(b) the adapted 

morphology is segmented into two parts; the upper and lower segment. The lower 

segment is morphology is inspired by maple seed, and the upper segment is adapted from 

epilobium hirsutum. In this research, the effect of the constructed morphology on the 

aerodynamic performance was analysed in 2D relative to the aerofoil type chosen; NREL 

S819. A planar section of the turbine at 0.8m from datum labelled as ‘C’ as displayed in 

Figure 1(c) were selected to be simulated as it is the critical region in the proposed wind 

turbine. The model is simulated in 2D to save computational power and numerical 

analysis time. Table 2 report the design parameters. 
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  (1) 

 

  (2) 

 

  (3) 

 

  (4) 

 

Table 1. Rotor blade properties. 
 

Rotor Chord, C (mm) Thickness, t (mm) Solidity,  

NREL S819 310 56 0.25 
 

Table 2. Design parameters. 
 

Design parameters Symbol Dimension 

Number of blades B 4 

Swept area SA (mm) 2.93m2 

Rotor diameter Dr (mm) 1.6m 

height H (mm) 1.33m 

Aspect ratio A.R 0.83 

Angle of attack AoA 4° 
 

 

(a)         (b) 
 

 

(c) 
 

Figure 1. Proposed wind turbine configuration: (a) wind turbine design, (b) adapted 

morphology, (c) wind turbine configuration. 

                  

Epilobium hirsutum Maple seed 
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   (b)    (c) 

 

Figure 2. Proposed wind turbine configuration: (a) Proposed wind turbine design,  

(b) adapted morphology. 

 

Domain and Mesh Topology Configuration 

 

Proper domain modelling and space discretisation in a CFD analysis have an impact on 

flow field response, where factors influencing the flow field are based on the parameters 

initialised at the domain. Furthermore, defined boundary condition and domain dimension 

dictate the influencing parameter in an unsteady flow field such as turbulent intensity, 

hydraulic diameter, turbulent viscosity ratio, etc. As illustrated in Figure 2(a), the virtual 

wind tunnel domain consists of two domains; main domain and rotating domain. The 

main is composed of an inlet, two symmetry boundaries, and an outlet. Since sliding mesh 

technique via the finite volume method (FVM) were used in this research, the rotating 

domain is separated from the main domain to ensure non-connectivity within the nodes 

of the domains. More information on FVM can be found in [38–41]. Furthermore, the 

sliding mesh method (SMM) is widely used in a research study related to rotating 

machinery [42]. The main domain dimension is constructed relative to rotor diameter, Dr. 

As illustrated in Figure 2(a), the free stream wind flows from the inlet boundary from left 

to right. In this research, non-conformal mesh method was used to discretise the spatial 

domain. The main domain was discretised as static mesh and the rotating domain as 

moving mesh separated by an interface. As displayed in Figure 2(b), 2(c), the domains 

were discretised under different mesh parameters to ensure minimal computational cost 

and different mesh densities between the domains. The domains were composed of the 

unstructured triangular mesh. Four different size function were employed on the domain; 

different body size function on main and rotating domains; edge size along the blade 

regions and on the interface that separates the domains. The generated mesh topology 

indicates good mesh metric results. The mesh topology is prepared under fine and 

medium mesh resolution for mesh dependency study. Table 3 report the mesh parameters.  

 

 
(a) 

 

                     

(a) 
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Table 3. Mesh parameters. 

 

Mesh resolution Medium Mesh Fine mesh 

Number of elements 84890 157976 

Simulation time 2 hour and 17 min 6 hours and 32 min 

 

Turbulent Modelling 

 

In this numerical study, unsteady Reynolds averaged Navier-Stokes equation (URANS) 

were used to study the complex flow field. URANS numerical model was chosen because 

of its robustness in analysing wind turbine and minimal computational cost. URANS 

model work on the principle of computing Navier Stokes equation by numerical 

decomposition or also known as Reynolds decomposition, as stated in Eq. (7). Reynolds 

decomposition is the sum of fluctuating and mean components by time average [43]. 

