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ABSTRACT 

 

The present research is performed while turning of JIS S45C hardened structural steel with the 

multilayered (TiN-TiCN-Al2O3-TiN) CVD coated carbide insert by experimental, modelling 

and optimisation approach. Herein, cutting speed, feed rate, and depth of cut are regarded as 

input process factors whereas flank wear, surface roughness, chip morphology are considered 

to be measured responses. Abrasion and built up-edge are the more dominant mode of tool-wear 

at low and moderate cutting speed while the catastrophic failure of tool-tip is identified at higher 

cutting speed condition. Moreover, three different Modelling approaches namely regression, 

BNN, and RNN are implemented to predict the response variables. A Back-propagation neural 

network with a 3-8-1 network architecture model is more appropriate to predict the measured 

output responses compared to Elman recurrent neural network and regression model. The 

minimum mean absolute error for VBc, Ra and CRC is observed to be as 1.36% (BNN with 3-

8-1 structure), 1.11% (BNN with 3-8-1 structure) and 0.251 % (RNN with 3-8-1 structure). A 

multi-performance Optimisation approach is performed by employing the weighted principal 

component analysis. The optimal parametric combination is found as the depth of cut at level 2 

(0.3 mm)-feed at level 1 (0.05 mm/rev) – cutting speed at level 2 (120 m/min) considered as 

favourable outcomes. The predicted results were validated through a confirmatory trial 

providing the process efficiency. The significant improvement for S/N ratio of CQL is observed 

to be 9.3586 indicating that the process is well suited to predict the machining performances. In 

conclusion, this analysis opens an avenue in the machining of medium carbon low alloy steel to 

enhance the machining performance of multi-layered coated carbide tool more effectively and 

efficiently. 
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NOMENCLATURE 

 

JIS Japan Industrial Standard CVD chemical vapour deposition 

AISI American Iron and Steel Institute ANN artificial neural network 

d depth of cut (mm) BNN back propagation neural network 

f feed rate (mm/rev) RNN recurrent neural network 

v cutting speed (m/min) BUE built-up edge 

HRC Rockwell hardness  MQL minimum quantity lubrication 
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VBc flank wear at nose (mm) CNC computer numerical control 

Ra arithmetic surface roughness (µm) RSM response surface methodology 

CRC chip reduction coefficient TiN titanium nitride 

ANOVA analysis of variance TiCN titanium carbide nitride 

HV Vickers micro-hardness Al2O3 aluminium oxide 

R2 coefficient of determination                           R2 

(Pred) 

predicted R2 

R2 (adj) adjusted R2 K number of inputs 

MAE mean absolute error DF degrees of freedom 

SS sum of squares MS mean square 

P probability of significance F variance ratio 

CQL combined quality loss PCC Pearson’s correlation coefficient 

WPCA weighted principal component 

analysis 

MPI multiple response performance 

index 

CAP cumulative accountability 

proportion 

  

 

INTRODUCTION 

 

Hard part turning is regarded as an imperative manufacturing technology for increased part 

quality, productivity, and enhanced surface integrity. Further, this emerging process has been 

explored as a cost-effective substitute for the conventional finish grinding, which is used to 

generate components made of hardened steels. Hard part turning is a process performed on 

hardened materials (hardness greater than 45 HRC) to attain the level of surface roughness closer 

to the conventional grinding process. The technological advancement of this innovative 

technology is developing with the incorporation of newer advanced cutting tools for example 

cemented carbide, ceramics, and cubic boron nitride and polycrystalline diamond. The focal 

goal of the manufacturers and scientific researcher of this new process is the production of 

quality components and behaviour of new cutting tool material during the process [1]. Indeed, 

the crucial significant characteristics of hard turning are noticeable removal of material in a 

single operation rather than an extensive grinding process to diminish production processing 

time, cost of production, surface quality, and setup time to remain competitive.  

The hard-turning process renders many advantages over conventional grinding. 

Moreover, the performance measures like cutting tool wear, tool span, surface quality, and 

amount of material removed are also can be predicted by this process [2]. To achieve higher 

productivity, more elasticity and avoidance of coolants turning of hardened steel is the 

appropriate machining process nowadays [3]. Also, this technique is considered as a sustainable 

manufacturing process due to low energy consumption [4]. Production of hardened steel parts 

is gaining popularity in shop floor due to its superior characteristics such as resistance to 

indentation, abrasiveness etc. Thus, assessment of the different machining characteristics of 

hardened steel is necessary to ensure that cutting operations are important manufacturing 

process to remain in the competitive market [5]. Hard turning process performance was majorly 

influenced by various factors namely workpiece hardness, cutting tool material, tool coatings, 

tool geometry, cutting parameters and cutting environment (Figure 1) [6]. However, various 

attempts have been performed to analysis the sway of these factors on measured variables during 

the hard-turning process.  
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Figure 1. Major influencing terms for hard-turning. 

 

In the hard part turning, the cutting tool gets fail due to mechanical breakage, plastic 

deformation, and gradual wear. Mechanical breakage and plastic deformation of the tool may 

be considered as a premature tool failure and can be avoided by using appropriate tool material, 

tool geometry and cutting conditions (cutting parameters and cutting surroundings). Gradual 

wear is a continuous process and it can’t be prevented but it can be minimised by selecting 

appropriate cutting agents [7]. Chinchanikar and Choudhury [7] reported various tool wear 

pattern like nose wear, flank wear, notch wear, crater wear, chipping, catastrophic failure and 

BUE in hard turning. Sampaio et al. [8] examined abrasive-tool-wear pattern under dry and 

MQL machining surroundings as a result, flank, as well as crater, wear was dominant. Notch 

marks were also seen at the end boundary of the secondary cutting edge. Singh et al. [9] explored 

the various tool mechanisms in turning of AISI 304 steel under three different cutting 

surroundings namely dry, flooded and nanofluid MQL. The mechanism like micro-chipping, 

abrasion, adhesive, oxidation, and severe notching are dominant under dry cutting condition. 