URANS model was developed to compute Reynolds stress in a fluid flow. In this 

numerical study, Reynolds stress is computed by linear eddy viscosity approach using 

two equation turbulent transport model. To study the reliability of the models, three 

turbulent transport models were considered; k-ε, k-ω, and SST. The discrepancy of the 

three models was studied to find the suitable turbulent transport model for analysing the 

proposed wind turbine with less computational time and reliable result. Since the 

simulations were conducted in 2D, the governing equations are simplified to x and y 

components, as shown in Eq. (10)-(12). As displayed in Eq. (5), the flow regime can be 

enumerated using Reynolds formulation; Where U∞ is free to stream velocity, 

represents the physical length, and  as dynamic viscosity. In this research, the Eq. 5 is 

modified to suit the case study, as illustrated in Eq. (6). Therefore, the Reynolds number 

is 8.66 105. 

The two-equation turbulent transport model is the most commonly used turbulent 

model in wind turbine CFD analysis. Two-equation turbulent transport can be classified 

into two major groups, k-ε and k-ω models. Wolfe [44] stated that the k-ε model is the 

most suitable to analyse flow field separation for HAWTs. Menter [45] investigated two 

versions of the k-ω turbulent transport model: baseline (BSL) model and shear stress 

model (SST). The author stated that BSL model was intended to generate numerical result 

as k-ω of Wilcox, but the results changes to standard k-ε in k-ω formulation when 

approaching boundary layer edge. However, the results are similar to Wilcox model 

within 50% of the boundary layer. In the SST model principal shear stress is proportional 

to turbulent kinetic energy based on Bradshaw’s assumption. The author concluded that 

the result on adverse pressure gradient using the SST model provides a better agreement 

with experimental result in comparison to BSL model. Ntinas et al. [46] stated that the 

standard k-ω model is more suitable for high turbulent airflow cases because of its 

sensitivity to near wall distribution. SST models are proven to generate highly accurate 

results concerning to airflow study, because of its collaborating features of standard k-ε 

and standard k-ω. Ramponi et al. [47] stated that the SST model outperformed other 

turbulent transport models concerning the respective research and often preferred by 

researchers. Information on turbulent transport model can be found in [48]. 

 

  (5) 
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  (6) 

 

Reynolds decomposition 
 

  (7) 

 

Turbulent kinetic energy  -equation  

 

  (8) 

 

Specific rate of dissipation of kinetic energy, - equation  

 

  (9) 

 

Continuity equation, 
 

  (10) 

Momentum equation,  
 

  (11) 

 

  (12) 

 

Boundary condition  

 

In this study, the boundary condition was defined in a specific direction to analyse the 

credibility of the proposed shape morphology. The inlet freestream velocity is constant 

U∞=8m/s in the x-direction from left to right. The outlet gauge pressure was set to 0 

pascal. The bounding surrounding walls top and bottom were set to symmetry with free 

slip condition. Hence this would avoid a solid blockage effect [49, 50].  Interfaces around 

the circular rotating domain were separated into the static and rotating domain. The 

rotating domain is positioned further from the outlet, as displayed in Figure 2(a) is to 

avoid backflow or reverse flow. Since sliding mesh technique was used, the rotating 

domain was set to multiple RPM values under constant inlet freestream velocity in order 

to numerate the power coefficient (Cp) at different tip speed ratio (TSR). The blade walls 

were set to no-slip condition and rotation motion relative to the rotating domain cell zone. 

The rotating domain axis (x; y) were set to (0; 0) under specific RPM values of; 100, 150, 

200, 250, and 300. In order to minimise computational power and to avoid numerical 

errors, the turbulent parameters such as turbulent intensity (I) and turbulent viscosity 

(μt/μ) were maintained to default values. Table 4 reports the boundary conditions 

parameters. 
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Table 4. Boundary condition parameters. 
 