Kumar et al. [10] stated that the diffusion and abrasion wear approach was dominant in dry 

cutting of D2 hard steel. Diffusion mechanism is the key agent for catastrophic breakage of 

uncoated carbide insert. 

Very limited research works have been performed on hard turning on JIS S45C steel. A 

brief detail overview is summarized as follows: In the machining investigation on S45C steel, 

the feed rate was identified as the most impactful factor towards the rate of tool wear as well as 

cutting tool temperature. Cutting speed was highly sensitive towards stress and growth of cutting 

zone temperature i.e. improvement in cutting speed attributed the higher magnitudes of stress 

on the tool as well as finish test specimen [11]. Machining of JIS S45C steel in dry scenario 

attributed the best quality of finish over wet and cryogenic cooling using CVD coated tool [12]. 

The higher stability of the cutting tool was noticed when machining was carried at 100 m/min 

but at higher speed 200 mm/min, the wear rate was increasing speedily with the progress of 

cutting time. Also, the cutting temperature was elevating with cutting speed [13]. The feed rate 

followed by nose radius contributed the highest impact on surface roughness (Ra and Rz) in CNC 

turning process on S45C steel [14]. In machining on S45C steel by coated carbide TiN insert, 

tool-nose-chipping phenomena in the majority of tests were noticed because of elevated cutting 

temperature and the stress on the cutting tool-tip [15]. Erkan et al. [16] predicted artificial neural 

network (ANN) models by five learning algorithms for analysis of the damage factor to 

minimise the number of time-consuming trials. Henceforth, the highest successful performance 
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was attained by 4-10-1 network structure with LM learning algorithm. Especially, ANN was 

predicting successful in the damage factor owing to higher R2 (more than 0.999) and lower 

RMSE and MEP during end milling of GFRP composite material. 

In recent years, various numerical methods are popularly implemented to predict the 

various response parameters in hard turning process due to knotty interaction between the tool-

workpiece during the cutting. Yet, proper selection modelling methods is a challenging 

assignment for the researchers. Brief works considering the application of distinguish modelling 

methods in hard turning have been reported here. Mia and Dhar [17] implemented the RSM, 

fuzzy interface and simulated annealing to develop and co-relate the models in dry hard turning. 

RSM contribute to the highest determination coefficient among all. Workpiece hardness 

attributed the key variable on surface roughness while the combination of higher cutting speed, 

lower cutting feed, and lower work hardness exhibited the lower value of surface roughness. 

Meddour et al. [18] elaborated the influence of various cutting factors namely nose radius, 

cutting speed, depth of cutting and feed rate on surface roughness and forces with well-known 

RSM tools. The cutting speed was successfully reduced the unfavourable influence of feed on 

surface roughness.  Labidi et al. [19] developed analytical models for surface roughness, tooling 

flank wear, and tangential force. The ANN approach superiorly worked for predicting the 

process turning parameters relative to RSM. Das et al. [20] implemented a regression analysis, 

analysis of variance, and main effect graphs to study the machining characteristics in turning of 

4340-grade steel. Uniform growth in the wear of carbide insert was identified with a rise in 

cutting speed. Kumar et al. [21] implemented the regression as well as ANN to predict the 

tooling flank wear, surface roughness level and cutting tool temperature turning of hardened 

AISI D2 steel. Labidi et al. [19] applied ANN and RSM methods to predict the responses. ANN 

methodology attributed the better accuracy results over RSM during hard turning on X210Cr12 

steel with CC6050 ceramic coated tool. Paturi et al. [22] analysed the outcomes of turning 

factors on surface roughness during regression and ANN models. The ANN predictions are 

closer to actual results and thus efficiently predict the machining responses for a proper 

understanding of the complex cutting phenomena. In the recent investigation, Yıldırım et al. 

[23] observed that the lowest wear among all type of tools is obtained under MQL machining, 

while the highest level of wear is obtained under wet cooling machining. Finally, MQL 

attributed the 17.34% and 433.67% better tool wear as compared to dry and wet cooling 

machining respectively.  

Based on the review, many researchers have performed a comparative performance 

analysis of various cutting tools in hard turning. Coated carbide tools (CVD/PVD coated) are 

performing well in hard turning but there are lots of scopes to carry out the research taking a 

different combination of coating layers on to the carbide substrate. Analysis of hard turning 

through experimental, Modelling and optimisation together is rarely listed in the literature. 

Modelling in hard turning through regression and response surface methodology is majorly 

available in the literature. Application of ANN in hard turning modelling is inadequate and need 

to be explored more considering distinguish neural network parameters. Further, the recurrent 

neural network (RNN) modelling in hard turning is not available in the literature. Various multi-

response optimisation techniques like grey relational analysis, TOPSIS, Weighted principal 

component analysis (WPCA), etc. are found in the literature. Responses like tool-wear, surface 

roughness, chip morphology are commonly available in literature but analysis of cutting-

temperature and chip reduction coefficient in hard turning is rarely available. Referring to 

aforesaid review, it is scrutinised that multi-layered CVD (TiN-TiCN-Al2O3-TiN) coated 
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carbide cutting tool with an intermediate layer of Al2O3 requires more exploration in terms of 

machining characteristics to have a better understanding of its superlative performance during 

machining of structural steel grade. Study on the effect of main cutting parameters on intended 

machining output variables like surface roughness, tool wear, chip morphology, and chip 

reduction coefficient is inadequate during machining of JIS 45C structural steel. 