Boundary conditions  Parameters  Values 

Inlet U∞ Constant 8m/s 

Outlet pressure - 0-pascal 

Walls Symmetry - 

Blade walls No slip condition - 

Angular velocity (RPM) ω 100, 150, 200, 250, 300 

Turbulent intensity I 5% 

Turbulent viscosity μt/μ 10 

 

Solver Configuration   

 

The proposed 2D model is simulated under transient (unsteady) configuration. In this 

transient simulation, Pressure-based solver with absolute velocity formulation was used 

by stipulating incompressible flow. In order to study the numerical behaviour relative to 

the proposed model, three types of turbulent transport model were studied; k-ω; realisable 

with scalable wall function k-ε; and SST. The turbulent transport model was analysed 

under a similar solver configuration. In cell zone condition, the rotating zone was set to 

mesh motion under five different RPM rate under constant inlet velocity. Therefore the 

time marching discretisation such as time-step size, several iterations was dependent on 

RPM relative to four complete revolutions. Table 5 report the solver configuration. In the 

pressure-velocity coupling solution method, COUPLE scheme was used, where turbulent 

kinetic energy and turbulent dissipation rate were set to second order upwind respectively 

to all turbulent transport models. Courant number was set at 10, explicit relaxation factor 

was set 0.7, and under-relaxation factor was set to default to obtain stable numerical 

solutions. 

Meanwhile, in reference value, the reference area was set to 1.6m2 and length of 

0.8m. The residual convergence criteria were set to 10-5. The reference area value is rotor 

diameter (Dr) multiple to 1m because for 2D simulation in ANSYS the height is set to 1m 

[51–53]. In terms of time-step size and number of iterations, Eq. (13)-(15) were used to 

numerate the value for four complete revolutions. The number of iterations per time step 

was set to 20. Generally, more than three complete revolutions are recommended in 

analysing a wind turbine to remove the initial boundary conditions caused by the primary 

revolution.  
 

  (13) 

 

  (14) 

 

  (15) 

 

Numerical Performance Parameters  

 

In order to understand the behaviour of the turbine, aerodynamic parameters, as shown in 

Eq. (16)-(21) are taken into careful consideration. Since the proposed design operates in 

a fixed angle of attack (AoA), moment and lift coefficient generation under different tip 

speed ratios were studied to analyse power extraction or power coefficient (Cp) of the 
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design relative proposed morphology and chosen aerofoil type. As manifested in Betz 

Limit, the maximum power coefficient limit of a wind turbine regardless of the 

configuration and design is Cp=0.593 [54]. Therefore, the theoretical limit is being 

analysed as a benchmark to study the performance of the proposed design in wind energy 

harvesting. Equation (21) is being used to enumerate the generated power coefficient 

relative to the moment coefficient and tip speed ratio.  

In this unsteady study, a 2D graphical representation of the turbine is being 

developed to understand the motion of the turbine relative to azimuthal increment for a 

complete revolution (0≤θ≤360). As displayed in Figure 3, the circumference is divided 

into four segments, respectively representing a complete revolution. The segments are 

upwind; windward; downwind and leeward in a clockwise direction. Similar schematic 

representation concept is presented by Rezaeiha et al. [55]. The aerofoil behaves distinctly 

different in each segment due to the dissimilarities in lift generation and flows field 

properties. The magnitude of generated lift is relative to the AoA, orientation and segment 

of the aerofoil. Each segment represents an angular position of the wind turbine relative 

to freestream velocity (U∞). Upwind is from 45≤θ≤135; leeward is (135≤θ≤225); 

downwind is 225≤θ≤315 and windward is 315≤θ≤45.  
 

Table 5. Solver configurations. 
 

Solver configuration Parameters Values 

Turbulent transport model SST, k-ε, k-ω - 

Reference value Reference area 1.6m2 

Pressure-velocity coupling scheme COUPLE - 

Spatial discretisation Second order upwind - 

Convergence criteria Residual monitor 10-5 

Time step  Size 0.01 

Number of complete revolutions n 4 

 

 
 

 

Figure 3. Schematic representation of wind direction segments. 
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Lift coefficient,              (17) 

 

Tip speed ratio,               (18) 

 

  (19) 

 

  (20) 

 

Power coefficient,   (21) 

 

CFD NUMERICAL RESULT 
 

Mesh Densities Sensitivity Study 
 

The proposed design was simulated under different discretised mesh resolution; a fine 

and medium mesh. The purpose of the mesh dependency study is to find the optimal mesh 

density for spatial discretisation for minimal computational cost without affecting the 

accuracy and reliability of the result. The generated aerodynamic response result of the 

turbine was observed to find the discrepancy under fine and medium mesh resolution. 

The proposed wind turbine was simulated in 2D under the influence of U∞= 8m/s free-

stream wind speed and tip-speed ratio, (λ) of 1.3, as displayed in Figure 4(a). The 

presented result indicated trivial dissimilarities between the fine and medium mesh. Both 

mesh indicates good agreement at a different number of elements, which is 157976 

elements for fine mesh and 84890 elements for the medium mesh. Medium mesh 

consumed less computational time in comparison to fine mesh. The generated total 

moment coefficient results of the proposed wind turbine indicate good convergence and 

stable numerical oscillation between two mesh densities. Therefore, fine mesh resolution 

was chosen because of its more stable and robust numerical solution. As indicated in 

Figure 4(a), moment generation by the turbine starts to increase and stabilize after 90°, 

due to the high amount of energy extracted by the turbine blades for motion. As 

manifested in Figure 4(a) good consistency is observed in upwind region between the 

mesh densities.  
 

Turbulent Model Sensitivity Study 
 

Three turbulent transport models were chosen for sensitivity study of transport equation 

relative to discretised spatial resolution. Based on the previous study, a turbulent 

sensitivity study was simulated at freestream velocity U∞=8m/s, tip-speed ratio (λ)=1.3 

under fine mesh density. The chosen turbulent transport model for turbulent sensitivity 

study was k-ε, k-ω, and SST. As manifested in Figure 4(b), k-ω, and SST has a good 

agreement in numerical solution with trivial dissimilarities for moment coefficient result 

for a complete revolution. However, the renormalised group (RNG) k-ε do not agree with 

SST and k-ω. Major discontinuities generated by RNG k-ε modelling is observed in the 

upwind region (45<θ<135) in comparison to k-ω, and SST. Based on the generated result, 

SST model was chosen for the result of the simulations. 
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In principal SST k-ω is the combination of two formulations; shear stress transport and 

k-ε. In this hybrid system, it allows SST k-ω formulations to switch behaviour relative to 

the flow. The researcher in wind turbine simulation widely prefers SST models because 

of its behaviour pattern in adverse pressure regions. k-ω is a two-equation model, 

consisting of two extra turbulent equations representing turbulent properties to solve the 

flow variables. In freestream flow, the k-ω model tends to exhibit issues due to its high 

sensitivity to turbulent properties and wall functions. Therefore, SST formulations switch 

modelling behaviour to the k-ε formulation. SST k-ω model is almost similar to the 

standard k-ω model, but with refined formulation to ensure accuracy and robustness. The 

combination of SST and k-ω model is called blending function, where the coefficient and 

cross-diffusion terms in the k-ω equation are altered by SST formulation to ensure 

appropriate behaviour are exhibited by the model in the far-field zone and near wall 

region. For simplicity, SST is an auxiliary numerical system for the k-ω model to ensure 

stability and accuracy in predicting flow field properties. Furthermore, based on the 

literature survey, SST k-ω model is widely preferred by the researcher in conducting flow 

field study using the finite volume method (FVM). 

 

  

(a)     (b) 
 

Figure 4. Total moment coefficient vs. azimuthal angle from (a) grid independency test 

and; (b) turbulent transport model sensitivity study. 

 

RESULTS AND DISCUSSION 

 

The unsteady simulation was conducted using a sliding mesh technique under a non-

conformal mesh configuration. Due to the limitation of computational power, the 

simulation study is conducted in 2D. Only the critical section of the design is analysed to 

save computational and analysis time. Therefore, the study is conducted by stages to 

examine the proposed morphology credibility with manifested wind speed potential in 

offshore regions of Malaysia. This study aims to analyse the generated power coefficients 

(Cp) over a range of tip speed ratio (TSR) to find the optimum TSR value relative to a 

wind speed of 8m/s and chosen aerofoil type. The proposed design is comprised of 

aerofoil type NREL S819 twisted to a fixed AoA of 4°. Based on previous mesh and 

turbulent model sensitivity study, the simulations were conducted under fine mesh 

densities and SST turbulent transport model. The 2D turbine is simulated under a range 

of tip speed ratios, which are 0.85, 1.3, 1.7, 2.1 and 2.6. Due to the complexity of flow 

regimes properties, this research focusses on the generated result properties in wake 
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region and power coefficients at subjected tip speed ratio. Figure 5 shows the moment 

coefficient result at different tip speed ratio. As manifested in the result, the generated 

oscillating numerical value responded differently at respective tip speed ratio from 

90≤θ≤360. It is observed that the highest peak value of moment coefficients is indicated 

by λ=1.3 and λ=1.7 tip speed ratio. 