Hardened JIS S45C Steel is a structural steel grade and it has numerous applications in 

motor shaft, shaft studs, keys and automotive parts making industries. Till date, very few 

amounts of experimental schemes on JIS S45C steel are listed in the literature, therefore the 

detailed investigation along with Optimisation and Modelling are worth needed to examine the 

machining performance of JIS S45C Steel. Therefore, in this context, the current investigation 

of JIS S45C steel having hardened condition (52-55 HRC) is selected to study the various 

parametric influences on multi-responses using multi-layered coated carbide insert under dry 

condition.  Further, three different Modelling techniques (Regression, Artificial neural network 

(ANN) and recurrent neural network (RNN)) are implemented to predict the multi-responses 

and their results are compared. RNN is a neural base Modelling technique and not used yet for 

hard turning applications. Further, to achieve the appropriate optimal settings of cutting factors, 

WPCA coupled with Taguchi approach has been implemented for the multi-response 

optimisation.   

 

MATERIALS AND METHOD 

 

The work-specimen JIS S45C steel with hardness range of 52-55 HRC is selected for this 

experimental study. The finishing length and initial diameter of the workpiece are 90 mm and 

36 mm respectively. The chemical constituents of work-specimen are presented in Table 1. The 

multi-layered CVD (TiN-TiCN-Al2O3-TiN) coated carbide cutting tool of geometry CNMG 

1204085 (TN 7105) and made by WIDIA, Germany has been implemented for hard turning 

process. The Vickers microhardness of insert has been measured three times at a load of 1 kg 

(HV1) with diamond indenter and indenter shape is displayed in Figure 2. The average micro-

hardness is found as 1865 HV1 and it shows a higher grade of wear-resistance capability of the 

insert. The tool holder of ISO configuration PCLNR2525M12 is used to screw the rhombus-

shaped insert with a nose radius of 0.85 mm. CNC centre lathe (spindle speed = 50 to 4000 rpm) 

made by Jyoti CNC Automation Ltd. is utilised for the experimentation.  
 

Table 1. Constituents of JIS S45C hardened steel. 

 
Constituents C Mn Si Ni Cr Mo S P 

wt.%  0.49 0.74 0.20 0.108 0.11 0.017 0.005 0.014 

 

TaguchiL16 experimental design has been chosen based on three input cutting terms  

(cutting speed, v; feed, f; and depth of cut, d) and four levels as in Table 2. The responses to be 

measured are flank wear (VBc), average surface roughness (Ra) and chip-reduction coefficient 

(CRC). The standard limit of VBc and Ra have been fixed as 0.3 mm and 1.6 microns 

respectively [20, 24-26]. Width of flank wear is measured through optical micrographs images 

which are captured offline via STM6 microscope whereas Taylor Hobson’s roughness tester is 

utilised for Ra measurement and followed the ISO 3274-1996 standard. The roughness tester set 

up parameters like the number of sampling, cut off length and assessment length are 5, 8 mm 



Hard Turning on JIS S45C Structural Steel: An Experimental, Modelling and Optimisation Approach 

7320 

and 4 mm respectively used during surface roughness measurement. Five different locations on 

the turned surface in the axial direction are chosen to measure the Ra and the average data is 

noted for the study. After completion of each experiment, chip samples are collected and 

randomly thickness of five samples is measured and the average thickness is taken. MINITAB-

16 statics tool is used for ANOVA and main effects plot. Matlab R2013a software is utilised to 

carry out the ANN and RNN Modelling. The graphical view of the entire work has been reported 

in Figure 3.  
 

 
 

Figure 2. Indentation marks on cutting insert. 
 

Table 2. List of parameters and their levels. 
 

 

Table 3. Experimental evaluation. 
 

Run 
d 

(mm) 

f 

(mm/rev) 

v 

(m/min) 

VBc  

(mm) 

Ra 

(µm) 
CRC Chip Shape Chip Colour 

1 0.2 0.05 60 0.077 0.552 1.867 Helical Metallic 

2 0.2 0.15 120 0.093 0.644 1.673 Ribbon Metallic 

3 0.2 0.25 180 0.112 0.912 1.445 Ribbon Metallic 

4 0.2 0.35 240 0.143 1.544 1.337 Ribbon Metallic 

5 0.3 0.05 120 0.089 0.438 1.766 Helical Metallic 

6 0.3 0.15 60 0.101 0.902 1.806 Ribbon Metallic 

7 0.3 0.25 240 1.121 1.168 1.485 Ribbon Metallic 

8 0.3 0.35 180 0.176 1.887 1.405 Ribbon Metallic 

9 0.4 0.05 180 0.117 0.668 1.827 Helical Metallic 

10 0.4 0.15 240 0.988 1.064 1.74 Ribbon Metallic 

11 0.4 0.25 60 0.115 1.422 1.806 Ribbon Metallic 

12 0.4 0.35 120 0.149 1.98 1.577 Ribbon Metallic 

13 0.5 0.05 240 0.168 0.801 1.927 Helical Metallic 

14 0.5 0.15 180 0.135 0.845 1.847 Ribbon Metallic 

15 0.5 0.25 120 0.125 1.182 1.887 Broken Metallic 

16 0.5 0.35 60 0.114 2.008 2.007 Broken Metallic 

Factors Levels 

1st 2nd 3rd 4th 

v (m/min) 60 120 180 240 

f (mm/rev) 0.05 0.15 0.25 0.35 

d (mm) 0.2 0.3 0.4 0.5 

Diamond 

indentation on 

insert 

50 µm 
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Optimization 

Weighted principal 

component analysis 

(WPCA)

MPI = Z1 (0.542)+

           Z2 (0.331)+

           Z3 (0.381)

Flank Wear

Surface Morphology

Chip Reduction Coefficient

Chip Morphology

Surface Roughness

Finish Hard Turning of JIS S45c

Calibration

Measured value

Lathe machine tool Work-specimen Cutting insert

Right hand tool holder

Surface roughness tester
Optical microscope 

(Flank wear 

measurement)