Meanwhile, the lowest moment coefficient result is generated by λ=0.85. 

Numerical instability is presented by λ=2.1 and λ=2.6 with decreasing moment values. 

Based on the result, two stable and high moment generating tip speed ratio was chosen 

for further study, which is λ=1.3 and λ=1.7.  

 

 
 

Figure 5. Total moment coefficient against azimuthal angle at different tip speed ratio. 

 

Figure 6 presents the total moment coefficient result vs. azimuthal angle 

(0≤θ≤1440) for four complete revolutions at λ=1.3. The numerical oscillation stabilises 

after 480° with an average stable peak value of Cm =0.32. The average of total moment 

coefficient is Cm=0.1886. The turbine generates a stable positive moment coefficient after 

480°. In the first revolution (0≤θ≤360), numerical instability is observed fluctuating from 

the steep negative and positive moment. The maximum value of the total moment 

generated is at 360° in the windward segment. The negative moment generated reaches 

the lowest value at 90° as the lift coefficient decreases in the upwind segment, as 

displayed in Figure 7. After 120° moment generation increases to positive values assisted 

by increasing lift coefficient. Similar generated numerical instability from 0≤θ≤360 can 

be observed in research presented by Qin et al. [56]. The instability is due to the turbine 

adjusting its configuration to forces incurred by the flowing wind on the fixed AoA 

aerofoil geometry. The aerofoil of the proposed design is not a variable pitching blade 

that changes its aerofoil orientation or AoA to generate optimal lift force. Therefore, it is 

sensible for the fixed AoA aerofoil for the proposed design to struggle at the initial stage 

while gaining momentum for a complete revolution. As the revolution progresses, the 

turbine gains stability and inertia for a stable and positive moment periodic oscillation. 

The proposed turbine is defined to rotate at the clockwise direction, and the blades 

are orientated as displayed in Figure 3. As shown in Figure 8 and Figure 9, blade 3 

generated the highest moment and lift result, respectively, at the initial cycle in 

comparison to other blades. This is because blade 1 aerofoil is facing the windward 

direction. As the wind flows over the aerofoil, the rate of change of momentum of moving 

air generates higher lift force in comparison to other aerofoil surface facing in a different 
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direction. As the flowing wind hits the leading edge and flows over the surface to the 

leading edge of blade 3 with AoA of 4° the mass of air accelerates faster on the upper 

surface of blade 3. Therefore, it creates a pressure difference between the upper and lower 

surface of blade 3, thus generating an upward lift force perpendicular to wind direction. 

 

 
 

Figure 6. Total moment coefficient vs. azimuthal angle for four complete revolutions at 

λ=1.3. 

 

 
 

Figure 7. Total lift coefficient vs azimuthal angle. 

 

Furthermore, as blade 3 moves towards the upwind direction, the magnitude of 

generated lift increases until it reaches an optimal point. Then the lift force decreases as 

blade 3 enters the upwind segment. Blade 2 reaches its lowest point in the upwind 

segment is when the blade is facing normal to the wind direction. As the angular position 

of the aerofoil of blade 3 progress, the lift component increases in small amount as a result 

of small incremental in the moment. This is because the blade 3 is still in the upwind 

region. When blade 1 is in the leeward segment, the aerofoil is orientated in the direction 

of the flowing wind. Blade 1 is in the opposite orientation to blade 3. Therefore, the 

flowing wind over the surface of aerofoil of blade 1 generated a downward lift force 

component. The difference in magnitude of lift components generated by blade 1 and 

blade 3 is the reason for rotation when subjected to wind at a fixed angle. This behaviour 

applies to blade 2 and blade 4. The coupling behaviour presented by opposing blades is 

Instability  

Stable periodic oscillation  
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governed by Newton’s third law. The dissimilar magnitude of opposite forces induced by 

wind load dictates the direction and magnitude of angular rotation. In this case, blade 3 

in windward direction generates higher lift than blade; therefore, rotating in a clockwise 

direction.       

 
 

Figure 8. Moment coefficient of blade 1 to 4 responding to azimuthal angle. 

 

 
 

Figure 9. Lift coefficient of blade 1 to 4 responding to azimuthal angle. 

 

Figure 10 presents the result of the total moment coefficient against flow time at 

λ=1.7. The turbine generates an average moment coefficient value of Cm=0.153991 and 

shows almost similar behaviour pattern as λ=1.3 in wind energy extraction. Although it 

is observed that λ=1.7 generated less moment than λ=1.3, the difference is trivial of 0.04 

Cm. Power coefficients (Cp) extrapolation indicated that λ=1.7 scores higher than λ=1.3 

due to angular rotation properties, as displayed in Figure 11. Based on Eq. (22), the 

numerated average Cp value is Cp=0.245 for λ=1.3 and Cp=0.262 for λ=1.7.   

Due to the complex flow properties presented by the turbine, the performance or 

dynamic response of the turbine can be analysed in terms of wake and vorticity properties. 

In this study, the vorticity magnitude response of turbine of defined TSR (λ) is studied, 

to analyse the effects of vortex and wake region. Vorticity magnitude represents the 

pseudovector field that illustrates the local spinning motion of a continuum near a local 

TSR=1.3 

TSR =1.3 
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represented point. For simplicity, Eq. (22) represents the magnitude of vorticity in a fluid 

flow which can be defined under custom field functions in FLUENT.  
 

  (22) 

 

 
 

Figure 10. Total moment coefficient vs. flow time at λ=1.7. 
 

 
 

Figure 11. Power coefficient vs. tip speed ratio. 

 

Figure 12 represents the vorticity magnitude result under the range from (0-

500)1/s of the tip speed ratios used in this simulation. As shown in Figure 12(a), blade 1 

experienced a strong vortex region or flow circulation on the upper surface of the aerofoil, 

which affects the lift and moment generation of the aerofoil therefore affecting the 

performance of the turbine. Meanwhile, in Figure 12(d) and 12(e) strong wake effect is 

observed on the trailing edge of blade 3 and blade 4, which effects the following blade. 

Although Figure 12(b) and 12(c) presents almost similar behaviour, the wake intensity of 

λ=1.3 is weaker than λ=1.7, therefore its sensible for λ=1.3 to generated higher moment 

and lift magnitude than λ=1.7.  
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(a) λ=0.85   (b) λ=1.3 

 

  
(c) λ=1.7    (d) λ=2.1 

 

       
         (e) λ=2.6 

 

Figure 12. Vorticity magnitude at different tip speed ratio. 

 

CONCLUSION 

 

This paper presents the numerical investigation of a novel bio-inspired vertical axis wind 

turbine designed for offshore regions of Malaysia. The proposed model was examined at 

different mesh densities and turbulent model in order to find the proper simulation 

configuration setting. Five options of tip speed ratio were examined. At tip speed ratio of 

λ=1.3 the numerical oscillation stabilizes after 480° with an average stable peak value of 

Cm =0.32. The average of total moment coefficient was Cm=0.1886. Meanwhile, at tip 

speed ratio λ=1.7 the turbine generated an average moment coefficient value of 

Cm=0.153991 and showed almost similar behaviour pattern as λ=1.3 in wind energy 
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extraction. The result showed that the proposed turbine with four blades composed of 

fixed AoA aerofoil NREL S819 performed well at tip speed ratio λ=1.3 and λ=1.7 by 

generating a stable average power coefficient value of Cp=0.245 and Cp=0.262 

respectively. Furthermore, the vorticity magnitude of each tip speed ratio was analyzed. 

It was observed that, wake effects induced by the trailing edge had affected the 

performance of the following blade. It was sensible response to be exhibited by the blade 

since it was not a variable pitch design. In the future, further investigation is required in 

order to complete the analysis and understand the aerodynamic behaviour of the proposed 

morphology blade design and configuration.      
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