Modeling

ANN RNN Regression

Y  = a + a1d +a2 

f + a3 v + a4 d2 

+a5 f2 +a6 v2 

+a7 df +a8 fv 

+a9 vd

 
 

Figure 3. Graphical view of entire work. 
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RESULTS AND DISCUSSION 

 

Wear Morphology 

 

For hard turning concern, failure of the cutting tool in various mode of wear is found as a prime 

issue which leads to a tooling cost. However, it needs to be elaborated precisely to understand 

the role of various factors towards tool wear and also how these factors can be controlled for 

minimisation of tool wear thus tooling cost. In the current research work, flank wear is measured 

after the completion of each experiment and displayed in Table 3. The wear data depicts the 

favourable machining as wear width lies within the recommended limit of 0.3 mm except for 

10th and 13th run. Even machining at 180 m/min with total feed rate and depth of cutting 

attributes below than 0.2 mm wear width, which ensures the better capability of the multi-

layered coated tool. Throughout all experiments, abrasion mode of wear mechanism is traced to 

be dominant due to hard constituents like chromium and silicon are present in JIS S45C grade 

steel. Also, rubbing between flank surface and chips promotes abrasive marks near tool-tip as 

shown in Figure 4. The appearance of built-up edge (BUE) is clearly perceived on to the tool 

nose at smallest and moderate cutting speed (60 and 120 m/min) conditions as shown in Figure 

4. Catastrophic delamination of tool nose is identified at higher cutting speed with moderate 

feed rate and depth of cut, due to the high intensity of cutting temperature generation. Kumar et 

al. [27] found the catastrophic failure of TiN coated tool at 182 m/min of machining of D2 steel 

under dry condition. Dominancy of cutting speed on wear is clearly identified through test 

results [25-27].  

 

 
(a) 

 
(b) 

 
(c) (d) 

 

(e) 
 

(f) 
 

(g) 
 

(h) 

 

Figure 4. Flank wear images of different run. 

 

Surface Roughness Analysis 

 

Surface roughness represents the waviness of a surface at the microscopic level and it is the 

major component for the machinability concern [28]. However, the present study emphasised 

BUE 
Catastrophic failure Abrasive marks 

BUE Catastrophic failure 

 

BUE 

 

Abrasive marks 

 

Abrasive marks 
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on the offline evaluation of Ra by portable surface roughness tester. Distinguish factors like 

cutting speed, depth of cut, feed, flank wear etc. directly or indirectly affects the surface quality 

of the freshly machined component. Therefore, the consequences of these parameters on surface 

roughness are discussed.   

From Table 3, it has been clearly noticed that in most of the cases (except the 8thand 16th 

run) the surface roughness lies below the standard roughness criteria of 1.6 µm [20, 24-25]. The 

roughness values are observed to be beyond to 1.6 µm for highest feed 0.35 mm/rev condition. 

Hence for surface roughness concern, the tool performed well up to 0.25 mm/rev with entire 

ranges of considered cutting speed and depth of cut. For surface roughness concern, the cutting 

speed doesn’t contribute a significant change while a minor improvement in Ra is noticed when 

the depth of cut rises to 0.4 mm beyond it marginally decreases. Initially (up to run 7), Ra is 

increasing with leading wear width whereas in other conditions, the effect of feeds on Ra is more 

dominant than wear width.  

The surface topology of the machined surface clearly correlates the feed with feed 

marks. The gap between two consecutive feed marks increases with feed rate i.e. higher feed 

attributes wider feed marks and vice versa. The surface topology at run 1 (0.05 mm/rev) and run 

4 (0.35 mm/rev) are displayed in Figure 5, which clearly shows the effects of feed on the gap 

between two consecutive feed marks i.e. higher feed produces wider feed marks and vice versa 

condition. At the higher cutting speed (240 m/min) and feed (0.35 mm/rev) condition, some fine 

pieces of chips are adhered on the finished surface due to high-temperature generation. Similar 

observations were reported by Kumar et al. [29].  

 

  
(a) run 1     (b) run 4 

 

Figure 5. Surface topology of the finished surface using optical microscope. 

 

Chip Morphology and Chip Reduction Coefficient 

 

The shape and colour of chips for each run is listed in Table 3. In most runs, the shape of chips 

is observed as ribbon type. Ribbon type of chips is bonded types of a structure where chips are 

bonded together and form a long and continuous strip. The bottom portion of chips has steps 

marks due to intermittent slip while the outside portion is smooth and shining as shown in 

(Figure 6(a)). Snarl type helical chips (Figure 6(b)) are generated at the lowest feed 0.05 mm/rev 

condition and indicates favourable machining as the smoother surface is produced. Broken 

Ridges 

 

Finer feed marks 

Smooth surface 

 

Wider feed marks 

 

 
 

Embedded chips 
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discontinuous types chips in Figure 6(c) were produced at more feed and highest depth of cut 

condition which attributes the relatively rough surface and not favourable for hard turning 

concern [10]. In the entire set of experiments, the colours of chips are metallic which indicates 

the optimum amount of heat generation during the process. In each run, sawtooth profile (as 

shown in Figure 6) on the chip is noticed due shear cyclic crack formation on to the thin sections 

of the chips [10, 26]. According to Ueda et al. [30], sawtooth is formed due to high stain 

concentration by local weakening through high heat penetration into the workpiece. 

Chip reduction coefficient (CRC) introduced the frictional characteristics of any 

conventional machining process. Higher CRC denoted the higher frictional coefficients which 

attributed the higher cutting force thus higher specific power requirements for cutting the metal. 

The lower value of the chip reduction coefficient signifies lesser vibrations and chattering with 

efficient chip production [25, 31]. However, higher CRC represents poor machinability 

performance. In the current work, higher CRC is noticed at a higher depth of cut (0.5 mm) 

conditions (Table 3). Also, CRC is higher at smaller feed conditions (0.05 and 0.15 mm/rev 

condition). These observations clearly indicate the higher cutting force as well as higher specific 

cutting power requirement to cut the materials compared to other machining conditions.  

 

   
(a) Ribbon shape (Run 2) (b) Helical shape (Run 5) (c) Broken chip (Run 15) 

 

Figure 6. Different types of chips pattern. 

 

Parametric Effects Study through Graphical Plots and ANOVA  

 

Graphical view clearly shows the variation in responses with respect to levels of cutting factors. 

Currently, the main effects plot and interaction plots are studied and the same are discussed 

subsequently. From the main effects plot in Figure 7(a), VBc is clearly improving with cutting 

speed but the rate of wear is very slow till 180 m/min of machining, beyond it the VBc is rapidly 

increasing due to poor stability of insert at highest speed and it is validated from the 

experimental results (run 7 and run 10). The sway of the depth of cut and feed are marginal as 

the graph is distributed near to the mean line. Likewise, from Figure7(b), cutting feed is seemed 

to be the most dominating factor as roughness increasing almost linearly with improving cutting 

feed. As the graph of Ra for cutting speed and depth of cut is varied along mean line, hence it 

can be said that the effects of these parameters are insignificant. In a similar way from Figure 

7(c), all three parameters (d, f, and v) affected the CRC significantly and among these three 

parameters influence of depth of cut is the largest [10].  

Metallic 

 

Saw tooth pattern 

Metallic 
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Figure 7. Main effects plots for (a) VBc (b) Ra (c) CRC. 

 

Interaction plot deals the interaction effects through graphical illustration and attributing 

the better realization of interactions between the control parameters that are selected. Interaction 

between the factors exists, when the graph lines are non-parallel and not exist for the parallel 

graph lines [32]. Interaction plots for all responses (VBc, Ra, and CRC) are displayed in Figure 

8(a), 8(b) and 8(c) respectively. For response VBc, the interaction effect doesn’t exist for any 
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combinations as lines are parallel. Similarly, for response Ra, a strong interaction exists for v-f 

and v-d. For CRC, the interaction effect of all the couple terms like v-f, v-d, and f-d exist. 
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Figure 8. Interaction plots for (a) VBc (b) Ra (c) CRC. 

 

From the surface plot of VBc in Figure 9, the surface is lifting upwards after 140 m/min 

of speed this ensure that the flank wear rapidly increases when cutting speed exceeds to 140 
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m/min and it is evident from ANOVA which shows the contribution of speed towards VBc is 

46.54%. Effects of the depth of cut and feed are not exactly identified due to uneven variations 

in surface and it confirms through ANOVA contribution value where the contribution of the 

depth of cut and feed is 14.7% and 12.86%. Similarly, from the surface plot of Ra, the surface 

slope is increasing with feed rate whereas the consequences of the depth of cut and cutting speed 

are marginal. Hence, it can be stated that the surface roughness is highly dominated by feed and 

it is confirmed by ANOVA (Table 4) where the contribution of feed towards Ra is 88.92%. 

Similar way, the surface slope of CRC is leading with depth of cut and minimising with feed 

and cutting speed which shows that the CRC is affected by all three cutting terms (v, f, and d) 

and among them, depth of cut is highly dominant which is confirmed from ANOVA which 

ensures the highest contribution of depth of cut (44.83%) towards CRC.  Similar observations 

were reported by Kumar et al. [25, 27].  

   

Table 4. Estimation of contribution of factors using ANOVA. 
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Factors 
Turning outputs 

VBc (%) Ra (%) CRC (%) 

v (m/min) 46.54 01.63 26.04 

f (mm/rev) 12.86 88.92 26.73 

d (mm) 14.70 08.01 44.83 

Error 25.90 1.44 2.4 

Total 100 100 100 
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Figure 9. 3D surface plots. 

 

Empirical Modelling 

 

Regression modelling 

 

The second-order regression models establish a functional bonding between input variables (v, 

f, and d) and a particular response (Y) as shown in the Eq. (1). 

 

Y= a + a1d +a2f + a3v + a4d
2 +a5f

2 +a6v
2 +a7df +a8 fv +a9vd (1) 

 

In Eq. (1), ‘Y’ symbolizes as the output response, ‘a’ is the intercept of the plane and ‘a1’, ‘a2’ , 

……. ‘a9’ symbolise as the regression coefficients which depend on the main effects and 

calculated using least square theories. The terms‘d’, ‘f’ and ‘v’ are the input parameters and d2, 

f2, and v2 are the square terms while ‘df’, ‘fv’, and ‘vd’ are interaction terms [25, 33].  

In the current investigation, three regression models namely VBc, Ra and CRC are 

established and showing high degrees of R2 (about 100 %), R2(predicted) and R2(adjacent) at 

95% of confidence. Therefore, these models are statistically significant and able to predict the 

responses.  

 

VBc = – 0.1017 + 3.7256d – 3.2613f – 0.0043v – 11.8062d2– 10.9812f2 + 22.1489df + 

0.0014dv + 0.0008fv  

 

R2 = 99.41%   R2(pred) = 94.34%    R2(adj) = 98.52% 

(2) 

 

Ra = 0.3751 + 3.1523d +1.0797f – 0.0082v – 6.5062d2+10.8687f 2 + 0.8170df + 

0.0131dv– 0.0065fv    

 

R2 = 99.39%    R2 (pred) = 93.03%  R2 (adj) = 98.46% 

 

(3) 

 

CRC = 2.2767– 1.6833d – 1.6889f – 0.0025v+3.6125d2+ 0.1500f 2 + 2.6931df– 

0.0254dv – 0.0023fv    

 

R2 = 99.05%  R2 (pred) = 92.28%  R2 (adj) = 97.62% 

(4) 
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Neural Network Modelling  

 

Current work elaborates the ANN Modelling to predict the hard-turning response variables 

(VBc, Ra, CRC). ANN worked on the biological concept of the human brain and its nervous 

systems.  Most popular Back-propagation algorithm is utilised to process the ANN Modelling. 

ANN comprises of input, hidden and output layers. Input layer comprises of various neurons 

(distinguish inputs) which are connected to individually to each neuron of the hidden layer.  

Similarly, the hidden layer also consists of various neurons which are further connected to each 

neurone of the output layer. The output layer consists of single or multi-neurons (depends on 

users) and provides the predicted output response data [34-35]. 

 

Back-propagation neural network 

 

Back-propagation neural network (BNN) composed of three various layers, namely input, 

intermediate or hidden and output layers as shown in Figure 10. In training of the network, the 

calculations are computed from input to the output layer, and error data are then transmitted 

back to the consequent layer. Three individual inputs (K=3), specifically cutting speed (v), feed 

rate (f) and depth of cut (d) are taken together with an individual response (flank wear: VBc / 

surface roughness: Ra / chip-reduction coefficient: CRC). In between the input and output layer, 

a hidden layer is placed. Three different architectures of the hidden layer, namely 2K (6 

neurons), 2K+1 (7 neurons), 2K+2 (8 neurons) are chosen based on previous research work.  

Zhang et al. [31] purposed that the number of neurons in the hidden layer can be based on the 

number of inputs ‘K’ and the number of neurons in the hidden layer may vary as  K, K/2, 2K, 

2K +1 number of neurons. Also, according to Panchal et al. [36], by keeping more number of 

neurons in the hidden layer, the more accurate result is achieved. However, in this work, three 

different numbers of neurons in hidden layers are chosen. Levenberg-Marquardt (L-M) 

algorithm is utilised for training of the network. Mean square error in prediction is taken as a 

performance standard for the network.  

 

Recurrent Neural Network (RNN) Modelling 

 

RNN is different from back-propagation NN Modelling. RNN is a neural network by a feedback 

loop and figures a closed-loop for the network. RNN is a combining form of feedforward and 

back forward structure [37-38]. Generally, Elman Network and Jordan Network are most 

popular RNN algorithms and the learning process of these networks chases the gradient descent 

technique [30]. 

 

Elman network 

 

Elman network is a three-layer feed-forward back propagation neural network by an additional 

context layer (input layer of Elman network is consist of together internal and external neurons). 

In addition, the external inputs are appropriately fed into the Elman network and feedbacks are 

received from hidden neurons [39]. The net outputs of the hidden neurons are fed back as 

internal inputs to the developed network as shown in Figure 11. In general, the connecting 

weights among hidden and context neurons are reserved to be fixed. Connecting weights for 

input-hidden layer and hidden output layers are updated during the training while, feedback 
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connection weights are remained fixed. The diagram architecture of the Elman recurrent neural 

network is displayed in Figure 11. Similar to BNN, Levenberg-Marquardt (L-M) algorithm is 

utilised for the training of the network and mean square error is considered as a performance 

criterion for the network. Similar to BPNN, three different hidden layer 2K (6 neurons), 2K+1 

(7 neurons), 2K+2 (8 neurons) are used for the RNN modelling [35].  

 

 
Figure 10. Architecture of back-propagation neural network. 

 

  
 

 

Figure 11. Architecture of recurrent neural network 
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Procedure to Carry Out ANN and RNN Modelling 

 

Matlab R2013a is used to accomplish the ANN and RNN modelling. In Matlab, ‘nntool’ is 

utilised to adopt feed-forward back-propagation network and Elman network. The different NN 

functions like ‘dividerand’ for random data distribution, ‘trainlm’ for training the input data, 

‘leargdm’ for learning, ‘mse’ for examining the performance, ‘tansig’ for transferring the data 

have been taken. By default, the activation function “Tan-Sigmoid” was used in both modelling. 

To train both networks, training parameters namely maximum number of epochs = 1000, initial 

training rate = 0.001, learning rate = 0.01, ratio to increase and decrease learning rate = 1.05 and 

0.7 respectively, momentum constant = 0.9, and minimum performance gradient 1e-7 is used. 

Similar variables have been used by D’Mello et al. [40] and Kumar et al. [41]. Several trials 

have been performed to get desirable solutions using different initial random weights. Graphical 

representation of training, testing, and validation for BNN model (3-8-1) is shown in Figure 12, 

and it confirms the well fit of model as R2 value (All: R= 0.9999) is close to unity. Further, the 

network is simulating in order to obtain the predicted value of a particular response. 

 

 
 

Figure 12. Graphical representation of training, testing, and validation for BNN model (3-8-1). 
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The prediction of L16 experimental results for each response was estimated using 

regression, BNN (three different architectures: 3-6-1; 3-7-1 and 3-8-1) and RNN (three different 

architectures: 3-6-1; 3-7-1 and 3-8-1) techniques. The predicted data for each response is 

compared with experimental data and mean absolute error in percentage is calculated using the 

following relations [41-42]: 

 

 (5) 

 

The mean absolute error of responses VBc, Ra and CRC is graphically presented in 

Figure 13. For response VBc in Figure 13(a), the minimum absolute error is 1.36% which is 

found when BNN modelling is carried with the 3-8-1 architecture of the network. Similarly, for 

response Ra in Figure 13(b), least error 1.11% is found with 3-8-1 network architecture of BNN 

modelling. Further, the minimum error of CRC in Figure 13(c) is found as 0.251% which has 

noticed with 3-8-1 network architecture of RNN modelling. Overall, all the modelling 

techniques attributed the close prediction of results as maximum MAE for VBc, Ra and CRC are 

found as 5.05% (regression modelling), 4.56% (RNN with 3-8-1 structure) and 2.47% 

(regression). From this analysis, BNN with 3-8-1 network architecture attributed the best fit 

result for response VBc and Ra. Moreover, at the same architecture, the MAE for CRC is 0.707% 

which is very less. However, it can be said that the BNN with 3-8-1 network architecture model 

is more suitable to predict the response parameters compared to other models.  
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Figure 13. Mean absolute error of (a) VBc (b) Ra and (c) CRC for different models. 

 

Multi Response Optimisation 

 

In this investigation, all the measured output responses are considered to have their individual 

effect on the part surface quality and economy in the metal cutting process. Consequently, it is 

necessary to optimise the measured output parameters concurrently to sustain a better balance 

among the part quality and cost-effective of machining. Because conventional Taguchi approach 

is not adequate enough to answer the multi-response optimisation troubles, thus WPCA coupled 

with Taguchi approach has been employed in the current study [43-44]. 

Weighted principal component analysis (WPCA) together with the Taguchi approach 

has been utilised for multi-response parametric optimisation which is must be needed for 

continuous quality enhancement [45]. The experimental data of multi-responses VBc, Ra, and 
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CRC are normalised taking into account ‘lower-the-better criteria’ i.e. Ki*(x) = [min Ki (x)/Ki 

(x)] where, Ki*(x) is the normalised result of the xth constituent in the ith sequence and shown 

in Table 5. Further, Pearson’s correlation coefficient (PCC) among the response parameters has 

been estimated to check the correlation between responses. From Table 6, it can be stated that 

the PCC contains non-zero data that specifies that the outputs are correlated. Further, 

eigenvector and eigenvalues, accountability proportion (AP) and cumulative accountability 

proportion (CAP) are estimated to eliminating the response correlation and their values are 

shown in Table 8. MINITAB has been used to find out principal component analysis (PCA). 

Accountability Proportion (AP) of individual principal components is presumed as individual 

priority weights. Individual principal component (PC1, PC2, PC3) are known as uncorrelated 

quality indices which are formulated by converting into the correlated responses and presented 

in Table 7.  
 

Table 5. Normalised trial data. 
 

Sl.No 
Normalised data 

VBc Ra CRC 

Ideal 1 1 1 

1 1.0000 0.7935 0.7161 

2 0.8280 0.6801 0.7992 

3 0.6875 0.4803 0.9253 

4 0.5385 0.2837 1.0000 

5 0.8652 1.0000 0.7571 

6 0.7624 0.4856 0.7403 

7 0.0687 0.3750 0.9003 

8 0.4375 0.2321 0.9516 

9 0.6581 0.6557 0.7318 

10 0.0779 0.4117 0.7684 

11 0.6696 0.3080 0.7403 

12 0.5168 0.2212 0.8478 

13 0.4583 0.5468 0.6938 

14 0.5704 0.5183 0.7239 

15 0.6160 0.3706 0.7085 

16 0.6754 0.2181 0.6662 
 

Table 6. Correlation check 
 

Sl.No 
Correlation between response 

outputs 

Pearson correlation 

coefficient 
Comment 

1 VBc and Ra 0.528 
Both responses are 

correlated 

2 VBc and CRC -0.328 
Both responses are 

correlated 

3 Ra and CRC -0.338 
Both responses are 

correlated 
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Table 7. PCA results. 

 

 PC1 PC2 PC3 

Eigen value 1.626 0.9923 0.3817 

Eigen vector 0.704 0.038 -0.709 

0.696 0.155 -0.701 

-0.137 -0.987 -0.083 

AP (Accountability proportion) 0.542 0.331 0.127 

CAP (Cumulative accountability proportion) 0.542 0.873 1.000 

 

Multiple response performance index (MPI) is overall quality index and it is computed 

by using the Eq. (6). 

 

MPI = Z1 x 0.542 + Z2 x 0.331 + Z3 x 0.381 (6) 

 

Further, a combined quality loss (CQL) was calculated by smaller the better’ criteria and works 

as a single response. Further to get an optimum set of parameters, S/N ratio of CQL is estimated 

considering the ‘higher the better’ criteria. The estimated MPI, CQL and S/N ratio of CQL is 

listed in Table 8.  

Further, the average S/N ratio of CQL is estimated and listed in Table 9. Form Table 9, 

the higher mean value of individual cutting parameter shows its optimum level and the optimal 

setting is found as d2-f1-v2 as shown in Table 9. Further delta (maximum-minimum) value for 

each cutting parameter is calculated and found that the influence of feed on S/N ratio of CQL is 

highest as delta value (9.035) is highest for feed next cutting speed (5.324) and depth of cut 

(4.116). These statics are also verified through ANOVA percentage contribution (Table 10), 

where it is found that the contribution of feed towards S/N ratio of CQL is highest (51.77%) 

followed by cutting speed (16.43%) and depth of cut (16.34%).  

 

Confirmation Results 

 

The obtained optimal setting of parameters is further used for confirmation experimental test 

and the obtained data are listed in Table 11. Further, the predicted result is estimated at an 

optimal set of parameters using Eq. (7). The initial S/N ratio of CQL is taken for experimental 

run 1 and it is compared with results obtained at the optimum run. From this comparative 

analysis, the gain in S/N ratio of CQL is found as 9.3586 which about 68.3% higher than the 

initial setting. However, it can be concluded that the WPCA is effectively and efficiently 

optimise the multi-responses. 

 

 (7) 

 

where γp denotes the predicted value, γm represents the average value of GRG, γo represents the 

mean of GRG for individual input factor, ‘i’ represent the number of input term (1…… n).    
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Table 8. Calculation of principal components, MPI, CQL and S/N ratio. 

 

Sl.No. 
Distinct principal components  

MPI CQL S/N Ratio of CQL 
Z1 Z2 Z3 

Ideal 1.2630 1.1800 -0.0910  1.0404 0.0000                ----                   

1 1.1582 0.8678 -0.2122  0.8340 0.2064 13.7045 

2 0.9468 0.9257 -0.1766  0.7521 0.2883 10.8044 

3 0.6915 1.0138 -0.2276  0.6235 0.4169 7.5995 

4 0.4395 1.0514 -0.2659  0.4847 0.5556 5.1040 

5 1.2014 0.9351 0.0248  0.9701 0.0703 23.0631 

6 0.7733 0.8349 -0.2616  0.5956 0.4448 7.0373 

7 0.1860 0.9494 0.1394  0.4683 0.5721 4.8505 

8 0.3392 0.9918 -0.2265  0.4257 0.6147 4.2268 

9 0.8194 0.8489 -0.0677  0.6993 0.3411 9.3420 

10 0.2361 0.8252 0.1695  0.4658 0.5746 4.8130 

11 0.5843 0.8039 -0.3202  0.4606 0.5798 4.7338 

12 0.4016 0.8907 -0.2817  0.4050 0.6354 3.9390 

13 0.6082 0.7870 0.0008  0.5904 0.4500 6.9364 

14 0.6631 0.8165 -0.1011  0.5911 0.4493 6.9491 

15 0.5945 0.7802 -0.2358  0.4905 0.5499 5.1937 

16 0.5361 0.7170 -0.3813  0.3823 0.6581 3.6347 

 

Table 9. Average S/N ratio of CQL. 

 

Symbol 
Machining 

parameters 

Average S/N ratio 
Optimal 

result 
Delta Rank Level-

1 

Level-

2 

Level-

3 

Level-

4 

d Depth of cut 9.303 9.794 5.707 5.678 2 4.116 3 

f feed 13.261 7.401 5.594 4.226 1 9.035 1 

v Cutting 

speed 

7.278 10.75 7.029 5.426 2 5.324 2 

 

Table 10. ANOVA for S/N ratio of CQL. 

 

Parameters DF SS MS F P % contribution Remarks 

d 3 59.961 19.987 2.12 0.199 16.34 Insignificant 

f 3 189.984 63.328 6.71 0.024 51.77 Significant 

v 3 60.308 20.103 2.13 0.198 16.43 Insignificant 

Error 6 56.663 09.444     

Total 15 366.916      
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Table 11. Consequences of confirmation trial for multi-responses. 

 

 Initial setting 

d1-f1-v1 

Optimal setting d2-f1-v2 

Prediction Experiment 

VBc (mm) 0.077  0.089 

Ra (µm) 0.552  0.438 

CRC 1.867  1.766 

CQL 0.2064  0.0703 

S/N Ratio of CQL (dB) 13.7045 18.5635 23.0631 

Gain in S/N ratio of CQL = 9.3586 

 

CONCLUSION 

 

A research was performed for optimisation of JIS S45C steel hard turning process parameters 

with multiple performance characteristics on the basis of an orthogonal array (OA) with WPCA 

coupled with Taguchi approach. The analysis presented is an integrated approach of regression, 

BNN, RNN and WPCA method for the modelling and optimisation of technological factors to 

attain lower surface roughness, cutting tool-wear and chip reduction coefficient in hardened 

steel application. The summaries of the analysis can be presented as follows: 

i. Higher micro-hardness confirms the higher wear resistance capability of cutting insert 

and it confirms from the experimental wear result data where up to 140 m/min turning 

speed the maximum wear width is 0.176 mm which far lower than the criteria cap of 

flank wear 0.3 mm. Turning with 240 m/min of cutting speed is not recommended to 

machine the hardened steel with a higher depth of cut condition.  

ii. Abrasion and built up-edge are the more dominant mode of tool-wear at low and 

moderate cutting speed while the catastrophic failure of tool-tip is identified at higher 

cutting speed condition. 

iii. Turning at higher cutting feed (0.35 mm/rev) is not suitable to get the good quality of 

finish. Up to 0.25 mm/rev of feed is recommended to get less than 1.6 µm surface 

roughness. Feed rate was identified as the most influencing term for surface roughness 

as the gap between two consecutive marks on finished surface increases with feed value. 

iv. Broken discontinuous types chips are produced at higher feed rate and highest depth of 

cut condition which attributes the poor quality of finish and not favourable for hard 

turning concern. 

v. Higher CRC values are noticed at higher depth of cut (0.5 mm) conditions i.e. may be 

higher cutting forces thus higher power required to machine the hardened steel. Also, 

higher mean Ra value is noticed from experimental result data which confirms the higher 

cutting forces generation during machining. However, the depth of cut 0.5 mm is not 

suitable for the present work. 

vi. All three modelling techniques (Regression, BNN, and RNN) are suitable to predict the 

responses. The maximum mean absolute for VBc, Ra, and CRC is found as 5.05% 

(regression modelling), 4.56% (RNN with 3-8-1 structure) and 2.47% (regression). BNN 

with 3-8-1 network architecture model is more suitable to predict the responses 

compared to other models. 
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vii. From WPCA, the optimal data set is found as d2 (0.3 mm) – f1 (0.05 mm/rev) – v2(120 

m/min) and from confirmatory trail the VBc is 0.089 mm, Ra is 0.438 μm and CRC is 

1.766 observed and at the optimal condition, CQL value is increased by 9.3586 (i.e. 

68.3%) from the initial process parameter setting that provides a better use of WPCA 

approach in machining. 

A systematic methodology was presented to design and investigation of the experimental 

scheme, which is able to minimise the surface roughness, flank wear, and chip reduction 

coefficient that is valuable to other researchers and machinist and eye-opening for further 

research on surface finish, wear and chip morphology. Further study may consider the various 

chip breaker pattern and its geometry on the rake face of the tool in hard machining. 

Furthermore, the hard machining can be investigated by varying the work hardness, tool 

geometry, grade of coated carbide inserts and cutting environment. Also, the aspects of 

microstructure, surface integrity, cutting force, tool conditioning monitoring can be considered 

as future work.   
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